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Abstract

State-of-the-art supervised local descriptor learning

methods heavily rely on accurately labelled patches for

training. However, since the process of labelling patches is

laborious and inefficient, supervised training is limited by

the availability and scale of training datasets. In compar-

ison, unsupervised learning does not require burdensome

data labelling; thus it is not restricted to a specific domain.

Furthermore, extracting patches from training images in-

volves minimal effort. Nevertheless, most of the existing

unsupervised learning based methods are inherently infe-

rior to the handcrafted local descriptors, such as the Scale-

Invariant Feature Transform (SIFT).

In this paper, we aim to leverage unlabelled data to learn

descriptors for image patches by a deep convolutional neu-

ral network. We introduce a Relative Distance Ranking

Loss (RDRL) that measures the deviation of a generated

ranking order of patch similarities against a reference one.

Specifically, our approach yields a patch similarity ranking

based on the learned embedding of a neural network, and

the ranking mechanism minimizes the proposed RDRL by

mimicking a reference similarity ranking based on a compe-

tent handcrafted feature (i.e., SIFT). To our advantage, after

the training process, our network is not only able to mea-

sure the patch similarity but also able to outperform SIFT

by a large margin on several commonly used benchmark

datasets as demonstrated in our extensive experiments.

1. Introduction

Obtaining a robust descriptor for local image patches is

an essential task in many computer vision applications in-
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Figure 1. We illustrate the motivation of our Relative Distance

Ranking Loss (RDRL). Handcrafted features are used to establish

a reference ranking of patch similarity. Our method mimics this

ranking without enforcing any further constraints on the learned

distances. Note that all patches are unlabelled.

cluding image registration, simultaneous localization and

mapping (SLAM) and large-scale 3D reconstruction. To

this end, widely popular descriptors, such as scale-invariant

feature transform (SIFT) [29] and speed-up robust features

(SURF) [5], employ a set of handcrafted spatial filters and

ad-hoc operations to interpret local patch patterns into vec-

torized representations. However, such filters and nonlinear

operations are often empirically determined based on hu-

man experience. Handcrafted features may not adequately

and fully express the useful information available in image

patches, thus restricting their performance.

To strengthen the representation capacity of handcrafted

features, supervised learning methods (in particular, boost-

ing and kernel-based approaches [41, 6, 49, 44, 17]) aim

at obtaining more discriminative feature representations

by leveraging the available labelled training data. These

approaches are built on top of handcrafted features and

designed to learn a mapping function (often a nonlinear

one) that allows features to be easily separated in high-

dimensional spaces. However, deriving effective and com-

putationally feasible mapping functions is not a straightfor-



ward process, and still remains an open problem.

As an alternative, deep supervised learning based meth-

ods [18, 47, 30, 58] do not require users to define hand-

crafted features and nonlinear mapping functions. Instead,

they learn image patch representations in an end-to-end

fashion via neural networks by imposing a similarity metric

on local image patches, which is intended to be invariant

to image transformations. Unfortunately, deep supervised

learning based methods require a vast amount of labelled

data for training. For instance, patches need to be captured

in different illumination conditions and views.

Unlike supervised learning, unsupervised methods draw

inferences from datasets without relying on labelled data.

Such methods have been successfully incorporated into

high-level tasks such as clustering [10, 20, 55], data re-

trieval [38, 35] and image generation [16, 36, 23]. Still, to

the best of our knowledge, learning representations for low-

level local image patches in an unsupervised fashion has

not been thoroughly investigated. Using an unsupervised

approach for local patches is also preferable; extracting a

large number of patches from images can be done with min-

imal effort since this operation does not require burdensome

manual annotations. State-of-the-art unsupervised learning

methods primarily focus on extracting low-level features

driven by optimizing either a quantization error loss [27, 13]

or a generative adversarial loss [60]. However, these loss

functions do not directly evaluate the affinity between im-

age patches. Consequently, their existing applications to

patch matching related tasks have not outperformed tradi-

tional handcrafted features yet.

In this paper, we introduce a new loss function, called

Relative Distance Ranking Loss (RDRL), to evaluate the

patch similarity directly in the objective function of a con-

volutional neural network. We first employ a handcrafted

feature descriptor (i.e., SIFT) to obtain a relative distance

ranking between patches as a reference, such as ”patch X is

more visually similar to patch Y than X is to Z“, where X,Y

and Z are randomly chosen unlabelled local patches. These

relative rankings coming from the handcrafted features are a

suitable indicator of similarity, since they can be considered

as a proxy for visual appearance. However, handcrafted fea-

tures rely on user-defined spatial filters to extract local in-

formation. Hence, they are limited by the types and ranges

of filters. Our main idea is that by using the first level of

granularity that comes from the handcrafted features and a

process of learning filters inside a convolutional neural net-

work, we can obtain a better feature descriptor in an unsu-

pervised manner, i.e., without using pairs of positive and

negative patches during training.

To achieve this goal, we rank the similarities between

the features generated by our network and compare our es-

timated rankings with the reference rankings as shown in

Fig. 1. In other words, our network learns to rank in ac-

cordance with the relative distance rankings provided by

a handcrafted descriptor so as to generate discriminative

features for local image patches. Our method only uses

SIFT to establish the reference relative distance rankings,

yet it can significantly outperform SIFT on standard bench-

marks [54, 2] after training. We conclude that combining

the feature extraction power of convolutional networks with

our RDRL significantly boosts the performance of the ref-

erence handcrafted features without requiring any labelled

data.

In addition, we apply a direct binarization to our learned

descriptors to derive compact descriptors. As demon-

strated in our experiments, the binarized descriptors not

only achieve state-of-the-art performance but also retain

much shorter code lengths. This phenomenon implies that

our network extracts even more discriminative features than

the conventional handcrafted features, and the new loss

function is suitable for learning local image descriptors in

an unsupervised manner.

Overall, the contributions of this paper are in four as-

pects:

• We present an unsupervised learning method to gen-

erate discriminative features for local image patches.

Our algorithm achieves 43.87% and 47.83% improve-

ments on patch matching performance over the state-

of-the-art handcrafted features (i.e., SIFT) and unsu-

pervised learning based methods on the UBC bench-

mark, respectively.

• We introduce a novel objective function, Relative Dis-

tance Ranking Loss (RDRL), for training our convo-

lutional network. Since RDRL is designed to measure

the similarity between local patches directly, our net-

work is suitable for patch matching tasks.

• To the best of our knowledge, our method is the first at-

tempt to learn local descriptor networks by leveraging

handcrafted features in an unsupervised fashion.

• More importantly, by employing RDRL our network

can outperform the reference handcrafted features.

This rather ”counter-intuitive” phenomenon has not

been noticed or explored by previous unsupervised de-

scriptor learning works, and we believe that our results

would motivate other vision tasks.

2. Related Works

2.1. Handcrafted Local Features

The evolution of local descriptors has achieved remark-

able progress over the past three decades, including differ-

ential filter based [24], moment invariant based [52], and

histograms of gradients based features, such as HOG [11],

LBP [31], DAISY [54], SIFT [29] and SURF [5]. We refer

the readers to the comprehensive literature survey [28].



Figure 2. The pipeline of our proposed network. Unlike most re-

cent descriptor learning methods, our network takes an unlabelled

triplet of patches to generate a relative distance ranking, and aims

to match the generated distance ranking to the reference ranking

which is computed using handcrafted features.

In order to achieve more compact and efficient descrip-

tors, binary descriptors also gain a great amount of atten-

tion. BRIEF [8] exploits randomized intensity comparison

to generate binary descriptors. ORB [37] maximizes the

variance across training patches by selecting uncorrelated

intensity tests, while BRISK [25] optimizes BRIEF by us-

ing decision trees. FREAK [1] constructs a cascade of bi-

nary strings by comparing image intensities with a retinal

sampling pattern.

2.2. Supervised Local Descriptor Learning

To achieve more discriminative features, some works

[6, 7, 46, 44, 42] simultaneously minimize intra-class and

maximize inter-class distances by exploiting discriminative

projections. D-BRIEF [51] adapts the inter and intra class

distance objectives to binary descriptors. BinBoost [50] ap-

plies boosting to learn a set of binary hash functions while

[4] presents an online learned binary descriptor.

Driven by the success of deep neural networks, CNN-

based descriptors [15, 43, 48] achieve impressive results

by exploiting large-scale labelled data. This demonstrates

the power of feature extraction and representation of CNNs.

Recently, end-to-end local descriptor learning methods have

been developed by employing the architecture of Siamese

networks and triplet or contrastive losses [18, 57, 43, 3, 30],

while L2Net [47] employs Euclidean distance as a similar-

ity metric to learn descriptors. Nevertheless, their outstand-

ing performance is restricted to the training domains and

those methods may be also limited due to lack of sufficient

labelled data.

2.3. Unsupervised Local Descriptor Learning

Unlike supervised methods, unsupervised deep learning

based methods [27, 14, 38, 13, 60] are less domain-specific

and do not need to label any data. Thus, unsupervised learn-

ing becomes especially important where labelled data are

difficult to obtain, for example, medical imaging and hyper-

spectral imaging.

Previous work [33] trains a Gaussian Restricted Boltz-

mann Machine (GRBM) in an unsupervised way and uses

the extracted features from the network as local descrip-

tors. Similarly, [34] presents unsupervised patch descrip-

tors based on a convolutional kernel network. However,

the network needs to be carefully optimized in a layerwise

manner. Deep Hashing (DH) [14] employs a neural net-

work as an encoding function to find a binary representation

that minimizes the quantization loss while maximizing the

entropy of bit values. Furthermore, DH takes the features

of input images extracted by handcrafted descriptors, such

as GIST [32], as its inputs. DeepBit [27] replaces hand-

crafted descriptors with a pretrained VGG network [45]

to extract image features, and further improves its perfor-

mance with data augmentation. In order to reduce quanti-

zation losses, DBD-MQ [13] reformulates binarization as a

multi-quantization task and solves it by a K-AutoEncoders

network. BinGAN [60] employs the framework of gener-

ative adversarial networks [16, 36] to learn image features

and then binarizes the feature representations of the penul-

timate layer from its learned discriminator.

Above all, unsupervised learning based methods mainly

employ energy based objective functions, generative adver-

sarial losses, or quantization minimization losses to opti-

mize neural networks. However, those losses do not tackle

the patch matching problem directly and thus lead to sub-

optimal solutions.

3. Proposed Method

We propose an unsupervised local descriptor learning

network, which benefits from the advantages of both human

expertise and deep convolutional neural networks. Man-

ually designed filters, such as Gaussian or Gabor filters,

are the basis of various handcrafted features (e.g., SIFT or

SURF). Due to the simplicity of those filters, the feature ex-

traction ability of handcrafted features has been limited. On

the contrary, CNNs demonstrate their powerful feature ex-

traction ability, but it is challenging to design a suitable loss

function to learn a network for patch matching tasks in an

unsupervised manner. In our method, we employ a CNN to

extract features and exploit handcrafted features to provide

a reference ranking of patch similarity for optimizing our

network. The pipeline of our algorithm is shown in Fig. 2.

3.1. Relative Distance Ranking

In unsupervised descriptor learning, not only label in-

formation of patches is unknown but also the number of

patch clusters is numerous and there are few samples in each

cluster. Thus, clustering patches based on similarity is not

suitable. Furthermore, the absolute distance between two

unlabelled patches does not provide any clue for training

our network, e.g., whether the network should force these

two patches closer or not in the feature space. Choosing or



designing a proper distance metric becomes the key to the

success of learning a discriminative descriptor.

Motivated by relative distance comparison (RDC) [40],

widely used in supervised learning methods (such as triplet

loss), we propose a Relative Distance Ranking (RDR) met-

ric based on three patches for our unsupervised learning

method. Different from the work [40], where RDC is used

to maximize distances of non-matching pairs and minimize

distances of matching pairs, our metric only yields a rank-

ing order of patch similarity. Specifically, we randomly

choose three patches, e.g., xi, xj and xk, and feed them

into the network to obtain their representations, fi, fj and

fk. Note that the feature representations have been normal-

ized to unit vectors, and the distance between two patches

refers to the distance between the descriptors of those two

patches. Thus, we obtain two absolute distance values:

d(xi, xj)=d(fi, fj)=‖Φθ(xi)−Φθ(xj)‖2=‖fi−fj‖2,

d(xi, xk)=d(fi, fk)=‖Φθ(xi)−Φθ(xk)‖2=‖fi−fk‖2,

where Φ represents our local descriptor network and θ in-

dicates the parameters of the network. Note that, standard

triplet loss (i.e., max{0, µ+ d(xi, xj)− d(xi, xk)}, where

µ represents a margin) is not suitable to apply it in our

case, for instance, by pulling two randomly chosen patches

xi and xj closer, while pushing patch xk further away, be-

cause those unlabelled patches might come from either the

same or different classes. Instead, we define our RDR met-

ric as:
{

d(xi, xj) < d(xi, xk), if xi is closer to xj than xk,

d(xi, xj) > d(xi, xk), if xi is closer to xk than xj .
(1)

As indicated in Eqn. 1, our RDR only evaluates the relative

relationship among three patches instead of the absolute dis-

tance between two patches.

3.2. Proposed Relative Distance Ranking Loss

Although RDR alleviates erroneous clustering and pro-

vides a metric for objective functions to optimize neural

networks, the objective functions still require a reference

affinity relationship among three patches xi, xj and xk.

Handcrafted local descriptors encode sophisticated hu-

man expertise and are designed for different tasks, such as

image registration, retrieval and classification, as well as

different domains, like medical imaging and hyperspectral

imaging. SIFT, one of robust handcrafted features, has been

widely used in many tasks, such as image matching [29],

image retrieval [59] and medical image registration [9].

Hence, we use SIFT features to provide our reference RDR

between patches.

However, it is possible that SIFT features may also en-

code two patches from different classes closer in the feature

space. Thus, taking inaccurate RDR estimation from SIFT

features into account, we impose a margin m on the refer-

ence relative distance between d(si, sj) = ‖si − sj‖2 and

d(si, sk) = ‖si − sk‖2, where si, sj and sk indicate the

SIFT features of the patches xi, xj and xk respectively. In

other words, d(si, sk) should be larger than d(si, sj) by a

margin m, or vice versa. By imposing a margin between

the reference relative distance, we obtain a more reliable

ranking order from SIFT features. Therefore, our proposed

relative distance ranking loss (RDRL) L is formulated as:

L(xi, xj , xk) =

I(d(si,sk)−d(si,sj)−m) [d(xi, xj)−d(xi, xk)]+

+ I(d(si,sj)−d(si,sk)−m) [d(xi, xk)−d(xi, xj)]+ ,
(2)

where [α]+ represents the hinge loss max{α, 0} and I(·)
is an indicator function, defined by I(α) = 1 if α > 0,

otherwise I(α) = 0.

According to Eqn. 2, when the RDR generated by our

neural network violates the reference RDR output by SIFT,

the RDRL will be back-propagated to update the network.

Furthermore, if the reference relative distance is smaller

than the margin, our method will not use the ranking infor-

mation of the sampled patches to update our network. Note

that the introduced margin m is different from the margin

µ in triplet losses [3, 30]. The margin µ forces the dis-

tances between inter-class samples to be larger than the dis-

tances between intra-class samples, while our margin m is

presented to mitigate the impact of erroneous rankings of

the handcrafted features.

3.3. Objective Function and Network Architecture

Section 3.2 describes, using a randomly chosen triplet of

patches, how to evaluate the loss function in Eqn. 2. In order

to make computation more efficient and improve the per-

formance of our network, we employ a strategy of selecting

triplet patches in the training phase. Inspired by the mining

strategy in [30], we construct a hard triplet for each patch in

a batch. Different from the hard mining strategy employed

in [30, 58], our hard triplets are selected by the SIFT fea-

ture extractor instead of our learned network. The details

of our mining strategy and hard triplet selection are further

explained in Sec. 3.5. After obtaining the training triplet

patches, the final objective of our network is expressed as:

LT =
1

N

∑

i,j,k

L(xi, xj , xk), (3)

where N represents the number of patches in a batch, and

the triplet patches (xi, xj , xk) refer to a hard triplet.

Similar to supervised learning based methods [47, 30,

58], we also aim to learn a lightweight local descriptor

network without leveraging pre-trained networks, such as

VGG [45] and ResNet [19]. Since pre-trained models are

trained on supervised tasks such as classification, it is hard

to tell whether the feature extraction ability of the networks



comes from their original tasks or our proposed RDRL.

Thus, we adopt the architecture from [47], which consists

of seven convolutional layers and is regularized with Batch

Normalization. To prevent from overfitting, we employ a

drop-out layer with a drop rate 0.1 before the last convolu-

tional layer. We apply the objective in Eqn. 3 to train our

network from scratch with randomly initialized weights.

3.4. Binarizing Local Image Descriptors

Binary local descriptors are desirable for many applica-

tions [8, 37, 27, 60], due to the low computational require-

ments and high memory efficiency for image retrieval and

matching. Since batch-normalization [21] is used as the

output layer, our descriptors have been normalized to zero

mean in every dimension. To achieve binary local descrip-

tors, we can directly binarize the real-valued local descrip-

tors generated by our network. Specifically, we apply the

function sign(·) to the real-valued descriptors and then map

the codes from {−1, 1} to {0, 1}. Note that, we do not de-

liberately design a loss function for optimizing binary de-

scriptors. As suggested in [47], if the real-value descriptors

are discriminative enough, their corresponding binary de-

scriptors should be discriminative as well. The performance

of binary descriptors also in turn reflects the discriminative

ability of real-valued descriptors.

3.5. Training Details

Unlike previous unsupervised methods [27, 13, 60],

which use each patch individually to optimize networks,

our approach employs unlabelled triplet patches to evalu-

ate RDR on both handcrafted features and deep features

extracted by our network. As mentioned in Sec. 3.2, spe-

cific triplets of patches might not be used to update our

network if their reference rankings do not satisfy the mar-

gin constraint. In order to reduce redundant computation,

we construct triplet patches by a mining strategy for our

RDRL in each training batch. We first extract SIFT features

si, i = 1, 2, ..., N on the training data in a batch, and then

calculate the distance matrix M between every two patches.

Given a patch xi, as an anchor patch, we first choose a patch

xj , which is the most similar patch to the anchor xi based

on M . Another patch xk, regarded as a hard neighbour, is

selected if its distance to the anchor xi is the smallest one

among the distances larger than the distance Mij between

si and sj with a margin m. Then we obtain a hard triplet

(xi, xj , xk).

Since our objective function and all the layers in the

network are differentiable, we employ the Adam opti-

mizer [22] to update the parameters θ of our network with a

learning rate 10−5 and the decay rates for the first and sec-

ond moment estimates are set to 0.9 and 0.99 respectively.

4. Experiments

We test our proposed method on three popular patch-

based benchmarks: UBC Phototour [54], HPatches [2] and

ETH dataset [39]. These benchmarks are used to evaluate

the patch matching performance. The inputs to the network

are gray-scale patches and are resized to 32× 32 pixels. To

reduce the impact of illumination changes, we normalize

each input patch by subtracting the mean value of its in-

tensities and then dividing by the standard deviation of the

intensities.

4.1. UBC Phototour

In UBC Phototour dataset [54], patches are extracted

from three image sequences: Liberty, Notredame and

Yosemite. Following the standard training/test configura-

tion, one of the sequences is used for training and the other

two are used for testing. Note that ground-truth label infor-

mation is not provided in training. We report patch match-

ing performance in terms of false positive rates at 95% re-

call (FPR@95).

Since SIFT [29] is used to provide the reference RDR

in our loss, we employ SIFT as our baseline method.

Four state-of-the-art unsupervised learning based binary de-

scriptors, BinGAN [60], DeepBit [27], DBD-MQ [13] and

Boosted SSC [41], are chosen to serve as our baselines. We

also compare handcrafted binary descriptors, BRISK [25],

BRIEF [8] and ORB [37], with our binarized descriptor

Ours bin. Another widely used real-valued handcrafted fea-

ture SURF [5] is also included for comparisons. Moreover,

we employ our network architecture to regress real-valued

SIFT features, marked as SIFT Reg, as another baseline.

Since DeepBit [27] exploits a pretrained VGG network [45]

(excluding the classifier part) to extract features, we include

pretrained VGG as a baseline. We also retrain BinGAN

to achieve its real-valued descriptors, marked as BinGAN†

(128 dimension) and BinGAN‡ (256 dimension).

As indicated in Tab. 1, our real-valued descriptors, de-

noted as Ours, outperform the state-of-the-art unsupervised

methods by a large margin of 11.87% on the average

FPR@95. Note that, among previous unsupervised methods

and handcrafted features, SIFT achieves the lowest errors.

Although our binary descriptors are directly binarized from

our real-valued descriptors without utilizing any specific bi-

narization regularization, they also attain superior perfor-

mance. Benefiting from our proposed RDRL, our network

is able to extract features from patches and cluster similar

patches more closely in the feature space.

4.2. HPatches

HPatches [2] is composed of over 2.5 million patches ex-

tracted from 116 image sequences, where the patches con-

tain different viewpoints and illuminations. According to



Table 1. Quantitative comparisons on the UBC Phototour dataset in terms of false positive rates at 95% true positives (FPR@95) across

all the splits of the training and testing configurations. Ours and Ours bin represent our learned real-valued and binary descriptors by

using SIFT to provide reference RDR, respectively. Ours† indicates our learned real-valued descriptors by using our learned network, i.e.,

Ours, to provide reference RDR.

Methods
Train Liberty Notredame Yosemite Average
Test Notredame Yosemite Yosemite Liberty Notredame Liberty FPR@95%

Handcrafted descriptors

BRISK [25] 512 bits 74.88 73.21 73.21 79.36 74.88 79.36 75.81
BRIEF [8] 256 bits 51.13 52.18 52.18 56.30 51.13 56.30 53.20
ORB [37] 256 bits 42.80 45.10 45.10 50.90 42.80 50.90 46.27
SURF [5] 64 bytes 31.85 44.30 44.30 49.85 31.85 49.85 42.00
SIFT [29] 128 bytes 25.17 27.77 27.77 30.76 25.17 30.76 27.90

Binary unsupervised learning based descriptors

Boosted SSC [41] 128 bits 72.95 77.99 76.00 70.35 72.20 71.59 73.51
DeepBit [27] 256 bits 26.66 57.61 63.68 32.06 29.60 34.41 40.67

DBD-MQ [13] 256 bits 25.78 57.15 57.24 31.10 27.20 33.11 38.59
BinGAN [60] 128 bits 27.24 50.48 39.44 27.92 32.72 39.44 36.21

BinGAN⋆ [60] 256 bits 23.20 49.48 44.72 24.44 21.44 33.64 32.82
Ours bin 128 bits 20.96 23.20 23.23 27.59 20.79 29.25 24.17

Real-valued unsupervised learning based descriptors

BinGAN† [60] 128 bytes 27.24 54.56 45.68 24.72 41.76 48.92 40.48
SIFT Reg 128 bytes 39.29 29.45 41.38 51.42 30.29 41.21 38.84
VGG [45] 512 bytes 27.56 59.07 59.07 29.85 27.56 29.85 38.83

BinGAN‡ [60] 256 bytes 24.60 48.12 45.72 21.92 22.72 36.48 33.26
mcRBM [33] 512 bytes 25.10 34.50 33.00 34.00 22.30 31.20 30.02

Ours 128 bytes 13.04 17.09 15.17 19.70 12.15 19.05 16.03

Ours† 128 bytes 12.56 16.22 14.92 19.65 11.70 18.92 15.66

Figure 3. Results on HPatches dataset [2]. All the results are evaluated on the test set of the “a” split.

the amount of geometric noise, the test cases are grouped

into different levels of difficulty, easy, hard, and tough.

Three tasks are evaluated in ascending order of difficulty:

patch verification, patch retrieval, and image matching.

In this experiment, we employ four handcrafted features

as baselines: SIFT, ORB, BRIEF and Normalized Cross

Correlation (NCC) [26]. We also apply unsupervised deep

learning based methods BinGAN and its real-valued vari-

ant BinGAN† as our baselines. For a fair comparison, we

use their 128-dimensional descriptors as baselines since the

code length of our learned descriptors is 128. Since the pre-

trained VGG achieves better results than DeepBit on the

UBC Phototour benchmark, we use the pretrained VGG-

net for comparison. Notice that the length of the VGG de-

scriptor (512 bytes) is 4 times larger than our descriptors.

Moreover, SIFT-Reg serves as another baseline.

As shown in Fig. 3, our real-valued descriptors outper-

form the state-of-the-art unsupervised methods for all the

three tasks. Furthermore, our method is able to use the

shortest code length to achieve the best performance. This

also indicates that by exploiting our proposed RDRL our

network is able to cluster patches effectively. Addition-

ally, our binary descriptors outperform the unsupervised

learning-based and handcrafted binary descriptors.

4.3. ETH Dataset

ETH benchmark [39] focuses on evaluating descriptors

for a Structure from Motion (SfM) task. This benchmark in-

vestigates the performance of different descriptors in terms

of building a 3D model from a set of 2D images. Specifi-

cally, the SfM performance of a method is measured by the

number of registered images, reconstructed sparse points,

image observations, mean track length, mean reprojection



Table 2. Evaluation results on ETH benchmark for SfM. The red color indicates the best performance.

# Images # Reg. # Sparse Pts # Observ. Track Length Reproj. Error # Inlier Matches
Fountain SIFT 11 11 15.6K 74.8K 4.77 0.40 138.9K

TFeat 11 14.2K 67.5K 4.73 0.37 113.9K
LIFT 11 6.0K 28.2K 4.71 0.58 52.2K
Ours 11 15.8K 75.7K 4.79 0.41 144.0K

South Building SIFT 128 128 150K 754K 5.02 0.54 2677K
TFeat 128 102K 604K 5.91 0.51 1751K
LIFT 128 42K 233K 5.47 0.73 711K
Ours 128 153K 767K 5.02 0.54 2728K

Gendarmenmarkt SIFT 1463 1098 612K 2207K 3.60 0.72 90M
TFeat 902 280K 1324K 4.72 0.69 15M
LIFT 959 143K 819K 5.73 0.84 5M
Ours 1118 641K 2335K 3.63 0.72 90M

(a) Impact of labelled data (b) Impact of mining strategies (c) Impact of margins (d) Performance wrt. dimensions

Figure 4. Ablation study of our method on UBC Phototour benchmark. For all the cases, we train our network on the Liberty dataset. We

either use Notredame for validation and test on Yosemite or vice versa.

error and inlier matches.

In this experiment, we compare our descriptor with SIFT

to demonstrate the effectiveness of our RDRL. We also in-

clude the performance of two supervised learning based de-

scriptors provided in [39]1, i.e., TFeat [3] and LIFT [56].

Table 2 indicates the evaluation results of the 3D recon-

struction. Our method outperforms other methods in terms

of metrics related to the density of the reconstructed 3D

model, i.e., the number of registered images, the number

of registered sparse points, the number of observations and

the number of inlier matches. In most cases, the tracking

length of our method is longer than SIFT as well. Further-

more, since the reprojection errors are less than 1 pixel for

all descriptors, this metric may not reflect performance dif-

ferences between descriptors in practice. Overall, by em-

ploying RDRL, our method significantly improves the per-

formance of SIFT and is also competitive with supervised

methods in the SfM task.

4.4. Discussion

Comparison with Supervised Descriptors: Since our

method is trained on unlabelled patches, it would be unfair

to compare our method with supervised ones. However, we

illustrate how the number of labelled patch pairs affects the

performance of the supervised methods in Fig. 4(a). Specif-

ically, we train a supervised method (i.e., Hardnet [30]) on

Liberty given different amount of labelled training pairs and

test it on Notredame. As shown in Fig. 4(a), when the num-

ber of labelled patch pairs is less than 104, our method even

1The results are provided by the authors and the full evaluation is pro-

vided in the supplementary material.

outperforms [30] since [30] suffers overfitting. This further

demonstrates that our method is very useful when labelled

data is unavailable.

Impact of Mining Strategies: To demonstrate the effec-

tiveness of our mining strategy, we also compare two other

possible mining strategies, as shown in Fig. 4(b). In our

method, we use a handcrafted feature, SIFT, to find the most

similar patch to the given patch and their hard neighbour in

the feature space and then construct the training triplet, with

the validation error curve being shown in red in Fig. 4(b).

We also illustrate that the results of using our learned net-

work to mine the training triplet on the fly, as shown in the

green curve in Fig. 4(b). In this case, the network fails to

cluster all the patches much closer while pushing dissimi-

lar ones apart. As illustrated by the validation curve, the

network diverges as the training progresses. We opt to use

all the patches whose distances are larger than the distance

between the anchor patch and its nearest neighbour by a

margin m, in a batch to construct training triplets. In this

way, the updating direction of the given patch is averaged

by all the relative distances ranking losses. Regarding noisy

RDR estimation of handcrafted features, the averaging up-

dating direction does not reduce the training loss, as shown

in the blue curve in Fig. 4(b). Figure 4(b) also implies that

training our unsupervised network is nontrivial.

Selection of Distance Margins: We employ a margin in

our RDRL to alleviate the impact of inaccurate estimation

of handcrafted features. Figure. 4(c) shows the impact of

different margins on the validation errors. When the margin

is set to 0.05, our validation curve obtains the lowest error.

Hence, we set the margin to 0.05. We also observe that



(a) Validation curves (b) Test performance
Figure 5. Performance impacted by increasing training patches.

Figure 6. Performance of our RDRL using different handcrafted

descriptors as references.

when the margin is set to 0.5, the validation errors are larger

than the others. This also implies that for a given patch

using all the other patches to construct training triplets is

not suitable, as illustrated in the blue curve in Fig. 4(b).

Descriptor Performance in Different Dimensions: As

visible in Fig. 4(d), the performance of our descriptors

varies as the dimension increases. We use Liberty as our

training dataset and Notredame and Yosemite as our valida-

tion and test datasets. For instance, we employ Yosemite as

our validation set and Notredame as our test set. The green

curve in Fig. 4(d) indicates the average FPRs in different di-

mensions when true positive rate (TPR) is 95%. When the

dimension of our real-valued descriptor is larger than 128,

the performance of our learned descriptors does not increase

significantly on the UBC benchmark. Therefore, we set the

dimension of our real-valued descriptor to 128.

Impact of Increasing the Training Dataset: Dataset aug-

mentation is a widely known technique to enhance the per-

formance in supervised methods, but it requires extra labo-

rious labelling effort. However, increasing the amount of

training images/patches can be regarded as “free” for unsu-

pervised learning methods. Therefore, we enlarge our train-

ing dataset by increasing the variety of training patches.

Due to the similarity between Liberty and Notredame, we

extend our training dataset Liberty with randomly sampled

patches from Yosemite and use Notredame as the validation

set. As shown in Fig. 5(a), by using both datasets our net-

work achieves a lower validation error rate compared with

only using one dataset, Liberty, in training. Moreover, our

descriptors also obtain higher matching performance on the

Yosemite dataset, as indicated in Fig. 5(b). Although some

patches from Yosemite appear in both the training and test-

ing phase, our network does not try to overfit the test dataset

since there are no ground-truth labels provided in training.

Learning from Different Handcrafted Features: We

demonstrate that using our SIFT based RDRL to train our

descriptor network, our network can achieve better perfor-

mance than our baseline handcrafted feature, SIFT. Nev-

ertheless, our RDRL is also able to improve other hand-

crafted features. To the best of our knowledge, SIFT is still

one of the best off-the-shelf handcrafted features and we re-

gard SIFT as a “Sophisticated” descriptor. Note that, some

state-of-the-art handcrafted features [12, 53] require the ex-

act scale information of the patches or may sample outside

patch regions to achieve their best performance, their per-

formance degrades dramatically if the above conditions are

not satisfied. For comparison, we also select BRIEF as a

“Simple” descriptor and NCC as a “Trival” descriptor. As

visible in Fig. 6, our RDRL can improve different levels

of handcrafted features. Furthermore, we use our descrip-

tor to provide reference RDR and then train our network

from scratch. As indicated in Tab. 1, we can further improve

the performance of our descriptor network by our proposed

RDRL, denoted by Ours†. However, using the descriptor

network Ours† to provide reference RDR, we train our net-

work again, and do not see significant improvement since

the distribution of the learned descriptors tends to be stable.

Outperforming SIFT: First, deep networks can represent

images more discriminatively than handcrafted features due

to their complex and various filters. Since our RDRL is de-

signed to measure patch similarity, the network can learn

more discriminative deep filters than the handcrafted filters

in SIFT. Thus, our network can represent patches more dis-

crminatively. Second, we use relative distance rankings in-

stead of absolute distances as our objective, and the abso-

lute distance between two patches estimated by SIFT can be

larger than the distance of our deep features, or vice verse.

Therefore, our network can achieve better patch matching

performance than SIFT.

5. Conclusion

We present an unsupervised local descriptor network to

generate real-valued feature descriptors by using our pro-

posed relative distance ranking loss. Our proposed loss

yields direct measurement of patch similarity, thereby gen-

erating more discriminative descriptors. Our method com-

bines the sophisticated human experience from handcrafted

features with the feature extraction power of deep neural

networks, and outperforms both handcrafted features and

unsupervised learning based methods.
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