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Abstract

Large scale near-duplicate image retrieval (NDIR) re-

lies on the Bag-of-Words methodology which quantizes lo-

cal features into visual words. However the direct match of

these visual words typically leads to unpleasant mismatches

due to quantization errors. To enhance the discriminabil-

ity of the matching process, existing methods usually ex-

ploit hand-crafted contextual information, which have lim-

ited performance in complicated real-world scenarios. In

contrast, we in this paper propose a trainable lightweight

embedding network to extract local binary features. The

network takes image patches as inputs and generates the

binary code that can be efficiently stored in the inverted in-

dexing file and helps discard mismatches immediately dur-

ing the retrieval process. We improve the discriminability

of the code by elaborately composing the training patches

for network optimization, which consists of a proper inter-

class (non-duplicate) patches selection and a rich intra-

class (near-duplicate) patches generation. We evaluate our

approach on the open NDIR dataset, INRIA CopyDays, and

the experimental results show that our method performs fa-

vorably against the state-of-the-art algorithms. Further-

more, with a relatively short code length, our approach

achieves higher query speed and lower storage occupation.

1. Introduction

Near-duplicate image retrieval (NDIR) problem aims to

find the distorted versions in the large database for the giv-

ing image. Distortions performed on the original image in-

clude cropping, rotation, scaling, compression, watermark-

ing and text adding. As a sub-task of the image retrieval,

it’s useful in some practical applications such as copyright

infringement detection and keyframe identification. Due to

the particularity of this problem, practical applications of

NDIR usually have strict demand on the performance such

as high retrieval accuracy or true positive rate.

Traditional methods tackling the image retrieval are

based on the Bag-of-Words model[20]. In the Bag-of-

Figure 1: Sample patches which are quantized into the same

visual word. These patches are similar in structure while we

need to distinguish them in the view of NDIR.

Figure 2: The T-sne[15] distribution of sift features (left)

and our learned features (right) for the samples in Figure

1. Each color represents a different patch. The same color

represents the patch and its distortions. It can be seen that

our learned features are more discriminative.

Words model, local descriptors such as SIFT[12] are firstly

quantized into visual words, which builds a codebook for

retrieval. And then according to the size of the codebook,

various algorithms are proposed to encode a query image.

For the small size codebook, usually a global descriptor is

constructed such as VLAD[6] and Fisher vector[16]. For

the large scale image retrieval problem, which this pa-

per mainly focuses on, the codebook is huge with mil-

lions of visual words, thus clustering-based quantization

and inverted index is generally applied to enable efficient

storage and retrieval. However, because of the quantiza-

tion error, the retrieval accuracy of direct match using vi-

sual words will decrease. And to improve retrieval perfor-

mance, different methods are designed for post-verification



and mismatch removing. Geometric verification is the most

popular technique[17][14][25][23][21], where mismatches

are filtered out based on the first-round retrieval result.

Some works [22][11][24] adopt additional feature descrip-

tors, which are usually hand-crafted, into visual words, and

remove mismatches immediately during image retrieval.

As for near-duplicate image retrieval, the quantization

error effect becomes worse since similar but not near-copy

image patches may be clustered as the same visual word

and lead to more mismatches. As shown in Fig. 1, SIFT

descriptors of 10 similar patches with their corresponding

near-copy distorted versions are quantized into the same

cluster and thus are represented by the same visual word,

which is not appropriate for NDIR. These 10 patches are

just similar and should not be regarded as near-duplicate

versions. Instead, these 10 patches are different and should

stay apart in the feature space as 10 clusters, where each

cluster corresponds to one patch and its distorted versions,

as shown in Fig. 2.

Inspired by the Convolutional Neural Networks (CNN),

we adopt the learning based descriptors as the additional

feature for visual words to improve the discriminability for

NDIR. As shown in Fig. 3, the proposed embedding net-

work takes various of distorted patches as input training

samples. Each selected patch and its distorted versions are

regarded as one class and should stay close in the embed-

ding space. Any two different patches and their correspond-

ing distortions should stay far away, since they belong to

two classes within the context of near-duplicate retrieval.

Specifically, discriminative learning based on triplet patches

and hash learning for binarization are alternatively trained

to output a compact binary descriptor for NDIR. And an-

other advantage of our proposed method is that patch sam-

ples for training can be easily generated from a small set of

raw images.

We summarize the main contributions of this paper as

follows:

1. We propose a patch-based embedding framework for

the NDIR task.

2. We combine the discriminative learning and hash

learning to encode the image patch to the local binary

feature suitable for large scale NDIR.

3. We conduct extensive experiments and demonstrate

that the proposed method performs favorably against

the state-of-the-art algorithms.

2. Related work

Large scale image retrieval has been well developed in

the past few years. The induction of local discrminative fea-

ture such as SIFT[12] and the application of Bag-of-Words

Figure 3: A brief view of our proposed method. We gener-

ate various distorted versions to simulate the possible trans-

form in real scenario. After encoding the patch features are

separated in the embedding space. The binary features help

fast remove mismatches with Hamming distance threshold.

model greatly improve the speed and accuracy of image re-

trieval. For the large scale NDIR task, visual words based

local descriptors precise match is the core of most existing

methods. In this section we give a brief review of current

methods in improving the visual words match performance.

Full geometric verification such as RANSAC [17] is a

basic method to improve the retrieval precision. It calcu-

lates the affine transformations for random selected points

repeatedly and remove the outliers. RANSAC is effec-

tive for re-ranking candidate images but has efficiency

problems. To improve retrieval speed a spatial-coding

method[25] is proposed to use the relative positions of local

descriptors. By a specially designed relative position map,

the verification can be achieved with logical X-OR opera-

tion and the speed is largely increased. In LMR[14] a novel

hand crafted match representation is constructed. It majors

in removing mismatches between two images and treat the

task as a two-class classification.

Some works remove mismatches immediately during re-

trieval process by inserting additional feature into visual

words. Liu [11] designs a local contextual binary feature

for visual words and combine it with the inverted index. It

builds a relationship dictionary and quantizes the relation-

ship between two features with the relationship dictionary.

Chen [1] propose a novel NDIR framework based on visual

phrase. A spatial visual phrase (SVP) model is introduced

to utilize the geometric information among visual words.

Yao [22] promotes the contextual feature and propose a

more stable angle encoding based descriptor. It carefully

selects the contextual points with respect to the reference

feature and acquire the contextual feature by encoding the

relative angles between these points.

In our approach we adopt the methodology of immedi-

ate mismatch removal by inserting additional feature into



Figure 4: Near duplicate image retrieval framework. In of-

fline section we extract and store features from database im-

ages. In online section the retrieval results are returned for

the query image.

Figure 5: The inverted index structure.

visual words and use learned binary descriptor as the ad-

ditional feature. We show that out approach is precise in

visual words match and low in the computation cost.

3. NDIR framework

In this section we present an overall description of our

approach for the NDIR task. Fig. 4 shows the retrieval

framework. The whole processing includes offline and on-

line two sections. We will first explain the two sections

and then we give a detailed description of how we make

the training patches for the embedding network.

3.1. Offline section

Our approach is based on the BoW model and inverted

index. To build the inverted index we need first to train a

codebook by clustering sift features. Each visual word in

the codebook lies in the center of a cluster. Due to the large

codebook size, the direct k-means clustering is not appro-

priate. In our work we choose approximate k-means (AKM)

[17] method to build the codebook.

For a given raw image, we use DOG[12] detector to ex-

tract a set of keypoints. We compute sift features and the

learned binary features at the same time. To obtain the bi-

nary features we need first extract the image patches and

feed patches into the network. The region of patch is signif-

Figure 6: Examples of distortion we adopt during training.

(1,2) add noise. (3,4) illuminance changes. (5,6) rotate.

(7,8) JPEG compression. The scope may change in the pro-

cess such as the (6) contains only part of the original patch.

We use combinations of these processings to boost the vari-

ety of training set.

icant since we expect that same regions should be extracted

from the same location of two near-duplicate images. Con-

sidering the scaling case in NDIR, the regions are supposed

to be dynamic and can be self-adjusted. In our approach we

utilize the DOG extreme point scaling information to deter-

mine the selected region. This help us to unify the patch size

and guarantees we select the near-duplicate patches from

near-duplicate images. Finally the patches are normalized

and reshaped into the network input shape. We feed the

normalized patches into network to obtain the binary signa-

tures.

The inverted index structure is shown in Fig. 5 . For

each keypoint in an image we quantize the corresponding

sift feature to get the visual word and store the image ID

and the corresponding binary signature in the word entry.

3.2. Online section

For a query image we extract and encode features in the

same way of offline section. And for each quantized sift fea-

ture in the query image we traverse the inverted list corre-

sponding to its assigned visual word. We calculate the Ham-

ming distance of the query binary signature with each sig-

nature in the inverted list and verify if it is a near-duplicate

match with a threshold. Lower threshold leads to lower re-

call and higher accuracy. The proper threshold varies with

the signature length change. After all local features in the

query image are traversed, we count the accumulated match

number for each image in the database. The final retrieval

results are based on the verified match numbers.

3.3. Training Patch generation

We carefully design the training patches for the embed-

ding network since the training data is essential to the net-

work performance. Generally all the distorted versions of a

patch are regarded as one class. And the two main problems

we need to solve are inter-class patches selection and intra-



Figure 7: Network structure. The whole training alternates between the Discriminative learning and Hash learning. In

discriminative learning stage the network learns how to map image patches into discriminative float features. In the hash

learning stage a traversal of training set is first performed and we get the target code for each class. Binary feature can be

easily got with a sgn function for testing or retrieving. The convolutional layer in the backbone net refers to the “Conv-BN-

RELU” combination.

class samples generation. For the intra-class problem, all

the distortion forms which occur in practical use should be

considered. We show samples of our processing in Fig. 6.

Ordinary transforms such as rotation and adding noise are

performed to improve the robustness of the network.

As for the inter-class problem, basically all the inter-

est points detected by the DOG can be chosen, and all we

need to do is just sampling. Considering that the learned bi-

nary signature should have strong discrimination of patches

whose sift features are quantized into the same visual word

(Fig. 1), we add these patches from same visual word which

have similar structures to our training data. To achieve this,

the frequency of a visual word appearing in the whole train-

ing images needs to be considered.

The inverse document frequency (IDF) reflects the fre-

quency of a visual word appearing in all the training im-

ages. The lower the IDF is, the more frequent a visual word

appear in the training images.

IDF(ci) = log
S

si
,where si =

∑

j∈G

1(σj
i > 0) (1)

where G is the training images set, S is the quantity. σj
i

records the times that visual word ci appears in image j.

Repeatedly appearing visual word has more similar yet non-

duplicate structures, and lower IDF. In our approach we se-

lect visual words with relative low IDF and select patches

from each of these visual words. This strengthens the ability

of our embedding network in distinguishing patches from

the same visual word. We distort all the training patches as

shown in Fig. 6, and training set is then established.

4. Embedding network

In this section we introduce the network which encodes

image patches into binary signatures. The whole net-

work includes discriminative learning and hash learning two

stages. Fig. 7 shows the framework. We use an alternate

training to guarantee the discriminative validity and binary

efficiency simultaneously.

4.1. Discriminative learning

The class-based discriminative learning (or metric learn-

ing) has been well studied. Recent progress of CNN has

proved that a discriminative embedding can be learned

with sufficient training samples. Supervised model such as

VGG[19] and Resnet[2] trains the classification with im-

ages and their labels. The features in middle hidden lay-

ers can be viewed as a embedding of the raw image. The

unsupervised model such as siamese network[7] and triplet

network[18] take image pairs as input and outputs the fea-

tures such that similar inputs stay close otherwise stay apart.

For the discriminative learning in our approach, we adopt

the triplet network since it has been proven to be very effec-



tive. The backbone of our network is a traditional CNN

model containing three convolution layers and two fully

connect layers. We denote the output of the network as y =
F(x). x refers to the image patch in RGB space. Suppose a

batch of inputs contain N classes x1, x2, ...xN and M dis-

torted versions for each: {x
(1)
i , x

(2)
i , ...x

(M)
i }i=1,2,..N . The

object of the embedding network is to shorten the distance

between near-duplicate patches while enlarge the opposite,

i.e. to minimize
∑

i,j,m1,m2

d(ym1

i , ym2

j )i=j −
∑

i,j,m1,m2

d(ym1

i , ym2

j )i �=j (2)

The traditional triplet loss function refers to:

L = max(d(a, p)− d(a, n) +margin, 0) (3)

in which a is the anchor, p is the positive item and n is

the negative item. We adopt the Batch All strategy[3] for

the network training. The anchor ranges in all training

samples{x
(j)
i }i = 1, 2..N, j = 1, 2..M . And for each an-

chor we have M − 1 positive and (N − 1) · M negative

items. Thus the number of total triplet pairs for a training

batch is MN · (M − 1) · (N − 1)M . We only choose the

hard and semi-hard pairs for mean value calculation. i.e.

loss =
1

|Q|

∑

Q

d(a, p)− d(a, n) +margin (4)

where

Q = {(a, p, n)}d(a,p)−d(a,n)+margin>0 (5)

After several iterations the network has certain ability to

do the classification task. We use this to generate target

code and initialize the parameters for the hash learning.

4.2. Hash learning

Hashing method has been proved useful in previous

works[10][9]. Generally the hashing methods can be di-

vided into one-step hashing and two step hashing. The two-

step hashing methods are mostly used[9][8][26][13]. It first

generates the hash code for the giving bits and then learn

the hash functions (CNN) using the generated target code.

This framework is reasonable since the code to be learned

is clear and the only goal of the CNN is just a map function.

However there exists a main disadvantage that the binary

codes are determined independently of the hash functions.

This leads to hard training since we give the target codes in

a rigid way and the CNN cannot influence on. For one step

approach in some works[10], the binary codes can be pro-

duced depending on the CNN outputs with particular regu-

larization, which eases the burden for the CNN.

We combine the advantage of both strategy and make

a compromise. Our hash function training is closely con-

nected to the discriminative learning. We use the initial net

passed from discriminative learning to get the float features

for all the training patches and use (6) to obtain the target

binary codes.

bi = 0.5 · (1 + sgn(ȳi)), i = 1, 2, ..N (6)

ȳi =
1

M

M∑

j=1

y
(j)
i (7)

where bi represents the target code for the ith class which

contains K bits. We take the average response of all the dis-

torted versions for the one class. This operation eliminates

the case where mutation occurs for some bits. Then we use

binary cross entropy loss (8) for the hash function learning.

loss = −
1

K

K∑

k=1

(b · log(h(yk)) + (1− b) · log(1− h(yk)))

(8)

where h is the sigmoid function mapping the embedding

into (0, 1)
During testing or retrieving the binary signature is ob-

tained by binarizing the output of backbone network using

(6).

5. Experiments

5.1. Implementation details

We random select 500 images from VOC2012 as our

training source. Then we generate the training patches as

described in section 3.3. For the inter-class selection we se-

lect the visual words with the 20 lowest IDF and for each

visual word we random select 500 patches at most. This

generates near 10K patches and we random select 5K for

training, 2K for validation. For each patch we generate 200

distorted versions shown in Fig. 6.

During training we set parameters N = 40,M = 10
in 4.1, which means the batchsize is 400. margin is 0.5.

The bit length is originally set to be K = 64 and we ad-

just it during training. To prevent overfitting we employ

a drop out layer with a drop rate of 25% before the final

fully connect layer in the backbone net. The whole net-

work is trained on the tensorflow platform with 20 itera-

tions. And for each iteration both discriminative learning

and hash learning iterate for 2K steps. We optimize the

network with the Adamoptimizer with learning rate 0.001,

beta1 0.9, beta2 0.999. Learning rate is reduced every 1K

steps with decay rate 0.9.

A view of the 1-norm average value of the embeddings

(before sigmoid) changing during network training is shown

in Fig. 9. Since for a good embedding learning the variance

of the outputs should be large enough and the mean value is

supposed to increase by time. During training we find the 1-

norm average value increases in the discriminative learning

stage while drops in the hash learning stage. And the overall

tendency is to increase till it reaches stable.



Figure 8: Near-duplicate samples from the INRIA Copy-

Days dataset. From left to right the image types: original

image, crop, JPEG compression, strongly attacked. The

strongly attacked types include print and scan, blur, paint.

These distorted versions are regarded as near-duplicate for

each other.

Figure 9: The tendency of embedding 1-norm value during

training. The fluctuation shows the different behavior in the

two alternate stages. The overall tendency is to grow till it

reaches stable

5.2. NDIR performance

We evaluate the effectiveness of our proposed binary fea-

ture for the NDIR task on the INRIA CopyDays dataset[5].

Each image in the dataset goes through three different kinds

of attacks: crop, JPEG compression, “strong”. Fig. 8 gives

an impression of these attacks. The “strong” type refers to

some irregular attacks such as print and scan, blur, paint.

These tasks are more difficult to tackle and are closer to

practical use. The whole dataset has 157 original images

and about 19 distorted versions for each image. To simulate

the large scale application, we follow [22] and random se-

lect 100K from Flickr 1M image dataset[4] as distracter im-

ages. We use an inverted index file with 100K visual words.

For all experiments the local features are first assigned to

visual words by sift quantization.

To assess the influence of code length K on retrieval per-

formance, we adjust the code length K during training and

produce three different models: ‘128bit’, ‘64bit’ , ‘32bit’.

We test and compare retrieval mAP of the three models.

K Ts − 2 Ts − 1 Ts Ts + 1 Ts + 2

32 - 0.880 0.882 0.865 0.833

64 0.885 0.904 0.905 0.897 0.879

128 0.909 0.916 0.915 0.908 0.912

Table 1: mAP of our approach using different code length

and different threshold. The basic threshold Ts = K/16.

As code length grows, the retrieval mAP grows correspond-

ingly.

Another parameter related to the performance is the match

threshold. During test we observe that the proper threshold

appears near K/16. We set this value as the basic thresh-

old and denote it as Ts. The best performance may not be

achieved exactly at this point. We make slight change dur-

ing testing and the mAP results are shown in table 1. When

code length K is set 128 and threshold is set 7 (Ts − 1), our

method achieve the best performance.

We compare our proposed method with four other dif-

ferent methods. The contextual 1[22] and contextual 2[11]

are two hand-crafted contextual features. Both of the two

contextual features are utilized to reject mismatches im-

mediately. The rerank[25] refers to the post-verification

method using a spatial coding. The rerank is an accelerated

method to replace full geometric verification RANSAC[17].

The baseline ranks the retrieval results simply by count-

ing matched visual words without subsequent processing.

Fig. 10 shows the mAP results.

The query speed and feature storage is essential to prac-

tical application. We compare the query time and feature

storage of our methods with the others. Fig. 11 shows the

results. In Fig. 11 the storage is counted in Byte and we

only count a single local feature storage occupation in the

inverted index entry. For instance, in baseline method only

image ID is stored in the inverted index and thus the storage

is 4 bytes (INT). While for our method ‘32bit’ image ID and

an 32-bit feature are stored and the storage is 8 bytes.

It can be seen that our approach outperforms the other

four methods in mAP. And the query speed is higher due to

the fact that we only calculate the Hamming distance. The

storage vary with the code length changing and to achieve

better results larger storage is needed.

6. Conclusion

In this paper we use a lightweight network to extract lo-

cal compact binary features for fast reliable near-duplicate

patches matching. The networked can be further strength-

ened by adding distortion forms to the training set when

applied to real scenario. We use an alternate training to

guarantee that the learned hash code has powerful discrim-

ination ability for the near-duplicate patches. For the NDIR



Figure 10: Comparision of mAP of different methods on

CopyDays dataset with 100K distracter images. For our

methods ‘128bit’, ‘64bit’ and ‘32bit’, we choose the best

performance through different thresholds.

Figure 11: Comparision of query time and storage. Time is

counted in seconds for the 100K dataset. Storage is in Byte

for a local feature in the inverted list. Our method is fast

with an Hamming distance calculation.

task our learned binary feature achieves good performance

on both the query results and speed.
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