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Abstract

Since acquiring pixel-wise annotations for training con-

volutional neural networks for semantic image segmenta-

tion is time-consuming, weakly supervised approaches that

only require class tags have been proposed. In this work,

we propose another form of supervision, namely image cap-

tions as they can be found on the Internet. These captions

have two advantages. They do not require additional cu-

ration as it is the case for the clean class tags used by

current weakly supervised approaches and they provide tex-

tual context for the classes present in an image. To lever-

age such textual context, we deploy a multi-modal network

that learns a joint embedding of the visual representation

of the image and the textual representation of the caption.

The network estimates text activation maps (TAMs) for class

names as well as compound concepts, i.e. combinations of

nouns and their attributes. The TAMs of compound con-

cepts describing classes of interest substantially improve

the quality of the estimated class activation maps which are

then used to train a network for semantic segmentation. We

evaluate our method on the COCO dataset where it achieves

state of the art results for weakly supervised image segmen-

tation.

1. Introduction

Fully convolutional networks have shown to perform

very well on the task of semantic image segmentation, but

training such networks requires data annotated on a pixel

level. Obtaining such annotations, however, is very time

consuming and expensive. For this reason, approaches for

weakly supervised semantic segmentation have been pro-

posed that require less supervision for training. While

the type of supervision ranges from class tags, key points,

scribbles to bounding boxes, the vast majority of these ap-

proaches rely on class tags since it is assumed that these

tags can be more easily acquired. A popular approach for

weakly supervised learning from image tags [21, 52, 1]

Figure 1. Given one or multiple captions per image in the training

set, our network predicts text activation maps (TAMs) for each im-

age which are then converted into class activation maps (CAMs) as

illustrated in Figure 3. The text activation maps are more general

than class activation maps since they localize compound concepts

like ‘two large beds’ as well as categories like ‘bed’. The example

shows the class activation map estimated for ‘bed’ for this train-

ing example. Using the estimated CAMs of all training images, a

standard convolutional neural network for semantic segmentation

can then be trained.

consists of estimating for each image in the training set

so-called class activation maps (CAMs) [52], which indi-

cate where certain semantic categories occur in an image.

In a second step, pixelwise class labels are extracted from

the CAMs and a neural network for image segmentation is

trained. These approaches, however, still assume curated

image tags, i.e. all classes of interest in the image must be

tagged. This is not guaranteed for tags retrieved together

with images from the Internet.

Another form of supervision are readily available textual

descriptions. Such textual descriptions can be either from

image captions or text surrounding or referring to an image

in an article or blog. Such textual descriptions are more gen-

eral than class tags and it is possible to reduce these textual

descriptions to class tags by parsing the texts for the names

of the categories of interest. However, textual descriptions

are richer in the description of the image content than just

class tags as illustrated in Figure 1. In case of class tags, the

image would be only labeled by the relevant category ‘bed’

and the only information we have is that the image contains

at least one bed, but we do not know if the bed is large or

small or if many instances are in the image. The caption



“There are two large beds located in a hotel room” provides

much more information. In particular, ‘two large beds’ in-

dicates that many pixels of the image should be labeled by

the category ‘bed’.

In this work, we therefore propose an approach that uses

non curated image captions as weak supervision for training

a convolutional neural network for semantic image segmen-

tation. Our contribution focuses on the research question

how class activation maps (CAMs) can be estimated from

image captions and we show that these class activation maps

are substantially more accurate than CAMs estimated from

class tags. In order to estimate the class activation maps

for the training images from captions, we learn a joint em-

bedding of the visual representation of the image and the

textual representation of the caption as illustrated in Fig-

ure 3. Using such a joint embedding, our network predicts

text activation maps (TAMs), which locate categories like

‘bed’ as well compound concepts like ‘two large beds’. For

each class, the TAM of the class as well as the TAMs of

the compounds which contain the class name are fused to

generate the CAM for the class.

We provide a thorough ablation study that analyses the

benefit of the additional textual context that is provided by

the compound concepts. On the COCO dataset [26], the

proposed approach outperforms the current state of the art

in weakly supervised semantic segmentation.

2. Related Work

Fully supervised semantic segmentation has been stud-

ied in many works, e.g., [7], [25], [27], [50], [51]. More re-

cently, weakly-supervised semantic segmentation has come

to the fore. Early work such as [42] relied on hand-crafted

features, such as color, texture, and histogram information

to build a graphical model. However, with the advent of

convolutional neural networks (CNN), this conventional ap-

proach has been gradually replaced because of its lower per-

formance on challenging benchmarks [11].

A natural step to less supervision are more coarse spatial

cues like bounding boxes, key points and scribbles. In [30],

Papandreou et al. use the expectation-maximization algo-

rithm to perform weakly-supervised semantic segmentation

based on annotated bounding boxes and image-level la-

bels. Another more sophisticated approach based on bound-

ing boxes was proposed in [20]. The authors use region

proposal generated by Multiscale Combinatorial Grouping

(MCG) [33] and Grabcut [35] to localize the objects more

precisely within the bounding box. More recently, Li et

al. [23] used bounding boxes for object classes and image

level supervision for stuff classes. In [24], Lin et al. made

use of a region-based graphical model, with scribbles pro-

viding ground-truth annotations to train the segmentation

network. Scribbles also served as supervision for the works

of [40, 41], which investigate loss regularizations. Human

annotated keypoints were used by Bearman et al. [2] for

weakly supervised class segmentation and by Sawatzky et

al. [38] for weakly supervised affordance segmentation.

While the works mentioned above require some type of

explicit spatial hints, others only rely on the list of present

classes in the image. Qi et al. [34] used proposals generated

by MCG [33] to localize semantically meaningful objects.

Recently, Fan et al. [12] leveraged saliency to obtain object

proposals and link objects of the same class across images

with a graph partitioning approach. Pathak et al. [31] ad-

dressed the weakly-supervised semantic segmentation prob-

lem by introducing a series of constraints.

In absence of explicit location cues provided by humans,

class activation maps (CAMs) [52] proved to be a seminal

supervision source. Pinheiro et al. [32, 39] pioneered in this

area. In [21], three loss functions are designed to gradu-

ally expand the high confidence areas of CAMs. This ap-

proach was first improved by Wei et al. [44] who use an

adversarial erasing scheme to acquire more meaningful re-

gions that provide more accurate heuristic cues for training.

Recently, Huang et al. [17] proposed deep seeded region

growing of CAMs with image level supervision. In [45],

Wei et al. presented a simple-to-complex framework which

used saliency maps produced by the methods [8] and [18]

as initial guides. Hou et al. [16] advanced this approach by

combining the saliency maps [15] with attention maps [48].

Oh et al. [29] and Chaudhry et al. [5] considered linking

saliency and attention cues together, but they adopted differ-

ent strategies to acquire semantic objects. Roy and Todor-

ovic [36] leveraged both bottom-up and top-down attention

cues and fused them via a conditional random field as a re-

current network. Ahn et al. [1] use image level class labels

to generate an initial set of CAMs and then propagate those

CAMs by using random walk predictions from AffinityNet.

Wei et al. [46] use image level supervision with dilated con-

volutions with varying levels of dilations to generate weakly

supervised segmentations. Wang et al. [43] use image level

supervision along with a bottom-up and top-down frame-

work, which alternatively expands object regions and opti-

mizes the segmentation network. In Briq et al. [4] a con-

volutional simplex projection network is used for weakly

supervised image segmentation. Tang et al. [41] integrate

standard regularizers directly into the loss functions over

partial input for semantic segmentation. Ge et al. [13] use a

four stage process that combines object localization with fil-

tering and fusion of object categories. Hong et al. [14] and

Jin et al. [19] tackle the weakly-supervised semantic seg-

mentation problem using images or videos from the Inter-

net. While the mentioned works mainly focus on steps fol-

lowing the generation of class activation maps, we focus on

the CAMs themselves by leveraging object attributes from

the captions. Note that while the class tags are typically

expected to be clean, i.e. require human curation, our cap-



Figure 2. To obtain the textual embedding of an arbitrary snippet

of text, we first encode each word with a word2vec model and

average over words, which gives us the input embedding. Feeding

it into a single fully connected layer with a residual connection

yields the output embedding

tions are not expected to mention all relevant classes. This

is closer to the realistic scenario of retrieving information

from the internet.

The task of weakly supervised visual grounding [6, 3,

49, 10, 9, 47] is related but a different task. Instead of train-

ing a network for semantic image segmentation, the goal is

to localize a given phrase in an image and the challenge is

to handle phrases that are not part of the training data. This

means that they require a phrase for inference, while in our

case the captions are only given for training but not for in-

ference on the test dataset.

3. Method

Generating class activation maps [52] on training images

is a crucial intermediate step for the majority of current state

of the art weakly supervised image segmentation methods.

In our work, we therefore focus on improving them. To

this end, we harvest information from image captions in-

stead of relying on class tags only. Our TAM-network is a

multimodal architecture, which maps image pixels and text

snippets into a common semantic space which allows us to

calculate activation maps for class names as well as com-

pound concepts that include the class name as illustrated in

Figure 3. From TAMs of class names and class relevant

compound concepts, we obtain class activation maps. From

these CAMs, we directly estimate the pixelwise class la-

bels as described in Section 3.3. We finally train the widely

used VGG16-deeplab model [7] for semantic segmentation

on the estimated labels which yields us the final segmenta-

tion model.

3.1. Parsing Captions

In our work, we distinguish three different types of text

snippets: Class names contain the names of the classes

of interest in the particular dataset as well as their plural

form. Compound concepts are snippets of a sentence be-

tween beginning of sentence, prepositions, verbs and end

of sentence. These snippets have to contain multiple words

excluding articles. Essentially these are combinations of

numbers, adjectives, adverbs and nouns like two completely

black dogs. They are split into two categories: Class re-

lated compound concepts contain a class name inside them

and class unrelated compound concepts do not. All of them

are used during training of the TAM network, but the type

of the snippet determines its weight in the loss. For CAM

inference, we use class names and class related compound

concepts. We use 300-dimensional word to vec (w2v) [28]

embeddings to convert text snippets to numerical vectors

of equal length. The embedding of a single word is given

by the word to vec dictionary. For text snippets contain-

ing multiple words, we take the arithmetical mean of the

normalized embeddings of individual words. These em-

beddings are used as input to the textual path of the TAM-

network.

We use the classes mentioned in the captions to deter-

mine what classes are present in a training image. If the

class name is present in at least one of the image captions,

the class is considered as present, otherwise not. Note that

in contrast to curated image tags, the captions do not neces-

sarily contain all classes that are present in an image.

3.2. Multi-Modal TAM Network

Our TAM network comprises a visual path and a textual

path which map visual and textual information into a com-

mon 300-dimensional semantic embedding space.

Visual Path. Our visual embedding path maps an image

I with P pixels to a pixelwise visual embedding Evis(I) ∈
R

P×300. It is a modification of the VGG16 architectures,

but we will also report results for a ResNet38 architecture.

In both cases, we change the output dimension of the last

fully connected layer to the dimension of the common se-

mantic embedding space.

Textual path. As shown in Figure 2, our textual path

first obtains the word to vec embedding ew2v(t) ∈ R
300 of

a text snippet t by taking the average of the word to vec

embeddings of the single words. Then ew2v(t) ∈ R
300 is

mapped to a vector etxt(t) ∈ R
300 in the common semantic

embedding space via:

etxt(t) =normL2(normL2(ew2v(t))

+ wresnormL2(Mtxtew2v(t)))
(1)

where normL2() denotes normalization by the L2 norm,

Mtxt ∈ R
300×300 is the weight matrix of a fully connected

layer and wres ∈ R is a hyperparameter. We also investi-

gated RNNs that take the word to vec embeddings of the in-

dividual words as input and output etxt, but they performed

slightly worse than our approach. This is probably due to

short length of our text snippets which contain mostly 2 or

3 words.



Figure 3. For each present class, we locate the class name as well

as all compound concepts related to this class in the image (esti-

mate their TAMs). We then normalize these TAMs and take for

each class the pixelwise maximum over them to arive at the CAM.

Finally, we estimate pixelwise class labels from these.

Textual Activation Map. Given an image I with P pix-

els and a text snippet t, we generate the textual activation

map (TAM), which we denote by x(I, t) ∈ R
P , from the

visual embedding Evis(I) ∈ R
P×300 and the textual em-

bedding etxt(t) ∈ R
300 by:

x(I, t) = Evis(I)etxt(t). (2)

To obtain the normalized TAM, we apply relu to discard

negative values and normalize it by

xnorm(I, t) =

√

relu(x(I, t))

max
p∈pixels

√

relu(x(I, t, p))
. (3)

3.3. Direct Estimation of Pixelwise Class Labels
from TAMs

Since we aim to learn a model for semantic segmenta-

tion, we need to estimate the pixelwise class labels for each

training image I . To obtain these, we first calculate normal-

ized class activation maps for all present classes as shown

in Figure 3. To this end, for each class c mentioned in the

captions of image I , we collect a set of text snippets Φ(c)
which comprise the class name and all compound concepts

related to it. Then we combine the normalized TAMs for

all t ∈ Φ(c) into a normalized CAM ynorm(I, c) ∈ R
P for

class c by taking the pixelwise maximum over the TAMs:

ynorm(I, c, p) = max
t∈Φ(c)

{xnorm(I, t, p)} (4)

We obtain the background activation map b(I) as in [1] by

b(I, p) = (1− max
c∈C(I)

{ynorm(I, c, p)})α (5)

where C(I) are the classes present in image I . We keep

α = 4 which is the value suggested in [1]. We then finally

refine the normalized CAMs with a CRF [22] to estimate

pixelwise class labels.

Figure 4. The auto consistency loss enforces invariance under ge-

ometric transformations like flipping. To this end, labels are esti-

mated in an online manner from the TAMs of class names for the

image and the flipped image. Then these are flipped and the esti-

mated labels of the image are used to supervise the embedding of

the flipped image and vice versa.

3.4. Training of Embedding Architecture

We finally describe how we train our network. For train-

ing, we propose the following loss

L = λclsLcls + λcptLcpt + λacLac. (6)

The class loss Lcls and concepts loss Lcpt ensure that the

textual activation maps have high values for classes and

compounds that are present in a training image and low val-

ues if they are not present. The auto consistency loss Lac

ensures that the TAMs are geometric consistent if an image

is vertically flipped as illustrated in Figure 4.

Class Loss. For each class c, we apply average pool-

ing over the pixels of the TAM for its class name tc, i.e.,

xpool(I, tc) =
1
P

∑

p x(I, tc). These values can be seen as

logits for the probability of this class to be present in the

image. We use average pooling as in [17, 5, 1] since it typi-

cally leads to activation maps that cover the complete class

and not only its most distinctive areas as it is the case for

max pooling. The class loss Lcls is then given by the multi-

label binary cross entropy loss:

Lcls =−
∑

c∈C(I)

log

(

1

1 + e−xpool(I,tc)

)

−
∑

c/∈C(I)

log

(

e−xpool(I,tc)

1 + e−xpool(I,tc)

)

.

(7)

The loss is minimized if the TAMs for the present classes

show a strong signal while the TAMs of the classes that are

not present in the image are close to zero.



Concepts Loss. The concepts loss is calculated in the

same way as the class loss, except that we use the TAMs

x(I, t) of compound concepts instead of using TAMs of

class names. As for the class loss, we apply average pooling

xpool(I, t) = 1
P

∑

p x(I, t). While we use the multilabel

binary cross entropy loss as for the class loss, we have to

subsample the missing concepts since there are otherwise

too many. The concepts loss is then given by

Lcpt =−
∑

t∈Comp(I)

log

(

1

1 + e−xpool(I,t)

)

−
∑

t∈ContrComp(I)

log

(

e−xpool(I,t)

1 + e−xpool(I,t)

)
(8)

where Comp(I) are the compound concepts present in im-

age I and ContrComp(I) are contrastive compound con-

cepts that are randomly sampled from other images.

Auto-Consistency Loss. The purpose of the auto-

consistency loss is to ensure that geometric transformations

of the image do not alter the accordingly transformed TAMs

as illustrated in Figure 4. We use the image I and the flipped

image If for training and obtain the corresponding TAMs

x(I, tc) and x(If , tc) for all classes. Note that there is no

TAM for the background class, we therefore set x(I, tbg) =
0 for the background class. We convert them into pixel-

wise class probabilities Z and Zf by applying the softmax

for each pixel p, i.e., Z(p, c) = softmaxc′(x(I, tc′ , p)).
We also compute a pixel-wise labeling for x(I, tc) and

x(If , tc) as in Section 3.3 but without CRF. Instead, we sim-

ply use the class with the highest activation per pixel

ĉ(I, p) = argmax
c∈{C(I)∪bg}

xnorm(I, tc, p) (9)

where the background activation is estimated as in (5). We

finally mirror the pixel-wise segmentations as shown in Fig-

ure 4. The auto-consistency loss Lac is then given by

Lac(I) =− 1

2

∑

p∈pixel

log

(

1

1 + e−Zf (p,ĉ(I,p))

)

− 1

2

∑

p∈pixel

log

(

1

1 + e−Z(p,ĉf (I,p))

)

.

(10)

4. Experiments

For our experiments, we use the COCO dataset [26],

since it provides several captions for each image and in-

stance level segmentations for 80 object classes which we

convert to class level segmentations. As train set we use the

COCO train2014 split containing 83k images. To evaluate

the final semantic segmentation models, we use the COCO

val2014 split containing 40k images as our test set. Our

evaluation metric is intersection over union averaged over

81 classes (80 object classes and background).

Implementation Details. The visual paths of our

VGG16 and ResNet38 architecture is identical to the re-

spective architectures from [1] up to the last layer. While

we use mostly the VGG architecture for our experiments,

we show some results using the ResNet at the end. We train

the VGG architecture as well as the ResNet architecture for

15 epochs. For VGG, the learning rate is 0.1 for weights and

0.2 for biases, for ResNet it is 0.01 and 0.02, respectively.

For VGG the batch size is 16, for ResNet it is 8. Weight

decay equals 0.0005 for both architectures. The first two

convolutional blocks are not finetuned at all and for the fc8

layer and the textual path, we scale up the learning rate by

10. During training, the learning rate decays to 0 accord-

ing to the polynomial policy. The data augmentation tech-

niques include random scaling, cropping and mirroring. We

set λcls = 1.0, λcpt = 0.3 and λac = 0.001 so that each

loss term is roughly in the same order of magnitude.

For the concepts loss (8), we sample a maximum of 10

compound concepts mentioned in the captions of an image.

To collect contrastive compound concepts which are absent

in the image, we first sample 10 random images and extract

the compound concepts from their captions. Then we ran-

domly sample 50 of these concepts.

For semantic segmentation we use the baseline VGG16

deeplab model [7]. We keep the hyperparameters but in-

crease the number of iterations by a factor of 3 to ac-

count for the bigger size of COCO as compared to Pascal

VOC2012.

4.1. Evaluation of System Components

For our ablation studies, we first evaluate the accuracy

of the pixel labels that are estimated on the training images

from the captions as described in Section 3.3. Simply using

a one-hot encoding of the classes retrieved from captions

instead of the textual path gives an IoU of 14.6% as can

be seen in Table 1. If we use only the class loss Lcls, the

accuracy is similar to the baseline. Using the concepts loss

Lcpt, however, improves mean IoU substantially to 18.5%.

While the recall increases, the precision decreases. This is

expected since the compound concepts provide mainly the

textual context and are less class focused. Using both loss

functions, alleviates this effect and improves the mean IoU

to 19.9%. Including auto consistency during training leads

to further improvement from 19.9% to 20.3%. We show

some qualitative results in Figure 5. If we use a ResNet38

architecture instead of a VGG16 architecture, our results

improve to 30.5% IoU.

4.2. Comparison to Visual Grounding

We also compare our approach for generating CAMs

with the state of the art approach for weakly supervised

visual grounding [10]. The authors use complete image

captions from the COCO dataset as supervision for train-



A dog laying on a surf board and riding a small wave

A cat laying on top of a bed next to a window.

A high-tech parking meter in front of a parked car.

A computer desk, with a laptop on a stand, a keyboard, and a mouse.

Figure 5. Examples of estimated pixelwise class labels on the training set. From left to right: Image, baseline, proposed method, ground

truth. Above each image we provide the caption and highlight the class names of the COCO classes.

Results on training set

method TAM-Net Lcls Lcpt Lac precision recall IoU

baseline class tags from captions VGG16 0.370 0.207 0.146

baseline ground-truth class tags VGG16 0.337 0.230 0.158

prop. Lcls VGG16
√

0.378 0.205 0.144

prop. Lcpt VGG16
√

0.288 0.383 0.185

prop. Lcls + Lcpt VGG16
√ √

0.382 0.316 0.199

prop. Lcls + Lcpt + Lac VGG16
√ √ √

0.383 0.329 0.203

prop. Lcls + Lcpt + Lac ResNet38
√ √ √

0.468 0.509 0.305

VisGround[10] ResNet151 0.375 0.432 0.231
Table 1. Results for estimated pixel labels on the training set.

ing. During inference, this model receives an image and a

single text snippet referring to an object or to stuff in this

image and returns an activation map for this snippet. To

segment the image region the snippet refers to, the authors

suggest to threshold the activation map with the average of

the minimum and maximum value of this map. We can not

use this method out of the shelf since locating multiple text

snippets simultaneously is not intended for visual ground-

ing and there is no policy to select the label of a pixel if it

is assigned to multiple segments. To adapt the model to our

setting and estimate pixelwise class labels for the training

images, we first generate the activation maps for the classes

retrieved from the captions. Then, we subtract from each

activation map the average of its minimum and maximum



Impact of different types of concepts

type of concepts cls. rel. comp. cpt. other comp. cpt. no adj. sgl. adj+nouns precision recall IoU

cls. rel. only
√

0.404 0.306 0.199

all comp. conc.
√ √

0.382 0.316 0.199

all concepts
√ √ √

0.383 0.306 0.193

no adjectives
√ √ √

0.380 0.283 0.183
Table 2. Using compound concepts only for training leads to best results. Results are reported without auto-consistency loss.

Performance dependence on wres

size of wres precision recall IoU

0.0 0.395 0.287 0.190

0.2 (prop.) 0.382 0.316 0.199

0.4 0.277 0.494 0.201

0.6 0.255 0.523 0.194
Table 3. Small values of wres allow the textual path to adjust the

w2v embeddings to the needs of visual grounding, while large val-

ues lead to degeneration during training and inferior performance.

Results are reported without auto-consistency loss.

value. Finally, we set the activations for background to 0

and apply argmax over the classes. This yields 23.1% IoU

as shown in Table 1. This is better than our results for the

VGG16 architecture but far inferior to our ResNet38 archi-

tecture, although the visual grounding model uses a deeper

ResNet151 architecture.

4.3. Evaluating Concept Types

We compare the performance of our system when us-

ing different types of sentence snippets during training and

report the results in Table 2. In our proposed method, all

compound concepts are fed into the concept loss. Concep-

tually, adjectives provide additional cues during class ac-

tivation map calculation. If we discard the adjectives, the

accuracy decreases as shown in Table 2. Using only com-

pounds containing COCO class names increases the preci-

sion but reduces the recall, the IoU remains unchanged. We

therefore use all compound concepts from the captions in

all other experiments. Feeding all nouns and adjectives ad-

ditionally to the compounds into the loss decreases the per-

formance. This shows that the compound concepts better

encapsulate the context of the captions than single words.

4.4. Evaluating Textual Embedding

The hyperparameter wres (1) controls the extent to

which w2v embeddings [28] are adjusted in the textual path.

Intuitively high values add flexibility to the network and al-

low the textual path to adjust the w2v embeddings to the

task at hand. Table 3 reports the results without the auto-

consistency loss. As can be seen, increasing wres from 0

improves the performance with a peak at 0.4. However, for

higher values, the performance decreases again. This is be-

cause higher flexibility allows the network to find degen-

erate solutions: If wres becomes too high, the textual path

maps all class names and compounds appearing frequently

Performance dependence on λcpt

size of λcpt precision recall IoU

0.1 0.362 0.301 0.186

0.3 (prop.) 0.382 0.316 0.199

0.5 0.396 0.319 0.204

Table 4. Performance grows when the impact of compound con-

cepts is increased. Results are reported without auto-consistency

loss.

to one vector v and all other class names and compounds to

the negative vector −v. The visual path then maps every-

thing to v.

4.5. Evaluating Concept Loss Weight

In Table 4, we also evaluate the impact of the parameter

λcpt which weights the concept loss in (6). As in the pre-

vious experiment, we do not use the auto consistency loss.

Even a small concept loss already improves the baseline ap-

proach giving 18.6%. By further increasing the weight of

the concepts to 0.5, the performances raises to 20.4%.

4.6. Comparison to Ground-Truth Image Tags

The class tags we get from the captions are not perfect as

can be seen from Table 5. Although for some classes the re-

call is very low, using parsed tags instead of clean tags does

not harm the weakly supervised segmentation performance

significantly. Training the baseline model with clean tags

instead of retrieved tags improves the mean IoU from 14.6%

to 15.8% as shown in Table 1. Surprisingly, the precision of

CAMs obtained with clean tags is even smaller than with

retrieved tags. It seems that COCO object classes not men-

tioned in the captions are more difficult to locate since cap-

tions only mention the most important objects which tend

to be large. If an approach for weakly supervised image

segmentation fails to locate an object that is expected to be

present in an image, the precision decreases. It is remark-

able that the gain from captions is substantially higher than

the gain from ground-truth class tags, which shows that the

captions provide more information than just tags.

4.7. Results on Test Set

To demonstrate the effect of improved CAMs on the final

segmentation results, we train deeplab [7] for semantic seg-

mentation on the estimated pixel-wise labels and evaluate

its performance on the test set. We first evaluate the impact



Class tag retrieval precision and recall

class type precision recall

person and accessory 95.0% 33.0%

vehicles 89.5% 63.6%

outdoor 95.4% 56.0%

animal 87.1% 92.3%

sport 96.2% 64.2%

kitchenware 89.4% 20.3%

food 85.9% 68.7%

furniture 90.3% 44.0%

electronics 92.3% 48.3%

appliance 79.8% 46.0%

indoor 97.0% 43.7%
Table 5. Recall and precision of image class tags retrieved from

image captions.

Results on the test set.

method TAM-Net IoU test set

Baseline gt class tags no CRF VGG16 0.161

Proposed no CRF VGG16 0.210

Proposed VGG16 0.216

Proposed ResNet38 0.285

Table 6. Results of the final semantic segmentation model on the

test set. The gain in accuracy of estimated pixel labels on the train

set transfers well to the test set.

of the CRF and compare the results obtained by the base-

line approach with ground truth class tags to our proposed

approach using VGG16 and ResNet38. The results reported

in Table 6 indicate that the quality of the estimated labels is

a strong predictor for the quality of the final segmentation.

The performance gap of 4.5% on the train set between the

baseline and the proposed method results in 4.9% on the test

set. Applying a CRF on top of the test set prediction gives

a slight improvement of 0.6%. We use a CRF in all remain-

ing experiments. If we use a ResNet38 architecture for our

TAM network, we obtain 28.5%.

We also compare our method to deep seeded region

growing (DSRG) [17], which is a state of the art weakly

supervised semantic segmentation method and it achieves

26.0% IoU on COCO. To train their model, the authors take

CAMs and background cues from a strongly supervised

saliency model as input. We can therefore combine this ap-

proach with our method by feeding our generated CAMs to

DSRG. We report the results in Table 7. For VGG16, DSRG

improves IoU from 21.6% to 26.9%. This is also a better re-

sult than the number reported by the authors demonstrating

the benefit of our CAMs. For ResNet38, however, DSRG

decreases the accuracy of our approach. A possible expla-

nation is that DSRG reduces the information from CAMs by

estimating high confidence regions first and expands them

using the saliency maps. If the CAMs are inaccurate, DSRG

substantially improves the results. However, if the CAMs

become more accurate, DSRG discards too much informa-

Comparison to DSRG[17]

method IoU test set

DSRG[17] 0.260

Proposed (VGG16) 0.216

Proposed (VGG16) + DSRG[17] 0.269

Proposed (ResNet38) 0.285

Proposed (ResNet38)+DSRG[17] 0.277
Table 7. DSRG[17] is a saliency based approach for weakly su-

pervised semantic segmentation. It can be combined with our ap-

proach.

Comparison to the state of the art

method IoU test set

BFBP[37] 0.204

SEC[21] 0.224

DSRG[17] 0.260

VisGround[10] adapted 0.275

Proposed 0.285
Table 8. Comparison of the final semantic segmentation model

with the state of the art on the test set.

tion from the CAMs.

We finally compare our approach with other approaches

for weakly supervised semantic segmentation. As can be

seen from Table 8, our approach outperforms the other

weakly supervised semantic segmentation models as re-

ported by [17]. We also include our adapted version of the

visual grounding approach of Engilberge et al. [10]. In-

terestingly, this approach also achieves a higher IoU than

[17], which shows the rich information that is present in

image captions. Nevertheless, our approach achieves the

highest IoU despite of using a ResNet38 instead of a deeper

ResNet151.

5. Conclusion

We presented an approach that uses image captions as

supervision for weakly supervised semantic image segmen-

tation. Inspired by weakly supervised approaches that esti-

mate class activation maps from class tags and deduce local-

ization cues from them, our approach estimates text activa-

tion maps for the class names as well as compound concepts

and fuses them to obtain better class activation maps. We

evaluated our approach on the COCO dataset and demon-

strated that our approach outperforms the state of the art for

weakly supervised image segmentation.
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