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Abstract

Large scale near-duplicate image retrieval (NDIR) re-
lies on the Bag-of-Words methodology which quantizes lo-
cal features into visual words. However the direct match of
these visual words typically leads to unpleasant mismatches
due to quantization errors. To enhance the discriminabil-
ity of the matching process, existing methods usually ex-
ploit hand-crafted contextual information, which have lim-
ited performance in complicated real-world scenarios. In
contrast, we in this paper propose a trainable lightweight
embedding network to extract local binary features. The
network takes image patches as inputs and generates the
binary code that can be efficiently stored in the inverted in-
dexing file and helps discard mismatches immediately dur-
ing the retrieval process. We improve the discriminability
of the code by elaborately composing the training patches
for network optimization, which consists of a proper inter-
class (non-duplicate) patches selection and a rich intra-
class (near-duplicate) patches generation. We evaluate our
approach on the open NDIR dataset, INRIA CopyDays, and
the experimental results show that our method performs fa-
vorably against the state-of-the-art algorithms. Further-
more, with a relatively short code length, our approach
achieves higher query speed and lower storage occupation.

1. Introduction

Near-duplicate image retrieval (NDIR) problem aims to
find the distorted versions in the large database for the giv-
ing image. Distortions performed on the original image in-
clude cropping, rotation, scaling, compression, watermark-
ing and text adding. As a sub-task of the image retrieval,
it’s useful in some practical applications such as copyright
infringement detection and keyframe identification. Due to
the particularity of this problem, practical applications of
NDIR usually have strict demand on the performance such
as high retrieval accuracy or true positive rate.

Traditional methods tackling the image retrieval are
based on the Bag-of-Words model[20]. In the Bag-of-

Figure 1: Sample patches which are quantized into the same
visual word. These patches are similar in structure while we
need to distinguish them in the view of NDIR.
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Figure 2: The T-sne[15] distribution of sift features (left)
and our learned features (right) for the samples in Figure
1. Each color represents a different patch. The same color
represents the patch and its distortions. It can be seen that
our learned features are more discriminative.

Words model, local descriptors such as SIFT[12] are firstly
quantized into visual words, which builds a codebook for
retrieval. And then according to the size of the codebook,
various algorithms are proposed to encode a query image.
For the small size codebook, usually a global descriptor is
constructed such as VLAD[6] and Fisher vector[16]. For
the large scale image retrieval problem, which this pa-
per mainly focuses on, the codebook is huge with mil-
lions of visual words, thus clustering-based quantization
and inverted index is generally applied to enable efficient
storage and retrieval. However, because of the quantiza-
tion error, the retrieval accuracy of direct match using vi-
sual words will decrease. And to improve retrieval perfor-
mance, different methods are designed for post-verification



and mismatch removing. Geometric verification is the most
popular technique[17][14][25][23][21], where mismatches
are filtered out based on the first-round retrieval result.
Some works [22][11][24] adopt additional feature descrip-
tors, which are usually hand-crafted, into visual words, and
remove mismatches immediately during image retrieval.

As for near-duplicate image retrieval, the quantization
error effect becomes worse since similar but not near-copy
image patches may be clustered as the same visual word
and lead to more mismatches. As shown in Fig. 1, SIFT
descriptors of 10 similar patches with their corresponding
near-copy distorted versions are quantized into the same
cluster and thus are represented by the same visual word,
which is not appropriate for NDIR. These 10 patches are
just similar and should not be regarded as near-duplicate
versions. Instead, these 10 patches are different and should
stay apart in the feature space as 10 clusters, where each
cluster corresponds to one patch and its distorted versions,
as shown in Fig. 2.

Inspired by the Convolutional Neural Networks (CNN),
we adopt the learning based descriptors as the additional
feature for visual words to improve the discriminability for
NDIR. As shown in Fig. 3, the proposed embedding net-
work takes various of distorted patches as input training
samples. Each selected patch and its distorted versions are
regarded as one class and should stay close in the embed-
ding space. Any two different patches and their correspond-
ing distortions should stay far away, since they belong to
two classes within the context of near-duplicate retrieval.
Specifically, discriminative learning based on triplet patches
and hash learning for binarization are alternatively trained
to output a compact binary descriptor for NDIR. And an-
other advantage of our proposed method is that patch sam-
ples for training can be easily generated from a small set of
raw images.

We summarize the main contributions of this paper as
follows:

1. We propose a patch-based embedding framework for
the NDIR task.

2. We combine the discriminative learning and hash
learning to encode the image patch to the local binary
feature suitable for large scale NDIR.

3. We conduct extensive experiments and demonstrate
that the proposed method performs favorably against
the state-of-the-art algorithms.

2. Related work

Large scale image retrieval has been well developed in
the past few years. The induction of local discrminative fea-
ture such as SIFT[12] and the application of Bag-of-Words
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Figure 3: A brief view of our proposed method. We gener-
ate various distorted versions to simulate the possible trans-
form in real scenario. After encoding the patch features are
separated in the embedding space. The binary features help
fast remove mismatches with Hamming distance threshold.

model greatly improve the speed and accuracy of image re-
trieval. For the large scale NDIR task, visual words based
local descriptors precise match is the core of most existing
methods. In this section we give a brief review of current
methods in improving the visual words match performance.

Full geometric verification such as RANSAC [17] is a
basic method to improve the retrieval precision. It calcu-
lates the affine transformations for random selected points
repeatedly and remove the outliers. RANSAC is effec-
tive for re-ranking candidate images but has efficiency
problems. To improve retrieval speed a spatial-coding
method[25] is proposed to use the relative positions of local
descriptors. By a specially designed relative position map,
the verification can be achieved with logical X-OR opera-
tion and the speed is largely increased. In LMR[14] a novel
hand crafted match representation is constructed. It majors
in removing mismatches between two images and treat the
task as a two-class classification.

Some works remove mismatches immediately during re-
trieval process by inserting additional feature into visual
words. Liu [11] designs a local contextual binary feature
for visual words and combine it with the inverted index. It
builds a relationship dictionary and quantizes the relation-
ship between two features with the relationship dictionary.
Chen [1] propose a novel NDIR framework based on visual
phrase. A spatial visual phrase (SVP) model is introduced
to utilize the geometric information among visual words.
Yao [22] promotes the contextual feature and propose a
more stable angle encoding based descriptor. It carefully
selects the contextual points with respect to the reference
feature and acquire the contextual feature by encoding the
relative angles between these points.

In our approach we adopt the methodology of immedi-
ate mismatch removal by inserting additional feature into
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Figure 4: Near duplicate image retrieval framework. In of-
fline section we extract and store features from database im-
ages. In online section the retrieval results are returned for
the query image.
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Figure 5: The inverted index structure.
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visual words and use learned binary descriptor as the ad-
ditional feature. We show that out approach is precise in
visual words match and low in the computation cost.

3. NDIR framework

In this section we present an overall description of our
approach for the NDIR task. Fig. 4 shows the retrieval
framework. The whole processing includes offline and on-
line two sections. We will first explain the two sections
and then we give a detailed description of how we make
the training patches for the embedding network.

3.1. Offline section

Our approach is based on the BoW model and inverted
index. To build the inverted index we need first to train a
codebook by clustering sift features. Each visual word in
the codebook lies in the center of a cluster. Due to the large
codebook size, the direct k-means clustering is not appro-
priate. In our work we choose approximate k-means (AKM)
[17] method to build the codebook.

For a given raw image, we use DOG[12] detector to ex-
tract a set of keypoints. We compute sift features and the
learned binary features at the same time. To obtain the bi-
nary features we need first extract the image patches and
feed patches into the network. The region of patch is signif-
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Figure 6: Examples of distortion we adopt during training.
(1,2) add noise. (3.4) illuminance changes. (5,6) rotate.
(7,8) JPEG compression. The scope may change in the pro-
cess such as the (6) contains only part of the original patch.

We use combinations of these processings to boost the vari-
ety of training set.

icant since we expect that same regions should be extracted
from the same location of two near-duplicate images. Con-
sidering the scaling case in NDIR, the regions are supposed
to be dynamic and can be self-adjusted. In our approach we
utilize the DOG extreme point scaling information to deter-
mine the selected region. This help us to unify the patch size
and guarantees we select the near-duplicate patches from
near-duplicate images. Finally the patches are normalized
and reshaped into the network input shape. We feed the
normalized patches into network to obtain the binary signa-
tures.

The inverted index structure is shown in Fig. 5 . For
each keypoint in an image we quantize the corresponding
sift feature to get the visual word and store the image ID
and the corresponding binary signature in the word entry.

3.2. Online section

For a query image we extract and encode features in the
same way of offline section. And for each quantized sift fea-
ture in the query image we traverse the inverted list corre-
sponding to its assigned visual word. We calculate the Ham-
ming distance of the query binary signature with each sig-
nature in the inverted list and verify if it is a near-duplicate
match with a threshold. Lower threshold leads to lower re-
call and higher accuracy. The proper threshold varies with
the signature length change. After all local features in the
query image are traversed, we count the accumulated match
number for each image in the database. The final retrieval
results are based on the verified match numbers.

3.3. Training Patch generation

We carefully design the training patches for the embed-
ding network since the training data is essential to the net-
work performance. Generally all the distorted versions of a
patch are regarded as one class. And the two main problems
we need to solve are inter-class patches selection and intra-
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Figure 7: Network structure. The whole training alternates between the Discriminative learning and Hash learning. In
discriminative learning stage the network learns how to map image patches into discriminative float features. In the hash
learning stage a traversal of training set is first performed and we get the target code for each class. Binary feature can be
easily got with a sgn function for testing or retrieving. The convolutional layer in the backbone net refers to the “Conv-BN-

RELU” combination.

class samples generation. For the intra-class problem, all
the distortion forms which occur in practical use should be
considered. We show samples of our processing in Fig. 6.
Ordinary transforms such as rotation and adding noise are
performed to improve the robustness of the network.

As for the inter-class problem, basically all the inter-
est points detected by the DOG can be chosen, and all we
need to do is just sampling. Considering that the learned bi-
nary signature should have strong discrimination of patches
whose sift features are quantized into the same visual word
(Fig. 1), we add these patches from same visual word which
have similar structures to our training data. To achieve this,
the frequency of a visual word appearing in the whole train-
ing images needs to be considered.

The inverse document frequency (IDF) reflects the fre-
quency of a visual word appearing in all the training im-
ages. The lower the IDF is, the more frequent a visual word
appear in the training images.

IDF(¢;) = logg,where S; = Z 1(0{ > 0) )
¢ j€gG

where G is the training images set, S is the quantity. o7

records the times that visual word c¢; appears in image j.
Repeatedly appearing visual word has more similar yet non-
duplicate structures, and lower IDF. In our approach we se-
lect visual words with relative low IDF and select patches

from each of these visual words. This strengthens the ability
of our embedding network in distinguishing patches from
the same visual word. We distort all the training patches as
shown in Fig. 6, and training set is then established.

4. Embedding network

In this section we introduce the network which encodes
image patches into binary signatures. The whole net-
work includes discriminative learning and hash learning two
stages. Fig. 7 shows the framework. We use an alternate
training to guarantee the discriminative validity and binary
efficiency simultaneously.

4.1. Discriminative learning

The class-based discriminative learning (or metric learn-
ing) has been well studied. Recent progress of CNN has
proved that a discriminative embedding can be learned
with sufficient training samples. Supervised model such as
VGG[19] and Resnet[2] trains the classification with im-
ages and their labels. The features in middle hidden lay-
ers can be viewed as a embedding of the raw image. The
unsupervised model such as siamese network[7] and triplet
network[ 18] take image pairs as input and outputs the fea-
tures such that similar inputs stay close otherwise stay apart.
For the discriminative learning in our approach, we adopt
the triplet network since it has been proven to be very effec-



tive. The backbone of our network is a traditional CNN
model containing three convolution layers and two fully
connect layers. We denote the output of the network as y =
F(z). x refers to the image patch in RGB space. Suppose a
batch of inputs contain N classes x1, 2, ...xy and M dis-
torted versions for each: {xz(.l) , xz@), ...xEM)}iZLQ,__N. The
object of the embedding network is to shorten the distance
between near-duplicate patches while enlarge the opposite,
i.e. to minimize

Sy Y Ay

1,J,m1,mz2 ,J,m1,mz2

The traditional triplet loss function refers to:
L = maz(d(a,p) — d(a,n) + margin,0) 3)

in which a is the anchor, p is the positive item and n is
the negative item. We adopt the Batch All strategy[3] for
the network training. The anchor ranges in all training
samples{:ng])}i =1,2..N,j = 1,2..M. And for each an-
chor we have M — 1 positive and (N — 1) - M negative
items. Thus the number of total triplet pairs for a training
batchis MN - (M — 1) - (N — 1)M. We only choose the
hard and semi-hard pairs for mean value calculation. i.e.

loss = ﬁ Z d(a,p) — d(a,n) + margin  (4)
Q

where

Q = {(a7pa n)}d(a,p)fd(a,n)+margin>() (5)

After several iterations the network has certain ability to
do the classification task. We use this to generate target
code and initialize the parameters for the hash learning.

4.2. Hash learning

Hashing method has been proved useful in previous
works[10][9]. Generally the hashing methods can be di-
vided into one-step hashing and two step hashing. The two-
step hashing methods are mostly used[9][8][26][13]. It first
generates the hash code for the giving bits and then learn
the hash functions (CNN) using the generated target code.
This framework is reasonable since the code to be learned
is clear and the only goal of the CNN is just a map function.
However there exists a main disadvantage that the binary
codes are determined independently of the hash functions.
This leads to hard training since we give the target codes in
arigid way and the CNN cannot influence on. For one step
approach in some works[10], the binary codes can be pro-
duced depending on the CNN outputs with particular regu-
larization, which eases the burden for the CNN.

We combine the advantage of both strategy and make
a compromise. Our hash function training is closely con-
nected to the discriminative learning. We use the initial net

passed from discriminative learning to get the float features
for all the training patches and use (6) to obtain the target
binary codes.

b; =0.5- (14 sgn(y;)),i=1,2,.N (6)
1 ZM &)
- 'J

Yi M = Y; (7)

where b; represents the target code for the ith class which
contains K bits. We take the average response of all the dis-
torted versions for the one class. This operation eliminates
the case where mutation occurs for some bits. Then we use
binary cross entropy loss (8) for the hash function learning.

K

loss = —% Z(b -log(h(yk)) + (1 —b) - log(1 — h(yx)))
k=1

®

where h is the sigmoid function mapping the embedding
into (0,1)

During testing or retrieving the binary signature is ob-
tained by binarizing the output of backbone network using

(6).
5. Experiments

5.1. Implementation details

We random select 500 images from VOC2012 as our
training source. Then we generate the training patches as
described in section 3.3. For the inter-class selection we se-
lect the visual words with the 20 lowest IDF and for each
visual word we random select 500 patches at most. This
generates near 10K patches and we random select 5K for
training, 2K for validation. For each patch we generate 200
distorted versions shown in Fig. 6.

During training we set parameters N = 40, M = 10
in 4.1, which means the batchsize is 400. margin is 0.5.
The bit length is originally set to be K = 64 and we ad-
just it during training. To prevent overfitting we employ
a drop out layer with a drop rate of 25% before the final
fully connect layer in the backbone net. The whole net-
work is trained on the tensorflow platform with 20 itera-
tions. And for each iteration both discriminative learning
and hash learning iterate for 2K steps. We optimize the
network with the Adamoptimizer with learning rate 0.001,
betal 0.9, beta2 0.999. Learning rate is reduced every 1K
steps with decay rate 0.9.

A view of the 1-norm average value of the embeddings
(before sigmoid) changing during network training is shown
in Fig. 9. Since for a good embedding learning the variance
of the outputs should be large enough and the mean value is
supposed to increase by time. During training we find the 1-
norm average value increases in the discriminative learning
stage while drops in the hash learning stage. And the overall
tendency is to increase till it reaches stable.



Figure 8: Near-duplicate samples from the INRIA Copy-
Days dataset. From left to right the image types: original
image, crop, JPEG compression, strongly attacked. The
strongly attacked types include print and scan, blur, paint.
These distorted versions are regarded as near-duplicate for
each other.

1-norm value

steps

Figure 9: The tendency of embedding 1-norm value during
training. The fluctuation shows the different behavior in the
two alternate stages. The overall tendency is to grow till it
reaches stable

5.2. NDIR performance

We evaluate the effectiveness of our proposed binary fea-
ture for the NDIR task on the INRIA CopyDays dataset[5].
Each image in the dataset goes through three different kinds
of attacks: crop, JPEG compression, “strong”. Fig. 8 gives
an impression of these attacks. The “strong” type refers to
some irregular attacks such as print and scan, blur, paint.
These tasks are more difficult to tackle and are closer to
practical use. The whole dataset has 157 original images
and about 19 distorted versions for each image. To simulate
the large scale application, we follow [22] and random se-
lect 100K from Flickr 1M image dataset[4] as distracter im-
ages. We use an inverted index file with 100K visual words.
For all experiments the local features are first assigned to
visual words by sift quantization.

To assess the influence of code length K on retrieval per-
formance, we adjust the code length K during training and
produce three different models: ‘128bit’, ‘64bit’ , ‘32bit’.
We test and compare retrieval mAP of the three models.

K T,-2 T,-1 T Ts+1 Ts+2
32 - 0.880 0.882 0.865 0.833
64 0.885 0904 0905 0897 0.879
128 0909 0916 0915 0908 0912

Table 1: mAP of our approach using different code length
and different threshold. The basic threshold 7, = K/16.
As code length grows, the retrieval mAP grows correspond-

ingly.

Another parameter related to the performance is the match
threshold. During test we observe that the proper threshold
appears near K /16. We set this value as the basic thresh-
old and denote it as Ts. The best performance may not be
achieved exactly at this point. We make slight change dur-
ing testing and the mAP results are shown in table 1. When
code length K is set 128 and threshold is set 7 (T — 1), our
method achieve the best performance.

We compare our proposed method with four other dif-
ferent methods. The contextual 1[22] and contextual 2[11]
are two hand-crafted contextual features. Both of the two
contextual features are utilized to reject mismatches im-
mediately. The rerank[25] refers to the post-verification
method using a spatial coding. The rerank is an accelerated
method to replace full geometric verification RANSAC[17].
The baseline ranks the retrieval results simply by count-
ing matched visual words without subsequent processing.
Fig. 10 shows the mAP results.

The query speed and feature storage is essential to prac-
tical application. We compare the query time and feature
storage of our methods with the others. Fig. 11 shows the
results. In Fig. 11 the storage is counted in Byte and we
only count a single local feature storage occupation in the
inverted index entry. For instance, in baseline method only
image ID is stored in the inverted index and thus the storage
is 4 bytes (INT). While for our method ‘32bit’ image ID and
an 32-bit feature are stored and the storage is 8 bytes.

It can be seen that our approach outperforms the other
four methods in mAP. And the query speed is higher due to
the fact that we only calculate the Hamming distance. The
storage vary with the code length changing and to achieve
better results larger storage is needed.

6. Conclusion

In this paper we use a lightweight network to extract lo-
cal compact binary features for fast reliable near-duplicate
patches matching. The networked can be further strength-
ened by adding distortion forms to the training set when
applied to real scenario. We use an alternate training to
guarantee that the learned hash code has powerful discrim-
ination ability for the near-duplicate patches. For the NDIR
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Figure 10: Comparision of mAP of different methods on
CopyDays dataset with 100K distracter images. For our
methods ‘128bit’, ‘64bit’ and ‘32bit’, we choose the best
performance through different thresholds.
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Figure 11: Comparision of query time and storage. Time is
counted in seconds for the 100K dataset. Storage is in Byte
for a local feature in the inverted list. Our method is fast
with an Hamming distance calculation.

task our learned binary feature achieves good performance
on both the query results and speed.
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