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Abstract

Hashing, which refers to the binary embedding of high-

dimensional data, has been an effective solution for fast

nearest neighbor retrieval in large-scale databases due to

its computational and storage efficiency. Recently, deep

learning to hash has been attracting increasing attention

since it has shown great potential in improving retrieval

quality by leveraging the strengths of deep neural networks.

In this paper, we consider the problem of supervised hash-

ing and propose an effective model (i.e., DHA), which is

able to generate compact and discriminative binary codes

while preserving semantic similarities of original data with

an adaptive loss function. The key idea is that we scale

and shift the loss function to avoid the saturation of gra-

dients during training, and simultaneously adjust the loss

to adapt to different levels of similarities of data. We eval-

uate the proposed DHA on three widely-used benchmarks,

i.e., NUS-WIDE, CIFAR-10, and MS COCO. The state-of-

the-art image retrieval performance clearly shows the ef-

fectiveness of our method in learning discriminative hash

codes for nearest neighbor retrieval.

1. Introduction

With the rapid development of the Internet and smart de-

vices, a large volume of multimedia data such as videos and

images are uploaded to the Internet every day. These data

are with diverse contents and vary significantly in resolu-

tion, making it extremely difficult to find similar contents

given users’ request. This problem is known as (content-

based) data retrieval. The term ’similar’ may refer to visu-

ally or semantically similar. How to perform efficient re-

trieval in these high-dimensional data has become a prob-

lem worthy of attention. One solution to this is perform-

ing an approximate nearest-neighbor (ANN) search in the
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Hamming space by mapping high-dimensional visual data

into compact binary codes with some elaborately designed

hashing algorithms. Hashing has been receiving increasing

attention from the community due to its efficiency in com-

putation and storage of binary codes.

Recently, deep learning techniques have been proved to

be effective in solving various vision tasks [11], inspiring

many deep learning to hash methods [15, 10, 22, 24, 20, 27,

21, 9, 34, 33]. In this paper, we consider the problem of

supervised hashing, which exploits similarity information

as supervision to construct binary codes during learning,

thus enabling better capturing the semantic structure of data.

Most of existing supervised hashing methods leverage pair-

wise similarity tags to optimize the learning, which enforce

the learned Hamming distances to align with the given tags

by pushing the codes of similar data together and pulling the

codes of dissimilar data away from each other. Normally,

a sigmoid-alike loss function is employed to transform the

Hamming distance to probability distribution that indicates

their similarity. For dissimilar pairs, the Hamming distance

between them is optimized to be greater than a threshold.

However, a problem occurs when the distance surpasses a

certain threshold, i.e., the gradient of their loss function is

close to zero due to the saturation of the sigmoid function,

making the training very difficult. In other words, this kind

of loss function suffers from a high neighborhood ambigu-

ity [2], which will degrade the retrieval performance.

In this paper, we argue that learning strategies of similar

pairs and dissimilar pairs should be adaptive to the differ-

ent similarities of data. As the similarity between data in-

creases, the Hamming distance between their codes should

be smaller. Furthermore, it is essential to minimize the

Hamming distance between binary codes of very similar

pairs. For dissimilar pairs, we only need to guarantee that

the Hamming distance between them is greater than a cer-

tain threshold, rather than strictly maximizing it. With such

an optimization scheme, the model will focus on learning

the similarity of semantic information between similar data,



which is identical to the goal of searching and returning

similar data in general retrieval tasks.

To deal with aforementioned problems, we propose a

novel adaptive loss function that can scale and shift itself

to avoid saturation of gradients during training. Accord-

ing to the similarity between data, the loss function impose

varying degrees of constraints on distance between the hash

codes reasonably, so that the hash model enables learning

the Hamming distances more consistent with complex se-

mantic similarity structures. Furthermore, we propose a

new loss function to minimize the quantization loss, and

introduce an improved cross-entropy loss to deal with class

imbalance. Under the supervision of binary similarity tags

or continuous similarity tags, our method achieves the state-

of-the-art performance on three image databases, i.e., NUS-

WIDE [6], CIFAR-10 [13], and MS COCO [19].

2. Related work

In the big data era, Hashing become a widely used

approach for high-dimensional data retrieval, because of

its excellent performance in approximate nearest neigh-

bor search. Hashing methods can be generally divided

into data-independent hashing and data-dependent hash-

ing. Early studies on hashing mainly focused on data-

independent methods, such as the locality sensitive hash-

ing (LSH) family [8, 25], which randomly projects similar

images to the same bucket with a high probability without

using any training data. One major drawback of LSH is

that long codes are required to attain a satisfactory search

accuracy, which limits its application. To alleviate this is-

sue, data-dependent hashing methods, which can produce

more effective binary codes, emerge and significantly boost

visual search performance. Because data-dependent hash-

ing leverages machine learning tools and requires training

data to parameterize the models, it is also known as learning

to hash. The representative methods include spectral hash-

ing [31], quantization hashing [10], etc. A recent study [1]

has theoretically validated the performance advantage of

data-dependent hashing. It can map high-dimensional data

into Hamming space while preserving the original neigh-

borhood structure, leading to improved retrieval quality. A

variety of data-dependent hashing approaches have been

proposed in recent years. In the following, we will give

a brief review of unsupervised and supervised approaches

of data-dependent hashing. For a comprehensive survey on

learning to hash, please refer to [28, 29].

Unsupervised hashing methods learn hash functions by

fitting the distribution of unlabeled training datasets. For ex-

ample, Spectral Hashing (SH) [31] generates binary codes

by minimizing the weighted Hamming distance of image

pairs, where the weights are defined to be the similarity

metrics of image pairs. Iterative Quantization(ITQ) [10]

works on reducing the quantization loss during the bina-

rization process.

In order to better maintain the semantic similarity in

complicated high-dimensional data, supervised methods are

proposed to take advantage of label information, such as

similarity tags or category labels. Typical supervised meth-

ods include CCA-ITQ [10], which is an extension of ITQ,

using supervision information to optimize the mapping

of image descriptors. Supervised Hashing with Kernels

(KSH) [20] proposes to learn similarity preserving hash-

ing functions in kernel space by the pairwise relationship

between examples. In deep Hashing, Convolutional Neu-

ral Networks Hashing (CNNH) [32] extremely maximizes

the Hamming distances between binary codes of dissimi-

lar images, and minimize the Hamming distances of similar

images. HashNet [5] and DHN [36], ensure that the Ham-

ming distance between hash codes of images is greater than

a certain threshold. Later in [17], such a two-stage method

with pairwise labels is further developed into an end-to-end

system named Deep Pairwise-Supervised Hashing (DPSH),

which performs simultaneous feature learning and hash en-

coding.

3. Approach

3.1. Problem Formulation

Suppose there is a training set with a size of N points,

represented as: X = {xi}
N
i=1, and xi is a D-dimensional

feature vector xi ∈ R
D. Each of which is associated with

a binary code vector with K-dimension bi ∈ {−1, 1}K ,

and B = {bi}
N
i=1 is the set of binary vectors. Our goal of

deep learning to hash is to learn a nonlinear hash mapping

Φ : X → B from input space to Hamming space, such that

the Hamming distance between hash codes of similar data

will be small, and vice versa.

Usually, we can only obtain continuous representations.

In other to obtain binary codes, the sgn(·) function is con-

stantly adopted to convert the continuous representations

into binary codes B. However, it will cause a fatal problem

that we can not apply standard back-propagation method

to learn the mapping Φ, since the sgn(·) function is non-

smooth, and it is indifferentiable at zero and zero gradi-

ent for all non-zero inputs, making it untrainable [12]. To

relieve this problem, some approaches e.g. [5, 4, 30] ap-

proximate the sgn(·) function with the smoothed tanh(·).
Following the similar relaxation strategy, instead of be-

ing optimized to generate discrete binary codes, we intend

to learn continues approximation codes. Therefore, our

goal becomes to learn a mapping Ψ : X → H , where

H = {hi}
N
i=1,hi = (−1, 1)K , and B = sgn(H). This

leads to a relaxed optimization problem :

{Ψ,H} = argmin
Ψ,H

(L(H) + λQ(H)) (1)

where L(H) is the similarity loss, ensuring that the hash



Figure 1. The architecture of proposed DHA. For binary similarity hashing, we use binary similarity tags S = {s} as supervision, and

adopt binary similarity loss and quantization loss to optimize our model. In this case, it may suffer from dH(x1,x3) → 0. For continuous

similarity hashing, using continuous similarity tags T = {t} and continuous similarity loss can learn more proper Hamming distance

between binary codes.

codes can sufficiently preserve the semantic similarity of

the data, and quantization loss Q(H) enforces that H ap-

proaches B to reduce the error caused by continuous relax-

ation. λ is a balance factor. In the following of this section,

we will give detail description of these two losses.

3.2. Binary Similarity Hashing

3.2.1 Binary Similarity Loss

In this work, we focus on supervised deep learning to hash.

To optimize the model, labels guiding the training process

should be given. One solution is employing similarity tags

of data pairs as supervision. Given two data points xi and

xj , the similarity tag sij ∈ {0, 1}, in which sij = 1 if and

only if xi and xj share at least one common semantic label,

i.e. xi and xj are similar, while sij = 0, xi and xj are

dissimilar. Based on this definition, we have a sample set

{(xi,xj , sij)} for training, where each sample consists of

a pair of data point and a similarity tag. This formulation is

extensively used in previous studies [32, 36, 16].

For now, the goal of our learning to hash is to represent

the input pair with K-bit compact codes hi and hj , while

preserving their similarity information. To achieve this

goal, supervised hashing is usually cast as a metric learn-

ing problem [23]: the model is optimized to minimize the

Hamming distances of similar pairs and maximize the Ham-

ming distances of dissimilar pairs. Since Hamming distance

is indifferentiable, an alternative is taking inner product as

substitution to compute Hamming distance [5, 35], which

has the following form:

dH(bi, bj) =
1

2
(K − d(bi, bj)) (2)

where dH(·, ·) represents the Hamming distance, and d(·, ·)

Figure 2. Function σ with different θ. With the increase of θ, it

enforces larger z to get a equally high value of σ(z).

is the inner product. This equation can be extended to the

relaxation of b, thus we have

dH(hi,hj) =
1

2
(K − d(hi,hj)) (3)

Throughout this paper, we adopt this equation to compute

distances of codes. If data pair (xi,xj) are similar, the in-

ner product of hi and hj (and d(bi, bj)) should be large

(approach K).

Binary Similarity. Given a pair of data xi, xj and their

codes hi, hj , to estimate similarity sij of them, we can

define the following likelihood function

p(sij |hi,hj) =

{

σ(d(hi,hj)), if sij = 1

1− σ(d(hi,hj)), if sij = 0
(4)



where σ(·) is a function scaling the inner product into a dis-

tribution, normally it takes sigmoid function form defined

as σ(z) = 1
1+e−z . In this paper we introduce a new gener-

alization of σ:

σ(z) =
1

1 + e−α(z−θ)
(5)

As d(·, ·) increase, p(sij = 1) will be larger and approach

1, giving us a high confidence to determine that the two ex-

amples xi, xj are similar, vice verse. Note that there are

two hyper-parameters α and θ. α is a hyper-parameter in-

troduced in [5] to control bandwidth of sigmoid function.

Greater α gives rise to larger saturation zone where its gra-

dient is zero, causing severe gradient vanishing. As sug-

gested in [5], α should be smaller than 1. We set it as 10
K

.

Recall that, for similar pairs, we expect their Hamming dis-

tance as zero as possible, equivalently the inner product of

them should be large enough to be close to K. Although

we have α to relieve gradient vanishing, it will inevitably

reach saturation zone of sigmoid function when K is far

from zero. This problem will become serious when dealing

with very large scale data retrieval, because longer coding

bits is required to ensure a better performance. To conquer

this challenge, we add a shift parameter θ into the sigmoid

function to push the saturation zone away from the range of

d(hi,hj). To be specific, if sij = 1, we set θ > 0, as θ3 in

Fig. 2, because it requires a large d(hi,hj) to obtain high

probability p(sij = 1). Correspondingly, we set θ equals to

0, if sij = 0, because we expect a small d(hi,hj) and it will

fall out of the saturation zone. Comparing with previous

methods, we impose different constraints on sij = 1 and

sij = 0, resulting in smaller Hamming distance between

codes of similar examples and relatively larger Hamming

distance between codes of dissimilar examples.

Hard Examples. Given Eqn. 4, we employ the binary

Cross Entropy (CE) as the loss function to optimize the pro-

posed model. A problem occurs when training the network,

which is there exist hard examples that cannot be fixed well

because the summation of vast majority easy examples will

overwhelm those hard ones, leading to ineffective training

for hard examples. Inspired by [18], we adopt Focal Loss to

make learning focus on hard examples by introducing mod-

ulating factor (1− p)2

FL(p) = −(1− p)2 log(p)

=

{

−(1− σ)2 log(σ), if sij = 1

−σ2 log(1− σ), if sij = 0

(6)

Intuitively, the modulating factor reduces the loss contribu-

tion from easy examples and extends the range in which an

example receives low loss. When an example is misclassi-

fied and p is small, the modulating factor is near 1 and the

loss is unaffected as CE. As p → 1, the factor goes to 0 and

the loss for well-classified examples is down-weighted.

Data Imbalance. Since the training samples are con-

structed with the semantic labels of data, a huge number of

dissimilar pairs can be generated, which is far more than

similar pairs, resulting in extreme data imbalance. To solve

this problem, we set a weight factor:

ωij =

{

β, if sij = 1

1− β, if sij = 0
(7)

where β ∈ (0, 1) and greater than 0.5. ωij will increase the

weight of similar examples.

Besides the advantage of alleviating data imbalance

problem, another benefit of inserting ωij into the loss func-

tion is that it enables a better retrieval performance. Be-

cause it drives the network to focus on learning the similar-

ity of pairs, which is consistent with the practical applica-

tion that we want to return more similar raw data in retrieval

problem.

By combining the Eqn. 4, 6 and 7, we finally obtain our

adaptive loss with respect to binary similaritry:

L(H) =
∑

sij∈S

−ωij [sij(1− σ)2 log(σ)

+(1− sij)σ
2 log(1− σ)]

(8)

where S is the set of binary similarity tags.

3.2.2 Quantization Loss

We apply the tanh(·) function to squash the output of the

network to be within (−1, 1) and then obtain the compact

codes h. To reduce quantization errors between continues

h and discrete b, we introduce a novel quantization loss

Q(H),

Q(H) =
N
∑

i=1

K
∑

j=1

1

K
(1− e(|h

j

i
|−1)) (9)

where h
j
i is the jth element of vector hi, |h

j
i | represents

the absolute value of h
j
i . The closer |hj

i | is to 1, the smaller

the loss function will be. By optimizing the Q(H) function

during training, the value of h
j
i will approach to {-1,1},

which helps to reduce the quantization error caused by B =
sgn(H).

3.3. Continuous Similarity Hashing

Binary similarity tag s ∈ {0, 1} can only model simple

semantic similarity. When data are rich in content and la-

beled with multiple semantic labels, representing similarity

relationship for them may leads to ambiguity results. Sup-

pose there are three samples xi, xj , and xk, all with multi-

ple semantic labels. xi and xj , xj and xk share at least one

common semantic labels thus they are similar, with sij = 1,



sjk = 1. While xi and xk do not share share any label, they

are not similar, thus sik = 0. Since we optimize the model

to minimize the Hamming distance of similar pairs as zero

as possible: dH(bi, bj) → 0 and dH(bj , bk) → 0, this may

result in dH(bi, bk) → 0. The model makes a wrong deci-

sion sik = 1, which is contrary to the fact that sik = 0, as

shown in Fig. 1. Single label based similarity do not have

this issue, since if two of them are similar then all of them

must be similar. To deal with this problem induced by mul-

tiple semantic labels, we propose to introduce continuous

similarity tags t to account for the continuous nature of la-

tent semantic space.

3.3.1 Construction of Continuous Similarity Tags

We construct continuous similarity tags of pairs from their

semantic labels. Let yi ∈ {0, 1}C denotes label vector for

an data sample xi, and C represents the number of cate-

gories. The continuous similarity tag of xi and xj can be

constructed as

tij = cos(yi,yj) =
yi · yj

||yi|| × ||yj ||
(10)

When xi and xj are not assigned with common label at-

tributes, it means xi and xj are dissimilar, and tij equals to

0. On the contrary, tij will approach 1, when xi is highly

similar to xj .

3.3.2 Continuous Similarity Loss

Comparing with binary similarity tags s ∈ {0, 1}, t ∈ [0, 1]
can represent more complex similarities between data sam-

ples. Furthermore, by taking advantage of t, it is possible

to better preserve the fine-grained features of similar data

samples. To achieve this end, we control the value of θ in

function σ = 1/(1 + e−α(z−θ)) according to tags t:
(1) In the case of tij > 0, to minimize L(H), p(sij =

1) = σ(d(hi,hj)) is supposed to be maximized.

(a) When tij → 1, we apply a large value of θ,

as θ3 in Fig. 2. In order to achieve a high confi-

dence p, the value of d(hi,hj) should approach

K, contributing to dH(bi, bj) → 0.

(b) When tij → 0, a small value of θ, such as θ2
in Fig. 2 is adopted in σ. It is relatively easy for p
to obtain a high confidence value, which means

dH(bi, bj) → 0 is no longer strictly required,

a relatively small value of which will give high

probability to determine they are similar.

(2) As for tij = 0, the objective is minimizing

σ(d(hi,hj)) and a much smaller θ, such as θ1 will be

adopted in σ. It enforces smaller d(hi,hj) to get a low

value of σ, resulting in larger dH(bi, bj). In summary, by

imposing different degrees of constraint on data pairs of var-

ious similarity, our approach is able to adaptively learn the

optimal Hamming distances between data pairs.

4. Experiments

In this section, the experiment results are presented to

validate the performance of our method in image retrieval.

4.1. Experimental Setup

We conducted extensive experiments on three widely

used image retrieval datasets: NUS-WIDE [6], MS

COCO [19] and CIFAR-10 [13].

NUS-WIDE is a public Web image dataset which con-

tains 269,648 images collected from Flickr. Each of these

images is manually annotated with one or multiple labels

in 81 concepts (categories) for evaluating retrieval models.

We randomly sample 5,000 images to construct a test set,

and the remaining images used as the database. Further-

more, 10,000 images from the database are sampled as the

training set.

MS COCO is a large-scale object detection, segmenta-

tion, and captioning dataset. It contains 82,783 training im-

ages and 40,504 validation images where each image is as-

sociated with some labels of 80 categories. Following [5],

images with no category information are pruned, and this

leaves us 12,2218 images for training and validation. 5,000

images are sampled as queries, with the rest of the images

used as the database. 10,000 images from the database

made up the training set.

CIFAR-10 consists of 60,000 images in 10 classes, with

6,000 images per class. There are 50,000 images in the

training set and 10,000 test images in the test set. Each

image is single-labeled by one of the 10 categories. We fol-

low protocol in [3] to randomly select 100 images per class

as query set, 500 images per class as training set, and the

remaining images are used as the database. Two images are

similar if they belong to the same class.

As mentioned above, the similarity tags for hash learning

and evaluation is constructed from image labels. (1) Binary

similarity tags s: if two images xi and xj are assigned with

at least one common label, they are similar and sij = 1;

otherwise, they are dissimilar and sij = 0. (2) Continuous

similarity tags t: by calculating the cosine similarity of la-

bel vectors (yi,yj), we obtain a continuous tag indicating

the similarity degree of two images xi and xj . It should

be noted that labels are not indispensable, as long as simi-

larity information is available, our DHA method can learn

effective hash codes.

For evaluation metric, we use variants of standard mean

Average Precision (mAP). For binary similarity hash, we

compare DHA against both classical and recent state-of-the-

art hashing methods. These methods include: unsupervised

methods LSH [8], SH [31], ITQ [10], supervised shallow



Table 1. Binary similarity experiments on multi-label datasets, NUS-WIDE, and MS COCO. Our proposed method achieves state-of-the-art

performances in all bits of hash codes.

mAP@5000 NUS-WIDE MS COCO

Method 16bit 32bit 48bit 64bit 16bit 32bit 48bit 64bit

LSH [8] 0.328 0.423 0.433 0.501 0.459 0.486 0.544 0.585

BRE [15] 0.503 0.529 0.548 0.555 0.592 0.622 0.630 0.634

ITQ [10] 0.509 0.543 0.558 0.561 0.582 0.624 0.646 0.657

ITQ-CCA [10] 0.460 0.405 0.373 0.347 0.566 0.562 0.530 0.509

SDH [26] 0.476 0.555 0.579 0.581 0.555 0.564 0.572 0.580

CNNH [32] 0.570 0.583 0.593 0.600 0.564 0.574 0.571 0.567

DNNH [16] 0.598 0.616 0.635 0.639 0.593 0.603 0.605 0.610

DNH [36] 0.637 0.664 0.669 0.671 0.677 0.701 0.695 0.694

HashNet[5] 0.663 0.699 0.711 0.716 0.687 0.718 0.730 0.736

DHA 0.669 0.706 0.721 0.727 0.708 0.731 0.741 0.752

Table 2. Binary similarity experiments on single-label dataset, CIFAR-10.

mAP@54000 CIFAR-10

Method 16bit 32bit 48bit 64bit

BRE [15] 0.370 0.438 0.438 0.491

ITQ-CCA [10] 0.354 0.414 0.449 0.462

KSH [20] 0.524 0.559 0.567 0.569

SDH [26] 0.461 0.520 0.553 0.568

CNNH [32] 0.476 0.472 0.489 0.501

DNNH [16] 0.559 0.558 0.581 0.583

DNH [36] 0.568 0.603 0.621 0.635

HashNet [5] 0.643 0.667 0.675 0.687

DHA 0.652 0.681 0.690 0.699

methods BRE [15], KSH [20], ITQ-CCA [10], SDH [26],

and supervised deep learning to hash methods CNNH [32],

DNNH [16], DHN [36] and HashNet [5]. For continuous

similarity hash, we mainly compare DHA with HashNet-C,

which is a variant of HashNet that uses continuous similar-

ity tags.

We implement our method based on the PyTorch plat-

form, which is one of the widely adopted deep learn-

ing frameworks. For fair comparisons, we adopt the

AlexNet [14] as the backbone for feature extraction. We

take the outputs of fc7 layer from AlexNet as image repre-

sentation, and replace the final softmax classification layer

with a new fully-connected hash layer fch to produce hash

codes. We use the mini-batch stochastic gradient descent

algorithm to optimize the network, where the batch size

is set to 256, the weight decay is 0.0005 and momentum

is 0.9. We initialize the first five convolutional layers and

two fully connected layers with weights pre-trained on Im-

ageNet [7], and the newly added fch layer with random

numbers drawn from a zero-centered Gaussian distribution.

We fine-tune the backbone network on our task with a start

learning rate of 0.001, and decrease it with a factor of 0.1

as training proceed. The learning rate of fch layer is set to

be 10 times greater than the backbone network. Because the

ratio between the number of dissimilar pairs and the number

of similar pairs is roughly 10, 5, and 1 for CIFAR-10, NUS-

WIDE, and MS COCO, we set β as 11
12 , 6

7 , 2
3 , respectively,

to deal with the data imbalance.

4.2. Results

We evaluate retrieval quality based on standard evalua-

tion metrics mean Average Precision (mAP), and we adopt

mAP@5K(mAP evaluated on the top 5,000 retrievals) for

NUS-WIDE and MS COCO and mAP@54,000 for CIFAR-

10, respectively.

4.2.1 Binary Similarity Experiments

Table 1 presents the results of hashing methods on multi-

label datasets, NUS-WIDE, and MS COCO. In most cases,

supervised hashing methods such as SDH and CNNH out-

perform unsupervised hashing methods. Unsupervised

method ITQ also performs well in experiments. Moreover,

deep learning-based supervised hashing methods such as

HashNet, DNH, and DNNH surpass most non-deep hash-

ing methods. The primary reason may be that deep hashing

method are able to extract better image features, and they

are also able to learn feature representation and the hashing

jointly.

As illustrated in Table 1, our proposed method DHA,



Table 3. Continuous similarity experiments on multi-label dataset, NUS-WIDE and MS COCO. HashNet+C is a variant using continuous

similarity tags. DHA-t is our proposed method that use continuous similarity tags as supervision. Both two method have significant

improvement.

mAP@5000 NUS-WIDE MS COCO

Method 16bit 32bit 48bit 64bit 16bit 32bit 48bit 64bit

HashNet 0.663 0.699 0.711 0.716 0.687 0.718 0.730 0.736

HashNet+C 0.665 0.702 0.721 0.726 0.688 0.726 0.737 0.742

DHA 0.669 0.706 0.721 0.727 0.708 0.731 0.741 0.752

DHA+t 0.683 0.716 0.728 0.733 0.711 0.742 0.756 0.768

Table 4. Ablation Study on NUS-WIDE and MS COCO.

mAP@5000 NUS-WIDE MS COCO

Method 16bit 32bit 48bit 64bit 16bit 32bit 48bit 64bit

DHA 0.669 0.706 0.721 0.727 0.708 0.731 0.741 0.752

DHA-W 0.643 0.677 0.691 0.708 0.703 0.728 0.737 0.749

DHA-Q 0.601 0.644 0.653 0.676 0.668 0.677 0.684 0.706

Figure 3. Examples of top 10 retrieved results in MS COCO. Retrieved images marked with green boxes are correct, while the rest of the

images marked with red boxes are incorrect.

outperforms all of competing methods on multi-label

datasets and achieves great performances in all bits of hash

codes. For example, comparing with the highly competitive

HashNet, DHA surpasses it by 0.5%−2% on both datasets.

The improvement of DHA is much more significant in terms

of long hash codes on MS COCO. The improvement indi-

cates that imposing different constraints on the Hamming

distances between binary codes based on the similarity of

images improves the performance in multi-label datasets.

Retrieval results for CIFAR-10 are shown in Table 2.

CIFAR-10 is a single-label dataset with fewer images, and

it only contains 10 class, we retrieve all the 54,000 images

in the database to compute the mAP. The proposed method

DHA surpasses the nearest competitor HashNet in terms of

all hash bits.

As discussed above, our method can generate com-

pact binary hash codes and achieves state-of-the-art perfor-

mances on all three databases. By training with the pro-

posed adaptive loss function, we can better preserve the se-

mantic similarity of images.

4.2.2 Continuous Similarity Experiments

Since the continuous similarity tags {t} are constructed

from multi-label of images and CIFAR-10 is a single-

label dataset, we only report our results on two multi-label

databases (i.e., NUS-WIDE and MS COCO), which are

given in Table 3. Multi-label is more informative, and it is

essential to exploit this information when performing prac-

tical retrieval task in the real application. We compare our

approach with HashNet+C [5], a variant of HashNet that

uses continuous similarity tags similar to ours. DHA-t is



our method trained with continuous similarity tags t. As il-

lustrated in Table 3, DHA-t surpasses HashNet+C on both

datasets, and the improvement of DHA-t is much more sig-

nificant on MS COCO, especially retrieval with more bits.

Compared with the original DHA, it is obvious that us-

ing continuous similarity labels as supervision can generate

more effective binary codes capturing complex similarity

structures between images.

4.2.3 Ablation Study

We conduct ablation study in this section by dropping bal-

ance factor ω and quantization loss function Q: (1) DHA-W

is a variant without balance factor ω , meaning that β = 0.5;

(2) DHA-Q, is a variant that does not use quantization loss

to reduce quantization errors.

From the table4, we can notice that in the absence of

the balance factor ω, our method has shown a decline on

both databases. In particular, the performance of DHA-W

on the NUS-WIDE declines drastically. The ratio between

the number of dissimilar pairs and the number of similar

pairs for NUS-WIDE is 5, which is highly imbalanced. On

MS COCO, the ratio is about 1; thus, the two results are

comparable. There is only a little drop for DHA-W on this

dataset. Without quantization loss, the mAP of DHA-Q on

both databases drop significantly. By reviewing outputs of

DHA-Q, we find out that some of the bits in the outputs are

close to zero, resulting in unstable quantization when using

sgn(·) function. Therefore, reducing the quantization error

when binarizing continuous representations to binary codes

is crucial for hashing methods.

5. Conclusion

We have proposed a novel supervised hashing method

with an adaptive loss function for approximate nearest

neighbor retrieval. By imposing different constraints on the

Hamming distances between binary codes based on the se-

mantic similarities, our model could be trained steadily and

reduce the ambiguity of neighborhood in constructing the

Hamming space. Experiments have shown that DHA could

generate compact binary codes and yield the state-of-the-art

retrieval performance on three datasets, i.e., NUS-WIDE,

CIFAR-10, and MS COCO.
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