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Abstract

Since acquiring pixel-wise annotations for training con-
volutional neural networks for semantic image segmenta-
tion is time-consuming, weakly supervised approaches that
only require class tags have been proposed. In this work,
we propose another form of supervision, namely image cap-
tions as they can be found on the Internet. These captions
have two advantages. They do not require additional cu-
ration as it is the case for the clean class tags used by
current weakly supervised approaches and they provide tex-
tual context for the classes present in an image. To lever-
age such textual context, we deploy a multi-modal network
that learns a joint embedding of the visual representation
of the image and the textual representation of the caption.
The network estimates text activation maps (TAMs) for class
names as well as compound concepts, i.e. combinations of
nouns and their attributes. The TAMs of compound con-
cepts describing classes of interest substantially improve
the quality of the estimated class activation maps which are
then used to train a network for semantic segmentation. We
evaluate our method on the COCO dataset where it achieves
state of the art results for weakly supervised image segmen-
tation.

1. Introduction

Fully convolutional networks have shown to perform
very well on the task of semantic image segmentation, but
training such networks requires data annotated on a pixel
level. Obtaining such annotations, however, is very time
consuming and expensive. For this reason, approaches for
weakly supervised semantic segmentation have been pro-
posed that require less supervision for training. While
the type of supervision ranges from class tags, key points,
scribbles to bounding boxes, the vast majority of these ap-
proaches rely on class tags since it is assumed that these
tags can be more easily acquired. A popular approach for
weakly supervised learning from image tags [21, 52, 1]
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caption: ‘There are two
large beds located in a
hotel room.

Figure 1. Given one or multiple captions per image in the training
set, our network predicts text activation maps (TAMs) for each im-
age which are then converted into class activation maps (CAMs) as
illustrated in Figure 3. The text activation maps are more general
than class activation maps since they localize compound concepts
like ‘two large beds’ as well as categories like ‘bed’. The example
shows the class activation map estimated for ‘bed’ for this train-
ing example. Using the estimated CAMs of all training images, a
standard convolutional neural network for semantic segmentation
can then be trained.

consists of estimating for each image in the training set
so-called class activation maps (CAMs) [52], which indi-
cate where certain semantic categories occur in an image.
In a second step, pixelwise class labels are extracted from
the CAMs and a neural network for image segmentation is
trained. These approaches, however, still assume curated
image tags, i.e. all classes of interest in the image must be
tagged. This is not guaranteed for tags retrieved together
with images from the Internet.

Another form of supervision are readily available textual
descriptions. Such textual descriptions can be either from
image captions or text surrounding or referring to an image
in an article or blog. Such textual descriptions are more gen-
eral than class tags and it is possible to reduce these textual
descriptions to class tags by parsing the texts for the names
of the categories of interest. However, textual descriptions
are richer in the description of the image content than just
class tags as illustrated in Figure 1. In case of class tags, the
image would be only labeled by the relevant category ‘bed’
and the only information we have is that the image contains
at least one bed, but we do not know if the bed is large or
small or if many instances are in the image. The caption



“There are two large beds located in a hotel room” provides
much more information. In particular, ‘two large beds’ in-
dicates that many pixels of the image should be labeled by
the category ‘bed’.

In this work, we therefore propose an approach that uses
non curated image captions as weak supervision for training
a convolutional neural network for semantic image segmen-
tation. Our contribution focuses on the research question
how class activation maps (CAMs) can be estimated from
image captions and we show that these class activation maps
are substantially more accurate than CAMs estimated from
class tags. In order to estimate the class activation maps
for the training images from captions, we learn a joint em-
bedding of the visual representation of the image and the
textual representation of the caption as illustrated in Fig-
ure 3. Using such a joint embedding, our network predicts
text activation maps (TAMs), which locate categories like
‘bed’ as well compound concepts like ‘two large beds’. For
each class, the TAM of the class as well as the TAMs of
the compounds which contain the class name are fused to
generate the CAM for the class.

We provide a thorough ablation study that analyses the
benefit of the additional textual context that is provided by
the compound concepts. On the COCO dataset [26], the
proposed approach outperforms the current state of the art
in weakly supervised semantic segmentation.

2. Related Work

Fully supervised semantic segmentation has been stud-
ied in many works, e.g., [7], [25], [27], [50], [51]. More re-
cently, weakly-supervised semantic segmentation has come
to the fore. Early work such as [42] relied on hand-crafted
features, such as color, texture, and histogram information
to build a graphical model. However, with the advent of
convolutional neural networks (CNN), this conventional ap-
proach has been gradually replaced because of its lower per-
formance on challenging benchmarks [ 1].

A natural step to less supervision are more coarse spatial
cues like bounding boxes, key points and scribbles. In [30],
Papandreou et al. use the expectation-maximization algo-
rithm to perform weakly-supervised semantic segmentation
based on annotated bounding boxes and image-level la-
bels. Another more sophisticated approach based on bound-
ing boxes was proposed in [20]. The authors use region
proposal generated by Multiscale Combinatorial Grouping
(MCG) [33] and Grabcut [35] to localize the objects more
precisely within the bounding box. More recently, Li et
al. [23] used bounding boxes for object classes and image
level supervision for stuff classes. In [24], Lin et al. made
use of a region-based graphical model, with scribbles pro-
viding ground-truth annotations to train the segmentation
network. Scribbles also served as supervision for the works
of [40, 41], which investigate loss regularizations. Human

annotated keypoints were used by Bearman et al. [2] for
weakly supervised class segmentation and by Sawatzky et
al. [38] for weakly supervised affordance segmentation.

While the works mentioned above require some type of
explicit spatial hints, others only rely on the list of present
classes in the image. Qi et al. [34] used proposals generated
by MCG [33] to localize semantically meaningful objects.
Recently, Fan et al. [12] leveraged saliency to obtain object
proposals and link objects of the same class across images
with a graph partitioning approach. Pathak et al. [31] ad-
dressed the weakly-supervised semantic segmentation prob-
lem by introducing a series of constraints.

In absence of explicit location cues provided by humans,
class activation maps (CAMs) [52] proved to be a seminal
supervision source. Pinheiro et al. [32, 39] pioneered in this
area. In [21], three loss functions are designed to gradu-
ally expand the high confidence areas of CAMs. This ap-
proach was first improved by Wei et al. [44] who use an
adversarial erasing scheme to acquire more meaningful re-
gions that provide more accurate heuristic cues for training.
Recently, Huang et al. [17] proposed deep seeded region
growing of CAMs with image level supervision. In [45],
Wei et al. presented a simple-to-complex framework which
used saliency maps produced by the methods [8] and [18]
as initial guides. Hou et al. [16] advanced this approach by
combining the saliency maps [15] with attention maps [48].
Oh et al. [29] and Chaudhry et al. [5] considered linking
saliency and attention cues together, but they adopted differ-
ent strategies to acquire semantic objects. Roy and Todor-
ovic [36] leveraged both bottom-up and top-down attention
cues and fused them via a conditional random field as a re-
current network. Ahn et al. [1] use image level class labels
to generate an initial set of CAMs and then propagate those
CAMs by using random walk predictions from AffinityNet.
Wei et al. [46] use image level supervision with dilated con-
volutions with varying levels of dilations to generate weakly
supervised segmentations. Wang et al. [43] use image level
supervision along with a bottom-up and top-down frame-
work, which alternatively expands object regions and opti-
mizes the segmentation network. In Briq et al. [4] a con-
volutional simplex projection network is used for weakly
supervised image segmentation. Tang et al. [41] integrate
standard regularizers directly into the loss functions over
partial input for semantic segmentation. Ge et al. [13] use a
four stage process that combines object localization with fil-
tering and fusion of object categories. Hong et al. [14] and
Jin et al. [19] tackle the weakly-supervised semantic seg-
mentation problem using images or videos from the Inter-
net. While the mentioned works mainly focus on steps fol-
lowing the generation of class activation maps, we focus on
the CAMs themselves by leveraging object attributes from
the captions. Note that while the class tags are typically
expected to be clean, i.e. require human curation, our cap-
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Figure 2. To obtain the textual embedding of an arbitrary snippet
of text, we first encode each word with a word2vec model and
average over words, which gives us the input embedding. Feeding
it into a single fully connected layer with a residual connection
yields the output embedding

tions are not expected to mention all relevant classes. This
is closer to the realistic scenario of retrieving information
from the internet.

The task of weakly supervised visual grounding [6, 3,

, 10,9, 47] is related but a different task. Instead of train-
ing a network for semantic image segmentation, the goal is
to localize a given phrase in an image and the challenge is
to handle phrases that are not part of the training data. This
means that they require a phrase for inference, while in our
case the captions are only given for training but not for in-
ference on the test dataset.

3. Method

Generating class activation maps [52] on training images
is a crucial intermediate step for the majority of current state
of the art weakly supervised image segmentation methods.
In our work, we therefore focus on improving them. To
this end, we harvest information from image captions in-
stead of relying on class tags only. Our TAM-network is a
multimodal architecture, which maps image pixels and text
snippets into a common semantic space which allows us to
calculate activation maps for class names as well as com-
pound concepts that include the class name as illustrated in
Figure 3. From TAMs of class names and class relevant
compound concepts, we obtain class activation maps. From
these CAMs, we directly estimate the pixelwise class la-
bels as described in Section 3.3. We finally train the widely
used VGG16-deeplab model [7] for semantic segmentation
on the estimated labels which yields us the final segmenta-
tion model.

3.1. Parsing Captions

In our work, we distinguish three different types of text
snippets: Class names contain the names of the classes
of interest in the particular dataset as well as their plural
form. Compound concepts are snippets of a sentence be-
tween beginning of sentence, prepositions, verbs and end

of sentence. These snippets have to contain multiple words
excluding articles. Essentially these are combinations of
numbers, adjectives, adverbs and nouns like two completely
black dogs. They are split into two categories: Class re-
lated compound concepts contain a class name inside them
and class unrelated compound concepts do not. All of them
are used during training of the TAM network, but the type
of the snippet determines its weight in the loss. For CAM
inference, we use class names and class related compound
concepts. We use 300-dimensional word to vec (w2v) [28]
embeddings to convert text snippets to numerical vectors
of equal length. The embedding of a single word is given
by the word to vec dictionary. For text snippets contain-
ing multiple words, we take the arithmetical mean of the
normalized embeddings of individual words. These em-
beddings are used as input to the textual path of the TAM-
network.

We use the classes mentioned in the captions to deter-
mine what classes are present in a training image. If the
class name is present in at least one of the image captions,
the class is considered as present, otherwise not. Note that
in contrast to curated image tags, the captions do not neces-
sarily contain all classes that are present in an image.

3.2. Multi-Modal TAM Network

Our TAM network comprises a visual path and a textual
path which map visual and textual information into a com-
mon 300-dimensional semantic embedding space.

Visual Path. Our visual embedding path maps an image
I with P pixels to a pixelwise visual embedding E,;s(I) €
RP*300 1t is a modification of the VGG16 architectures,
but we will also report results for a ResNet38 architecture.
In both cases, we change the output dimension of the last
fully connected layer to the dimension of the common se-
mantic embedding space.

Textual path. As shown in Figure 2, our textual path
first obtains the word to vec embedding €2, (t) € R3% of
a text snippet ¢ by taking the average of the word to vec
embeddings of the single words. Then e, (t) € R3% is
mapped to a vector ., (t) € R3°Y in the common semantic
embedding space via:

et (t) =normpa(normpa(€way(t))

+ WresnOTmMp2 (MtxtewZU (t))) M
where normps() denotes normalization by the Lo norm,
M,,; € R300%300 jg the weight matrix of a fully connected
layer and w,..s € R is a hyperparameter. We also investi-
gated RNNs that take the word to vec embeddings of the in-
dividual words as input and output e, but they performed
slightly worse than our approach. This is probably due to
short length of our text snippets which contain mostly 2 or
3 words.
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Figure 3. For each present class, we locate the class name as well
as all compound concepts related to this class in the image (esti-
mate their TAMs). We then normalize these TAMs and take for
each class the pixelwise maximum over them to arive at the CAM.
Finally, we estimate pixelwise class labels from these.

Textual Activation Map. Given an image I with P pix-
els and a text snippet ¢, we generate the textual activation
map (TAM), which we denote by x(I,t) € R?, from the
visual embedding E,;;(1) € RF*300 and the textual em-
bedding e;,;(t) € R3°0 by:

X(Ia t) = Evis (I)etmt (t) (2)

To obtain the normalized TAM, we apply relu to discard
negative values and normalize it by

(1) relu(x(1,t)) 3)
X ) = .
o max +/relu(x(I,t,p))

pEpizels

3.3. Direct Estimation of Pixelwise Class Labels
from TAMs

Since we aim to learn a model for semantic segmenta-
tion, we need to estimate the pixelwise class labels for each
training image /. To obtain these, we first calculate normal-
ized class activation maps for all present classes as shown
in Figure 3. To this end, for each class ¢ mentioned in the
captions of image I, we collect a set of text snippets ®(c)
which comprise the class name and all compound concepts
related to it. Then we combine the normalized TAMs for
all t € ®(c) into a normalized CAM y,,...(I, c) € RF for
class c by taking the pixelwise maximum over the TAMs:

norm I7 ) = norm I,t, 4
Ynorm (I, ¢, p) t@g(:g){m (Z,t,p)} )

We obtain the background activation map b(I) as in [1] by
b(I,p) = (1 — max {ynorm(la Cvp)})a Q)
ceC(I)

where C(I) are the classes present in image I. We keep
a = 4 which is the value suggested in [1]. We then finally
refine the normalized CAMs with a CRF [22] to estimate
pixelwise class labels.

supervise

Figure 4. The auto consistency loss enforces invariance under ge-
ometric transformations like flipping. To this end, labels are esti-
mated in an online manner from the TAMs of class names for the
image and the flipped image. Then these are flipped and the esti-
mated labels of the image are used to supervise the embedding of
the flipped image and vice versa.

3.4. Training of Embedding Architecture

We finally describe how we train our network. For train-
ing, we propose the following loss

L = XgsLeis + )\cpthpt + AacLac. (6)

The class loss L.;s and concepts loss L,; ensure that the
textual activation maps have high values for classes and
compounds that are present in a training image and low val-
ues if they are not present. The auto consistency loss L.
ensures that the TAMs are geometric consistent if an image
is vertically flipped as illustrated in Figure 4.

Class Loss. For each class c, we apply average pool-
ing over the pixels of the TAM for its class name t., i.e.,
Tpoot (L, te) = % Zp x(I,t.). These values can be seen as
logits for the probability of this class to be present in the
image. We use average pooling as in [17, 5, 1] since it typi-
cally leads to activation maps that cover the complete class
and not only its most distinctive areas as it is the case for
max pooling. The class loss L5 is then given by the multi-
label binary cross entropy loss:

1
P A
—Zpoot ({,tc)
ceC(I) 14 emFrort
efmpool(lvtc)
- Z log<1 + empool(17t6)>.

cgC(I)

)

The loss is minimized if the TAMs for the present classes
show a strong signal while the TAMs of the classes that are
not present in the image are close to zero.



Concepts Loss. The concepts loss is calculated in the
same way as the class loss, except that we use the TAMs
x(I,t) of compound concepts instead of using TAMs of
class names. As for the class loss, we apply average pooling
Tpoot(1,t) = % >, X(I,t). While we use the multilabel
binary cross entropy loss as for the class loss, we have to
subsample the missing concepts since there are otherwise
too many. The concepts loss is then given by

g log(1 >
~+%poo (Iat)
teComp(I) 14 e7%Fpoot
l ( e_xpool(17t) )
og
- oo (17t)
(y  NLFer

teC ontTZComp

where C'omp(I) are the compound concepts present in im-
age I and ContrComp(I) are contrastive compound con-
cepts that are randomly sampled from other images.

Auto-Consistency Loss. The purpose of the auto-
consistency loss is to ensure that geometric transformations
of the image do not alter the accordingly transformed TAMs
as illustrated in Figure 4. We use the image I and the flipped
image Iy for training and obtain the corresponding TAMs
x(I,t.) and x(Iy,t.) for all classes. Note that there is no
TAM for the background class, we therefore set X(I,t) =
0 for the background class. We convert them into pixel-
wise class probabilities Z and Z by applying the softmax
for each pixel p, i.e., Z(p, ¢) = softmax. (x(I,t.,p)).

We also compute a pixel-wise labeling for x(I,t.) and
x(Iy,t.) asin Section 3.3 but without CRF. Instead, we sim-
ply use the class with the highest activation per pixel

cht = -

®)

é(va) = argmax xnor'm(I»tc;p) (9)
ce{C(I)Ubg}

where the background activation is estimated as in (5). We
finally mirror the pixel-wise segmentations as shown in Fig-
ure 4. The auto-consistency loss L, is then given by

1 1
Lac(I) = 5 Z log<1 + er(Ihé(I»P)))

pEpizel

1 1
) > lOg<1+eZ(P’éf(I¢P))>-

pEpizel

(10)

4. Experiments

For our experiments, we use the COCO dataset [26],
since it provides several captions for each image and in-
stance level segmentations for 80 object classes which we
convert to class level segmentations. As train set we use the
COCO train2014 split containing 83k images. To evaluate
the final semantic segmentation models, we use the COCO
val2014 split containing 40k images as our test set. Our
evaluation metric is intersection over union averaged over
81 classes (80 object classes and background).

Implementation Details. The visual paths of our
VGG16 and ResNet38 architecture is identical to the re-
spective architectures from [1] up to the last layer. While
we use mostly the VGG architecture for our experiments,
we show some results using the ResNet at the end. We train
the VGG architecture as well as the ResNet architecture for
15 epochs. For VGG, the learning rate is 0.1 for weights and
0.2 for biases, for ResNet it is 0.01 and 0.02, respectively.
For VGG the batch size is 16, for ResNet it is 8. Weight
decay equals 0.0005 for both architectures. The first two
convolutional blocks are not finetuned at all and for the fc8
layer and the textual path, we scale up the learning rate by
10. During training, the learning rate decays to 0 accord-
ing to the polynomial policy. The data augmentation tech-
niques include random scaling, cropping and mirroring. We
set Aggs = 1.0, Agpy = 0.3 and A, = 0.001 so that each
loss term is roughly in the same order of magnitude.

For the concepts loss (8), we sample a maximum of 10
compound concepts mentioned in the captions of an image.
To collect contrastive compound concepts which are absent
in the image, we first sample 10 random images and extract
the compound concepts from their captions. Then we ran-
domly sample 50 of these concepts.

For semantic segmentation we use the baseline VGG16
deeplab model [7]. We keep the hyperparameters but in-
crease the number of iterations by a factor of 3 to ac-
count for the bigger size of COCO as compared to Pascal
VOC2012.

4.1. Evaluation of System Components

For our ablation studies, we first evaluate the accuracy
of the pixel labels that are estimated on the training images
from the captions as described in Section 3.3. Simply using
a one-hot encoding of the classes retrieved from captions
instead of the textual path gives an IoU of 14.6% as can
be seen in Table 1. If we use only the class loss L5, the
accuracy is similar to the baseline. Using the concepts loss
Ly, however, improves mean IoU substantially to 18.5%.
While the recall increases, the precision decreases. This is
expected since the compound concepts provide mainly the
textual context and are less class focused. Using both loss
functions, alleviates this effect and improves the mean IoU
to 19.9%. Including auto consistency during training leads
to further improvement from 19.9% to 20.3%. We show
some qualitative results in Figure 5. If we use a ResNet38
architecture instead of a VGGI16 architecture, our results
improve to 30.5% IoU.

4.2. Comparison to Visual Grounding

We also compare our approach for generating CAMs
with the state of the art approach for weakly supervised
visual grounding [10]. The authors use complete image
captions from the COCO dataset as supervision for train-



A dog laying on a surf board and riding a small wave

A cat laying on top of a bed next to a window.
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Figure 5. Examples of estimated pixelwise class labels on the training set. From left to right: Image, baseline, proposed method, ground
truth. Above each image we provide the caption and highlight the class names of the COCO classes.

Results on training set

method | TAM-Net | Les | Lept | Lac | precision | recall | ToU

baseline class tags from captions | VGG16 0.370 0.207 | 0.146
baseline ground-truth class tags | VGG16 0.337 0.230 | 0.158
prop. Leis VGG16 Vv 0.378 0.205 | 0.144
prop. Lep: VGG16 Vv 0.288 0.383 | 0.185
prop. Leis + Lept VGG16 v/ Vv 0.382 0.316 | 0.199
prop. Leys + Lept + Lae VGG16 v/ Vv v, ] 0.383 0.329 | 0.203
prop. Leis + Lept + L ResNet38 v/ Vv Vv 0.468 0.509 | 0.305
VisGround][10] ResNet151 0.375 0.432 | 0.231

Table 1. Results for estimated pixel labels on the training set.

ing. During inference, this model receives an image and a
single text snippet referring to an object or to stuff in this
image and returns an activation map for this snippet. To
segment the image region the snippet refers to, the authors
suggest to threshold the activation map with the average of
the minimum and maximum value of this map. We can not
use this method out of the shelf since locating multiple text

snippets simultaneously is not intended for visual ground-
ing and there is no policy to select the label of a pixel if it
is assigned to multiple segments. To adapt the model to our
setting and estimate pixelwise class labels for the training
images, we first generate the activation maps for the classes
retrieved from the captions. Then, we subtract from each
activation map the average of its minimum and maximum



Impact of different types of concepts
type of concepts | cls. rel. comp. cpt. | other comp. cpt. | no adj. | sgl. adj+nouns | precision | recall | ToU
cls. rel. only Vv 0.404 0.306 | 0.199
all comp. conc. | +/ N 0.382 0.316 | 0.199
all concepts v v 4 0.383 0.306 | 0.193
no adjectives Vv 0.380 0.283 | 0.183

Table 2. Using compound concepts only for training leads to best results. Results are reported without auto-consistency loss.

Performance dependence on w,.¢
size of wyes | precision | recall | ToU

0.0 0.395 0.287 | 0.190
0.2 (prop.) | 0.382 0.316 | 0.199
0.4 0.277 0.494 | 0.201
0.6 0.255 0.523 | 0.194

Table 3. Small values of w,.s allow the textual path to adjust the
w2v embeddings to the needs of visual grounding, while large val-
ues lead to degeneration during training and inferior performance.
Results are reported without auto-consistency loss.

value. Finally, we set the activations for background to 0
and apply argmax over the classes. This yields 23.1% IoU
as shown in Table 1. This is better than our results for the
VGG16 architecture but far inferior to our ResNet38 archi-
tecture, although the visual grounding model uses a deeper
ResNet151 architecture.

4.3. Evaluating Concept Types

We compare the performance of our system when us-
ing different types of sentence snippets during training and
report the results in Table 2. In our proposed method, all
compound concepts are fed into the concept loss. Concep-
tually, adjectives provide additional cues during class ac-
tivation map calculation. If we discard the adjectives, the
accuracy decreases as shown in Table 2. Using only com-
pounds containing COCO class names increases the preci-
sion but reduces the recall, the IoU remains unchanged. We
therefore use all compound concepts from the captions in
all other experiments. Feeding all nouns and adjectives ad-
ditionally to the compounds into the loss decreases the per-
formance. This shows that the compound concepts better
encapsulate the context of the captions than single words.

4.4. Evaluating Textual Embedding

The hyperparameter w,.s (1) controls the extent to
which w2v embeddings [28] are adjusted in the textual path.
Intuitively high values add flexibility to the network and al-
low the textual path to adjust the w2v embeddings to the
task at hand. Table 3 reports the results without the auto-
consistency loss. As can be seen, increasing wy..s from 0
improves the performance with a peak at 0.4. However, for
higher values, the performance decreases again. This is be-
cause higher flexibility allows the network to find degen-
erate solutions: If w,.s becomes too high, the textual path
maps all class names and compounds appearing frequently

Performance dependence on Acp¢
size of Ayt | precision | recall | IoU

0.1 0.362 0.301 | 0.186
0.3 (prop.) | 0.382 0.316 | 0.199
0.5 0.396 0.319 | 0.204

Table 4. Performance grows when the impact of compound con-
cepts is increased. Results are reported without auto-consistency
loss.

to one vector v and all other class names and compounds to
the negative vector —v. The visual path then maps every-
thing to v.

4.5. Evaluating Concept Loss Weight

In Table 4, we also evaluate the impact of the parameter
Acpt Which weights the concept loss in (6). As in the pre-
vious experiment, we do not use the auto consistency loss.
Even a small concept loss already improves the baseline ap-
proach giving 18.6%. By further increasing the weight of
the concepts to 0.5, the performances raises to 20.4%.

4.6. Comparison to Ground-Truth Image Tags

The class tags we get from the captions are not perfect as
can be seen from Table 5. Although for some classes the re-
call is very low, using parsed tags instead of clean tags does
not harm the weakly supervised segmentation performance
significantly. Training the baseline model with clean tags
instead of retrieved tags improves the mean IoU from 14.6%
to 15.8% as shown in Table 1. Surprisingly, the precision of
CAMs obtained with clean tags is even smaller than with
retrieved tags. It seems that COCO object classes not men-
tioned in the captions are more difficult to locate since cap-
tions only mention the most important objects which tend
to be large. If an approach for weakly supervised image
segmentation fails to locate an object that is expected to be
present in an image, the precision decreases. It is remark-
able that the gain from captions is substantially higher than
the gain from ground-truth class tags, which shows that the
captions provide more information than just tags.

4.7. Results on Test Set

To demonstrate the effect of improved CAMs on the final
segmentation results, we train deeplab [7] for semantic seg-
mentation on the estimated pixel-wise labels and evaluate
its performance on the test set. We first evaluate the impact



Class tag retrieval precision and recall
class type \ precision \ recall
person and accessory | 95.0% 33.0%
vehicles 89.5% 63.6%
outdoor 95.4% 56.0%
animal 87.1% 92.3%
sport 96.2% 64.2%
kitchenware 89.4% 20.3%
food 85.9% 68.7%
furniture 90.3% 44.0%
electronics 92.3% 48.3%
appliance 79.8% 46.0%
indoor 97.0% 43.7%

Table 5. Recall and precision of image class tags retrieved from
image captions.

Results on the test set.
method \ TAM-Net \ IoU test set
Baseline gt class tags no CRF | VGG16 0.161
Proposed no CRF VGGl16 0.210
Proposed VGG16 0.216
Proposed ResNet38 | 0.285

Table 6. Results of the final semantic segmentation model on the
test set. The gain in accuracy of estimated pixel labels on the train
set transfers well to the test set.

of the CRF and compare the results obtained by the base-
line approach with ground truth class tags to our proposed
approach using VGG16 and ResNet38. The results reported
in Table 6 indicate that the quality of the estimated labels is
a strong predictor for the quality of the final segmentation.
The performance gap of 4.5% on the train set between the
baseline and the proposed method results in 4.9% on the test
set. Applying a CRF on top of the test set prediction gives
a slight improvement of 0.6%. We use a CRF in all remain-
ing experiments. If we use a ResNet38 architecture for our
TAM network, we obtain 28.5%.

We also compare our method to deep seeded region
growing (DSRG) [17], which is a state of the art weakly
supervised semantic segmentation method and it achieves
26.0% IoU on COCO. To train their model, the authors take
CAMs and background cues from a strongly supervised
saliency model as input. We can therefore combine this ap-
proach with our method by feeding our generated CAMs to
DSRG. We report the results in Table 7. For VGG16, DSRG
improves IoU from 21.6% to 26.9%. This is also a better re-
sult than the number reported by the authors demonstrating
the benefit of our CAMs. For ResNet38, however, DSRG
decreases the accuracy of our approach. A possible expla-
nation is that DSRG reduces the information from CAMs by
estimating high confidence regions first and expands them
using the saliency maps. If the CAMs are inaccurate, DSRG
substantially improves the results. However, if the CAMs
become more accurate, DSRG discards too much informa-

Comparison to DSRGJ[17]
method | ToU test set
DSRG[17] 0.260
Proposed (VGG16) 0.216
Proposed (VGG16) + DSRG[17] | 0.269
Proposed (ResNet38) 0.285
Proposed (ResNet38)+DSRG[17] | 0.277

Table 7. DSRGJ[17] is a saliency based approach for weakly su-
pervised semantic segmentation. It can be combined with our ap-
proach.

Comparison to the state of the art
method IoU test set
BFBP[37] 0.204
SEC[21] 0.224
DSRG[17] 0.260
VisGround[ 1 0] adapted | 0.275
Proposed 0.285

Table 8. Comparison of the final semantic segmentation model
with the state of the art on the test set.

tion from the CAMs.

We finally compare our approach with other approaches
for weakly supervised semantic segmentation. As can be
seen from Table 8, our approach outperforms the other
weakly supervised semantic segmentation models as re-
ported by [17]. We also include our adapted version of the
visual grounding approach of Engilberge et al. [10]. In-
terestingly, this approach also achieves a higher IoU than
[17], which shows the rich information that is present in
image captions. Nevertheless, our approach achieves the
highest IoU despite of using a ResNet38 instead of a deeper
ResNet151.

5. Conclusion

We presented an approach that uses image captions as
supervision for weakly supervised semantic image segmen-
tation. Inspired by weakly supervised approaches that esti-
mate class activation maps from class tags and deduce local-
ization cues from them, our approach estimates text activa-
tion maps for the class names as well as compound concepts
and fuses them to obtain better class activation maps. We
evaluated our approach on the COCO dataset and demon-
strated that our approach outperforms the state of the art for
weakly supervised image segmentation.
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