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Abstract

Cross-modal retrieval has attracted increasing attention

with the rapid growth of multimodal data, but its learn-

ing paradigm under changing environment is less studied.

Inspired by the recent achievement in the field of cogni-

tion mechanism on how the human brain acquires knowl-

edge, we propose a new sequential learning method for

cross-modal retrieval. In this method, a unified model is

maintained to capture the common knowledge of various

modalities but are learnt in a sequential manner such that

it behaves adaptively according to the evolving distribution

of different modalities, and needs no laborious alignment

operations among multimodal data before learning. Fur-

thermore, we propose a novel meta-learning based method

to overcome the catastrophic forgetting encountered in se-

quential learning. Extensive experiments are conducted

on three popular multimodal datasets, showing that our

method achieves state-of-the-art cross-modal retrieval per-

formance without any modal-alignment.

1. Introduction

Cross-modal retrieval, aiming to search instances in one

modality that display similar content as the query from an-

other modality, has gained increasing attention from both

industrial and academic communities due to its wide usage,

e.g., sketch-based image retrieval in the criminal investiga-

tion. The difficulty of the measurement of content similar-

ity among data from different modalities, which is known

as the heterogeneity gap [4], makes this task very challeng-

ing. Thus, bridging the heterogeneity gap between different

modalities plays a key role in cross-modal retrieval.

Many methods [9, 21] have been developed to learn

mapping different modalities into a shared feature space,

such that the data of different modalities become compu-

tationally comparable. Due to the low storage costs and
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Figure 1. Illustration of the difference between two cross-modal

learning paradigms: parallel and sequential. In the parallel

paradigm, the whole architecture involves multiple individual sub-

models with each responsible for one modality, and well-aligned

multi-modal data (e.g., image-text pairs) are needed to jointly train

them, while in the sequential paradigms, a single unified model is

used to map all modalities into a common feature space, and the

model is trained on different modalities sequentially.

the high computational efficiency of binary codes, hashing-

based methods [19, 18] also have been extended to cross-

modality retrieval by embedding the data of interest into a

low-dimensional Hamming space. We observe that these

methods are built in the same manner: developing indi-

vidual sub-models for each modality and jointly learning

them by aligned multi-modal data. We call this manner as

parallel cross-modal learning (PCML), which is shown in

Fig.1 (a). Despite the effectiveness of this parallel learn-

ing paradigm, it is unlikely to be adapted without retraining

the whole system under a real-world environment when the

underlying distribution of different modalities are gradually

changing.

Recent work in cognitive science reveals that when a

sequence of multimodal signals stimulates our brain, it is

able to automatically integrate the elements from differen-

t modalities into one unitary representation [14]. In oth-

er words, our brain acquires knowledge or concepts across

different modalities in a sequential learning manner (i.e.,

modality-by-modality). In contrast with PCML, this se-

quential manner is more practical in real-life scenario: 1)



it is easier for us to learn a stable conceptual representa-

tions from one modality than that from multi-modalities si-

multaneously; 2)we can adaptively adjust the learned dis-

tribution when a new modality is available, which is more

robust to the concept drift across modalities; 3) by perform-

ing cross-modal learning on one modality first and then on

another, we avoid the needs that the training data are aligned

among various modality at a fine-grained level, e.g., in the

form of image-text pairs. Inspired by above observations,

we propose to perform cross-modal learning in a sequential

manner, which is called as sequential cross-modal learning

(SCML) and is illustrated in Fig 1 (b). In SCML, a unified

model is maintained to capture the common representation

of different modalities and is trained sequentially.

However, training a model with new information could

interfere with the previously learned knowledge, which is

often referred to as catastrophic forgetting [15, 20, 22, 32].

This phenomenon typically leads to an abrupt performance

decrease or, in the worst case, to the completely overwrit-

ten of old knowledge by the new one. Some evidence

has suggested that inappropriate changes of specific pa-

rameters for old tasks tend to cause catastrophic forgetting

[15, 20] and appropriate optimization for those parameter-

s is of importance. We notice that the optimization-based

meta-learner [3] can be trained on massive same single old

tasks for effectively and fast optimizing new model on the

new task with limited samples. Similarly, we can design a

new meta-learner which is trained on multi-tasks (contain

new and old tasks) to learn to optimize the old model for

performing well on the new task and keeping the perfor-

mance of old tasks. Motivated by this, we propose a novel

LSTM-based meta-learner to address the catastrophic for-

getting issue. The main contributions of this paper are sum-

marized as follows:

• A novel sequential cross-modal learning method (SCML

)is proposed which is consistent with the cognitive mech-

anism of human beings in acquiring knowledge across

multi-modalities. In contrast with previous methods,

SCML is more adaptive to the evolving distributions of

different modalities, and it does not need the laborious

alignment operations for multimodal data before learn-

ing, enabling the learning to be more flexible in practice.

• A new meta-learning method is proposed to handle the

catastrophic forgetting problem in sequential learning. In

details, a special LSTM-based meta-learner is designed

to learn to effectively optimize the old model for the new

task and maintain previous knowledge.

• Extensive experimental results demonstrate that the

SCML method can perform cross-modal learning well in

sequential manner and yield state-of-the-art retrieval per-

formance on three cross-modality datasets.

2. Related Work

Cross-modal retrieval. Cross-modal learning ap-

proaches [2, 9, 5, 19, 31, 16] can roughly be divided into

continual-value learning method and hashing method. The

key idea of the former is to map heterogeneous data into

a continual-value shared space to account for the diversity

of different modalities. Wu et al. [30] propose a semantic

structure-preserved embedding learning method based on

the semantic structure and local geometric structure consis-

tency. The hashing method [19, 31, 16, 26] seeks to encode

high-dimensional features into compact binary codes, hence

enabling fast similarity search with Hamming distances. Li

et al. [16] propose a self-supervised adversarial hashing (S-

SAH) approach, which attempts to incorporate adversarial

learning into cross-modal hashing. Despite their effective-

ness, most of them assume the availability of a large num-

ber of matched aligned cross-modal pairs which are unfor-

tunately not always available.

Sequential learning. The sequential learning also can

be called as continual or lifelong learning which refers to

the ability to continually learn over time by accommodating

new knowledge while retaining previously learned experi-

ences. The main issue of sequential learning model is catas-

trophic forgetting. Massive methods [15, 25, 1, 22] have

attempted to mitigate catastrophic forgetting, and they can

mainly be classified into three types. The first is regulariza-

tion approaches, which impose different constraints on the

update of the neural weights to alleviate catastrophic forget-

ting. Kirkpatrick et al. [15] proposed a model called elas-

tic weight consolidation (EWC) where a quadratic penalty

is used to slow down the learning for task-relevant weight-

s coding for previously learned knowledge. The second is

dynamic architectures [32, 24], which change architectural

properties in response to new information by dynamical-

ly accommodating novel neural resources, e.g., re-training

with an increased number of neurons or network layers. The

last is the memory-based method [20], which uses a set of

previous tasks data to constraint optimizing. Most of previ-

ous methods are designed for single modality and have not

been verified on large-scale cross-modal datasets.

3. The proposed method

In this section, we give the problem definition of SCML

and detail the model structure and the learning steps.

3.1. The problem definition

Without loss of generality, we focus on sequential cross-

modal learning for bi-modality (i.e., image and text). Our

goal is to learn a unified model in a sequential manner

that maps different modalities into a common feature space.

Suppose that we are firstly given a training set of N1 images

D(1) = {x
(1)
i , y

(1)
i }N1

i=1, x
(1)
i ∈ Rd1 , y

(1)
i ∈ {0, 1}C, where
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Figure 2. Overview of sequential cross-modal learning on two modalities. The architecture consists of four components (two plugs P1, P2,

a unified model S, and a meta-learner M) and four steps: The model firstly takes one modality D
(1) to jointly learn P1 and S. When the

new modality D
(2) is available, the P2 is trained with S fixed to avoid the forgetting of S for D(1). After that, M is learned to update S with

a pre-preserved set D
(1)
memory of D(1) and a set D

(2)
meta−train of D(2). Finally, the S is updated by the learnt M with D

(1)
memory and D

(2).
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Figure 3. One step of training meta-learner.

C is the number of class. The first goal is jointly to learn

two nonlinear functions: f1 : x(1) �→ z(1) ∈ Rd from

image feature space Rd1 to input space Rd of the unified

model, f : x �→ h ∈ RK from input space Rd to com-

mon feature space RK with semantic-preserving. Then the

D(1) is discarded and we are given a new training set of N2

text D(2) = {x
(2)
i , y

(2)
i }N2

i=1, where x
(2)
i ∈ Rd2 is associated

with the same categories as images. The second goal is to

learn a nonlinear function f2 : x(2) �→ z(2) ∈ Rd from text

feature space Rd2 to input space Rd of the unified model

and to update f for mapping z(2) while the semantics of

both image and text are preserved.

3.2. The structure of the model

Our SCML model consists of four components: plugs

P1, P2, a unified model S, meta-learner M (see Sec.3.3).

Plugs P1 and P2: Plugs are designed respectively for

mapping original features (e.g. CNN or hand-crafted) of d-

ifferent modalities into the same dimension. For flexible ex-

pansion, we implement them as two deep neural networks.

Unified Model S: The unified model S is a general

model which mappings the outputs of different plugs into

a common space with semantic-preserving, so the capac-

ity of S should be large enough to store knowledge from

multi-modal sources. For this, we build S as a 3-layers

fully-connect neural network. To speed up retrieval, we

quantize the output h of last layer by simple quantization

b = sign(h) to obtain binary common representation.

3.3. Meta-learner for catastrophic forgetting

In regular meta-learning scheme, a meta-learner M
is trained on a meta-train task set (e.g., classification)

Ttrain = {T (i)}NT

i=1 to learn to optimize corresponding

learners (e.g., classifier) {f (i)}NT

i=1, and it is used to opti-

mize the learner f (test) of meta-test task Ttest = T (test),

where each task T (i) associates with a dataset D(i), the op-

timized learner f
(i)
∗ for task T (i) is f

(i)
∗ = M(D(i), f (i);ϕ),

ϕ is the parameter of M . Let l(D, f) denotes the loss func-

tion of f , the loss function of M can be defined as follows:

L =

NT
∑

i=1

l
(

D(i),M(D(i), f (i);ϕ)
)

(1)

After training, the optimized learner f
(test)
∗ of task

T (test) can be obtained by f
(test)
∗ = M(D(test), f (test);ϕ).

In our meta-learning scheme, the meta-learner M is

learned to update the unified learner f
(o)
s (well trained on

D(o)) on the new dataset D(n) for performing task T (n)

well without catastrophic forgetting T (o)’s performance.

Thus, the objective of M can be formulated as follows:

L = l(D(n),M(D(n), f (o)
s ;ϕ))

s.t. l(D(o),M(D(n), f (o)
s ;ϕ)) ≤ l(D(o), f (o)

s )
(2)

We rephrase the constraint term as the task of better perfor-

mance on T (o), then Eq.(2) is rewritten as follows:

L = l(D(n),M(D(n), f (o)
s )) + l(D(o),M(D(n), f (o)

s ))
(3)

The first term encourages the M to update f
(o)
s for better

performance of new task, while the second term impose M



to update f
(o)
s for less forgetting old task knowledge. How-

ever, two facts makes the optimization of Eq.(3) be impos-

sible: 1) the whole dataset D(o) and D(n) are not available

simultaneously in practice; 2) the regular M cannot effec-

tively minimize the second term since the lack of T (o) in-

formation. To handle these problems, 1) we remain Nmem

samples of D(o) as the episodic memory D
(o)
mem to keep the

T (o)’s information and randomly select N
(n)
meta−train sam-

ples of D(n) as D
(n)
meta−train for meta-training; 2) we mod-

ify the regular M to make it be able to take in old and new

tasks information from D
(o)
mem and D(n). Then, the Eq.(3)

is rewritten as follows:

L = l
(

D
(n)
meta−train,M(D(o)

mem, D
(n)
meta−train, f

(o)
s ;ϕ)

)

+ l
(

D(o)
mem,M(D(o)

mem, D
(n)
meta−train, f

(o)
s ;ϕ)

)

(4)

In the meta-testing phase, the update of f
(o)
s is performed

by the well trained meta-learner M . The new learner f
(n)
s

can be obtained as follows:

f (n)
s = M(D(o)

mem, D(n), f (o)
s ;ϕ) (5)

In implementation, we adopt the LSTM-based meta-

learner (in [3], a two-layer LSTMs with 20 hidden units in

each layer) as the original M , which learns to output good

update for the learner f at each optimization step of f . If we

take the update gt as the output of this original M at t step,

the objective of M on the entire optimization trajectory of

f will be clear. For one meta-training task, we have:

L =

T
∑

t=1

lt(Dt, θt)

θt+1 = θt + gt,[gt, ht+1] = M([∇θt , lt], ht;ϕ)

(6)

where T denotes the number of training step, Dt denotes

the batch data at t step, θt is the parameter of learner f at t
step, ht is the hidden state of M at t step, ∇θt = ∂lt/∂θt.

According to Eq.(4), we modify above meta-learner

via expanding its inputs to accommodate both old and

new tasks information, i.e., [∇θ, l] to [∇
(o)
θ ,∇

(n)
θ , l(o), l(n)],

where l(∗) and ∇
(∗)
θ = ∂l(∗)/∂θ denote the loss and gradi-

ents of dataset D(∗) respectively. Meanwhile, we hope that

the updates g are sparse to make the θ changes little. Thus,

the loss function of modified M is written as follows:

L =
T
∑

t=1

(

l
(n)
t (D

(n)
t , θt) + l

(o)
t (D

(o)
t , θt) + λ|gt|1

)

θt+1 = θt + gt

[gt, ht+1] = M([∇
(o)
θt

,∇
(n)
θt

, l
(o)
t , l

(n)
t ], ht;ϕ)

(7)

where λ balances the sparse term, D
(n)
t and D

(o)
t are

batches of D
(n)
meta−train and D

(o)
mem at t step respectively.

Notably, the ∇θ and l in Eq.(7) have very different magni-

tudes so that M cannot work robustly. So we preprocess

M’s inputs by the following formula:

x →

⎧

⎨

⎩

( log(|x|)

p
, sgn(x)

)

, if |x| ≥ e−p

(−1, epx) , otherwise

(8)

where p > 0 is a parameter controlling small disregard val-

ues, and we set it to 10 in all experiments according to [3].

Another practical problem is that there are tens of thou-

sands of parameters θ in f need to be updated, but it is

impossible to register new LSTMs for each parameter. To

avoid this difficulty, we only learn a small LSTMs as M to

operate coordinatewise on θ, i.e., all θi shares one M .

Optimization. Due to the limited computational re-

sources, we minimize the Eq.(7) in a step-by-step way in-

stead of optimizing the entire trajectory (tens of thousands

of parameters need to be stored at each time-step) by Back-

propagation Through Time (BPTT). For this, at each op-

timizing time-step (the computational graph is detailed in

Fig.3), we will minimize the following objective with gra-

dient descent method:

Lt = l
(n)
t (D

(n)
t , θt) + l

(o)
t (D

(o)
t , θt) + λ|gt|1

θt+1 = θt + gt

[gt, ht+1] = M([∇
(o)
θt

,∇
(n)
θt

, l
(o)
t , l

(n)
t ], ht;ϕt)

(9)

the update of ϕ can be roughly denoted as ϕt+1 = ϕt−
∂Lt

∂ϕt

.

3.4. Sequential cross-modal learning

Based on the above model, we perform sequential cross-

modal learning in four steps, which is shown in Fig. 2.

Stage I: learn plug P1 and unified model S. When the

first modality D(1) comes, we train the plug P1 and the uni-

fied model S initially. Since the aligned multi-modal data is

missing, we only consider to learn the semantic-preserved

representation of data by minimizing cross-entropy loss

with stochastic gradient descent (SGD), that is the loss lay-

er of S is a softmax layer (for multi-class data) or a sigmoid

layer (for multi-label data). The loss is defined as follows:

l(D(1); θ) =−

N1
∑

i=1

C
∑

j=1

(

(wp · yij log(ŷij)

+ (1− yij) log(1− ŷij)
)

(10)

where θ is parameters of P1 and S, ŷ is the predict label, wp

is the weight of positive points. If y is a multi-class vector,

then wp is set to 1, if y is a multi-label vector, then wp > 1.

After training, we randomly remain Nmem training sam-

ples from D(1) as the episodic memory D
(1)
mem to keep cur-

rent knowledge. This memory will be replayed later to

guide no-forgetting meta-learning.



Stage II: learn plug P2. When the second modality

D(2) is available, we train the plug P2 for transforming D(2)

into the unified dimension and fine-tune S for representing

D(2). However, the catastrophic forgetting will occur when

directly adopting gradient descent algorithm (e.g., SGD) to

optimize P2 and S jointly, which is observed and discussed

in Sec. 4.3. Intuitively, since the S contains certain knowl-

edge to distinguish D(1) samples in some high-level space

(or distribution), we can first update P2 to map D(2) ap-

proximately into the same space so that it can be roughly

distinguished and then carefully adjust S for better perfor-

mance on D(2). Therefore, we only train P2 with S fixed at

this stage by minimizing the loss l(D(2); θP2) using SGD

with the same epochs of stage I.

Stage III: learn meta-learner M. To learn M, we use

D
(1)
mem as D

(o)
mem and a random subset D

(2)
meta−train from

D(2) as D
(n)
meta−train to minimize the Eq.(7), where l is de-

fined as Eq.(10), θ is the parameter of unified model S. Af-

ter T (which is empirically set to the same epochs of stage

I) steps, we can obtain the trained M with parameters ϕT .

Stage IV: update the model S. As we get the learnt M,

we will use it to update the unified model S with D
(1)
mem

and D(2). The update rules is defined in Eq.(7), where T is

empirically set to the same epochs of stage I.

4. Experiments

We conduct experiments of cross-modal retrieval task on

image-text datasets to verify the effectiveness of our SCML.

4.1. Datasets

Wiki [23] consists of 2,173 training and 693 test-

ing image-text pairs. Each image is represented by the

4096-dimensional CNN descriptor vector from pre-trained

AlexNet, and the 10-dimensional vector derived from a la-

tent Dirichlet allocation (LDA) model gives the text descrip-

tion. Each pair is associated with one of 10 semantic labels.

MIRFLICKR [11] contains 25,000 image-text pairs.

Each point associates with some of 24 labels. We remove

pairs without textual tags or labels and subsequently get

18,006 pairs as the training set and 2,000 pairs as the testing

set. We represent each image as a 2,048-dimensional fea-

ture extracted from the pre-trained ResNet [10]. The 1386-

dimensional bag-of-words vector gives the text description.

NUS-WIDE contains 260,648 web images, and some

images associate with textual tags, belonging to 81 concept-

s. Following [18, 13], only the top 10 most frequent labels

and the corresponding 186,577 text-image pairs are kept. In

our experiments, 80,000 pairs and 2,000 pairs are sampled

as the training and testing sets respectively. We represent

each image as a 2,048-dimensional deep feature extracted

from the pre-trained ResNet [10]. The 1000- dimensional

bag-of-words vector gives the text description. We sampled

Table 1. The configurations of SCML. All layers are activated by

tanh, ’d’ denotes ’dropout’, ’K’ is the length of the feature.

Model P1 P2 S

Wiki 4096-4096(d)-128 10-4096(d)-128 128(d)-128-K

Mirflickr 2048-1024(d)-128 1386-1024(d)-128 128(d)-128-K

Nuswide 2048-1024(d)-128 1000-1024(d)-128 128(d)-128-K

5,000 pairs of the training set for training.

4.2. Evaluation protocol and Baselines

Evaluation protocol. We perform cross-modal retrieval

with two tasks. (1) Image vs. Text (I vs. T): retrieve rele-

vant data in text training set using an image query. (2) Text

vs. Image (T vs. I): retrieve relevant data in image training

set using a text query. For multi-class dataset, we consider

two points are similar if they belong to the same catego-

ry. We adopt the commonly-used Mean Average Precision

(mAP) as the performance metric. While for the multi-label

dataset, we adopt Normalized Discounted Cumulative Gain

(NDCG) [12] as the performance metric.

Baselines. We firstly compare our SCML with eight

cross-modal learning methods: real-value methods TV-

CCA [8], LCFS [28], JFSSL [27], corAE [7], and hashing

methods CMFH [6], SCM [33], SePH [18], DCMH [13].

For a fair comparison, all methods take the off-the-shelf

deep features as inputs, and our SCML takes the proba-

bilistic approach [18] to exploit alignment information af-

ter training. For deep models, we carefully implement them

and replace their CNN sub-structures with the same mul-

tiple fully-connect layers network of the SCML method

for pre-extracted features. Then, we validate the ability of

SCML for overcoming catastrophic forgetting and compare

it with two state-of-the-art continual learning methods L-

wF [17], EWC [15] and a cross-modal learning method

Deep-SM [29] which needs no alignment information for

training. We implement them with the same structure of

SCML. Finally, we perform cross-modal learning in a par-

allel manner and compare it with SCML to verify the adapt-

ability of SCML for the variation of modalities’ distribu-

tion. The parameters for all baselines are set according to

the original papers or experimental validations.

Implementation details. Our SCML method is im-

plemented with Tensorflow. The detailed configurations

of P1,P2 and S are illustrated in Table 1. In all experi-

ments, the batch size is set to 64, λ to 0.1. In the first

three stages, we separately use SGD (with epochs=150, l-

r=0.01, dropout=0.5 for WIKI, 250, 0.01, 0.6 for NUS-

WIDE, 250, 0.01, 0.6 for MIRFLICKR), SGD (with lr=0.1,

dropout=0.5 for WIKI, 0.1, 0.6 for NUS-WIDE, 0.1, 0.6 for

MIRFLICKRr) and Adam (with lr=0.0001, dropout=0.5 for

WIKI, 0.0001, 0.6 for NUS-WIDE, 0.0001, 0.6 for MIR-

FLICKR) for optimizing. The wp, Nmem, and the size of



Table 2. Comparison of different real-valued cross-modal learning methods on three datasets.

Method Wiki ( MAP ) MIRFLICKR ( NDCG@500 ) NUS-WIDE ( NDCG@500 )

I vs. T T vs. I Avg I vs. T T vs. I Avg I vs. T T vs. I Avg

corAE [7] 0.3792 0.2215 0.3004 0.4591 0.3268 0.3930 0.5148 0.5234 0.5191

TV-CCA [8] 0.2890 0.4966 0.3928 0.3033 0.3034 0.3034 0.5129 0.5050 0.5090

LCFS [28] 0.3578 0.5624 0.4601 0.3576 0.3243 0.3409 0.5725 0.5800 0.5762

JFSSL [27] 0.4253 0.6654 0.5454 0.3479 0.2971 0.3225 0.5726 0.5355 0.5540

SCML 0.4907 0.6885 0.5896 0.5519 0.3994 0.4756 0.6854 0.6190 0.6522

Table 3. Comparison of different cross-modal hashing methods on three datasets with different code length.

Image vs. Text Text vs. Image Average

Method 16 bits 32 bits 64 bits 128 bits 16 bits 32 bits 64 bits 128 bits 16 bits 32 bits 64 bits 128 bits

WIKI dataset ( MAP )

SCM [33] 0.1807 0.1712 0.1698 0.1707 0.6695 0.6911 0.6833 0.7002 0.4251 0.4312 0.4265 0.4355

CMFH [6] 0.2053 0.2397 0.2395 0.2291 0.3299 0.3886 0.3738 0.3181 0.2676 0.3141 0.3066 0.2736

SePH [18] 0.4220 0.4507 0.4544 0.4561 0.6254 0.6384 0.6413 0.6485 0.5237 0.5445 0.5478 0.5523

DCMH [13] 0.3724 0.4366 0.4369 0.3521 0.6169 0.6610 0.6011 0.5635 0.4947 0.5488 0.5190 0.4578

SCML 0.4705 0.4654 0.4907 0.4905 0.6702 0.6787 0.6885 0.7050 0.5704 0.5720 0.5896 0.5978

MIFLICKR dataset ( NDCG@500 )

SCM [33] 0.3229 0.3449 0.3573 0.3628 0.2959 0.3105 0.3222 0.3256 0.3094 0.3277 0.3397 0.3442

CMFH [6] 0.2908 0.3059 0.3099 0.3162 0.2830 0.3012 0.3054 0.3054 0.2869 0.3035 0.3076 0.3108

SePH [18] 0.4216 0.4416 0.4506 0.4749 0.3089 0.3260 0.3136 0.3563 0.3652 0.3838 0.3821 0.4156

DCMH [13] 0.4064 0.4305 0.4553 0.4623 0.3132 0.3348 0.3392 0.3367 0.3598 0.3826 0.3972 0.3995

SCML 0.4923 0.5178 0.5519 0.5538 0.3896 0.3979 0.3994 0.4001 0.4410 0.4578 0.4756 0.4769

NUS-WIDE dataset ( NDCG@500 )

SCM [33] 0.5075 0.5149 0.5299 0.5308 0.4941 0.5010 0.5141 0.5143 0.5008 0.5080 0.5220 0.5226

CMFH [6] 0.4875 0.5012 0.5270 0.5394 0.4642 0.4775 0.4998 0.5091 0.4758 0.4893 0.5134 0.5242

SePH [18] 0.6157 0.6251 0.6335 0.6493 0.5275 0.5320 0.5251 0.5353 0.5716 0.5786 0.5793 0.5923

DCMH [13] 0.5757 0.6159 0.6079 0.6237 0.5756 0.5858 0.5901 0.6007 0.5756 0.6008 0.5990 0.6122

SCML 0.6534 0.6741 0.6854 0.6906 0.5878 0.6078 0.6190 0.6239 0.6206 0.6410 0.6522 0.6573

D
(2)
meta−train are set to {20, 256, 200} for MIRFLICKR,

NUS-WIDE and {1, 200, 200} for WIKI. Specially, since

the gradients from multi-label loss are imbalance and the

meta-learner M cannot handled it effectively, we disentan-

gle the ∇θt and lt into {∇+
θt
,∇−

θt
} and {l+t , l

−

t } according

positive and negative sample. Then these gradients and loss-

es are processed and fed into meta-learner M for training.

4.3. Experimental Results

Comparisons with cross-modal methods. From Ta-

ble 2 and Table 3, we can observe that the SCML method

substantially outperforms other compared methods on all

used datasets. Specifically, compared to the best shallow

method JFSSL, SCML achieves boosts of 4.5%, 15.3%,

and 9.8% on average on WIKI, MIRFLICKR, and NUS-

WIDE datasets, respectively. Compared to the state-of-the-

art hashing methods SePH/DCMH, SCML obtains the rela-

tive increase of 2.7%∼14%, 6.1%∼9.3%, and 4.9%∼7.2%

on average for different bits on the three datasets, respec-

tively. Because the original features from different modal-

ities have a certain gap in discriminative ability, parallel

learning methods (e.g., JFSSL and DCMH) will sacrifice

the high discriminative of one modality and compensate an-

other to narrow this gap. But SCML can avoid this problem

by sequential learning, i.e., keeping the former’s discrimi-

native and gradually boosting the later’s.

Fig. 4 shows Text vs. Image search example of com-

pared methods. As can be seen, our SCML method tends

to retrieve more relevant images than others for the query

containing certain concepts, e.g., sea and animals.

Overcoming catastrophic forgetting. We first conduc-

t experiments (in the SCML, we first train P1 and S with

one modality jointly and then train P2 and S with another

jointly) to confirm the catastrophic forgetting in sequential

cross-modal learning. Fig. 5 reports the accuracy of two

modalities at two stages. We observe that the performance

of the first modality decreases at the second stage on all

datasets, which verifies the catastrophic forgetting problem.

Next, we verify the effectiveness of meta-learner for

overcoming catastrophic forgetting in our SCML. We use S-

GD instead of the learned optimizer M to update the unified

model S at the fourth stage, which is denoted as SCML-

M. Fig. 6 (c) and (d) report the accuracy of two modali-

ties on WIKI dataset at different stages of SCML-M and



Table 4. The comparison of different continual learning methods on three datasets.

Method Wiki ( MAP ) MIRFLICKR ( NDCG@500 ) NUS-WIDE ( NDCG@500 )

I vs. T T vs. I Avg I vs. T T vs. I Avg I vs. T T vs. I Avg

Deep-SM [29] 0.3940 0.6963 0.5452 0.4983 0.4202 0.4593 0.6107 0.6003 0.6055

LwF [17] 0.2350 0.3666 0.3008 0.3379 0.3260 0.3319 0.4340 0.5259 0.4799

EWC [15] 0.2472 0.3726 0.3099 0.3916 0.4736 0.4326 0.4106 0.4710 0.4408

LwF+P 0.4165 0.7013 0.5589 0.5352 0.4201 0.4777 0.6254 0.6281 0.6267

EWC+P 0.4174 0.6782 0.5478 0.5310 0.4195 0.4753 0.6264 0.6210 0.6237

SCML 0.4232 0.7049 0.5640 0.5403 0.4203 0.4803 0.6238 0.6337 0.6288

Table 5. The comparison of sequential (different sequence order) and parallel manner on the three datasets.

Method Wiki ( MAP ) MIRFLICKR ( NDCG@500 ) NUS-WIDE ( NDCG@500 )

I vs. T T vs. I Avg I vs. T T vs. I Avg I vs. T T vs. I Avg

PCML 0.3830 0.7087 0.5458 0.4305 0.4222 0.4264 0.6148 0.5634 0.5891

SCMLT→I 0.4232 0.7049 0.5640 0.4671 0.4200 0.4436 0.5844 0.5793 0.5818

SCMLI→T 0.3855 0.7126 0.5403 0.5491 0.4203 0.4803 0.6238 0.6337 0.6288

TV-CCA

LCFS

JFSSL

SCM

CMFH

SePH

corAE

DCMH

SCML

Lionfish, scuba, Bahamas diving, 

scuba diving, fish
Query Cor. image

Figure 4. Retrieval examples of ’Text vs. Image’ on MIRFLICKR

dataset. Red border denotes irrelevant; blue denotes sharing one

tag with the query, green denotes sharing two tags at least.

(a) WIKI (b) MIRFLICKR (c) NUSWIDE
Figure 5. Training accuracy of cross-modal representation learning

in sequence on three datasets.

SCML (the stage III of SCML is not reported since S has

no changes) respectively. We see that the accuracy of text

modality decreases at the third stage of SCML-M while that

at the fourth stage of SCML dost not, and the score of im-

age modality of SCML obtains a slight increase. This result

demonstrates the ability of meta-learner.

(a) EWC (b) LWF (c) SCML-M (d) SCML

Figure 6. Training accuracy of different continual learning meth-

ods on WIKI dataset.

Finally, we compare SCML with continual learning

methods EWC and LWF. Table 4 reports the results. For

a fair comparison, we modified EWC and LWF methods

by splitting the joint training of P2 and S into two stages,

and these methods are called EWC+P and LWF+P. We see

that the SCML gains all-around advantages over all base-

lines. To further investigate the different of SCML, EWC,

and LWF, we report the accuracy of two modalities on WIKI

dataset at different stages in Fig. 6. At stage I, the accuracy

scores of text modality of all methods reach a similar value,

since the same network structure and learning policy. At

stage II, the image modality’s accuracy score of all methods

gains rapid growth. But both EWC and LWF cannot achieve

the same boost as SCML, they also have a decrease in the

accuracy score of text modality, whereas SCML’s keeps it-

s performance. Therefore, the performance gap between

EWC/LWF and SCML mainly comes from the limited rep-

resentative of new modality and the decrease of old’s per-

formance. Besides, because EWC+P/LWF+P can prevent

the limited P2’s update by breaking the joint learning of P2

and S, they achieve a comparable result with SCML.

Adaptability for the variation of modalities’ distribu-

tion. To validate that the sequential manner is more adap-

tive for the variation of modalities’ distribution than the par-

allel manner, we perform cross-modal learning in a parallel

manner as Fig. 1 (a) shows, which is called PCML ( jointly

learn P1, P2, and S with two modalities data) and compare



(a) Text vs. Image (b) Image vs. Text (c) Average

(d) Text vs. Image (e) Image vs. Text (f) Average
Figure 7. The compact of parameters λ and Nmem on the WIKI,

MIRFKICKR, and NUS-WIDE datasets.

@WIKI @MIFLICKR @NUS-WIDE
Figure 8. Evaluations (mAP and NDCG) of the proposed SCML

with ablating different components.

it with SCML. Table 5 reports the result. We observe that

SCML outperforms PCML on all used datasets since PCML

is prone to suffer from the inconsistent of modalities’ dis-

tribution (e.g., the discriminative of one modality cannot be

improved). This result demonstrates the adaptability of se-

quential learning manner for modalities’ distribution.

4.4. Empirical Analysis

Impact of Modality Sequence To investigate the in-

fluence of different sequences of modality, we train the

SCML method on two modality sequences: ’Text-Image’

(training SCML firstly on text modality and then on im-

age modality) and vice versa, these two models are called

SCMLT→I and SCMLI→T. Table 5 shows the result. We

find that their average performances on three datasets are

different. Specifically, SCMLT→I outperforms SCMLI→T

on WIKI dataset, whereas SCMLI→T performs better than

SCMLT→I on MIRFLICKR and NUS-WIDE datasets. In-

deed, the discriminative of text feature is more powerful

than that of image feature on WIKI dataset, which is exact-

ly reversed on MIRFLICKR and NUS-WIDE datasets. This

result implies that feeding the more discriminative modality

data to training SCML in the early stage is more useful for

the learning of later stages.

Sensitivity to Parameters We analyze the effect of bal-

ance weight λ and the memory size Nmem of D
(1)
memory. We

initially set {λ,Nmem} to {0.01, 200} for WIKI, {0.1, 256}
for MIRFLICR and NUS-WIDE. Then, we separately tune

them with other parameters fixing and report the cross-

modal retrieval performance in Fig. 7

From Fig. 7(a)-(c), we see that the SCML method

achieves the best performance at a certain value, since a

smaller λ may lead to dramatic changes of model and

cause knowledge forgetting, while a larger λ may encour-

age the less change of model and depress the learning of

new modality data. From Fig. 7(d)-(f) we find that the

retrieval performance increases firstly and then fluctuates

within a certain range with an increase of Nmem. This re-

sult indicates that an appropriate size of memories can help

to learn cross-modal representation better, while a larger

Nmem may be useless.

Ablation Study To analyze the effectiveness of different

stages and components in the proposed SCML method, We

separately remove: ’the second stage’, ’the third and fourth

stages’, ’the memory D
(1)
memory’ with others remained to e-

valuate their influence on the final performance. These three

models are called SCML w.o. P, SCML w.o.F, and SCML

w.o. mem. We also replace M with SGD for fine-tuning the

unified model S at stage 4 in SCML to investigate the M’s

advantage, which is denoted as SCML w.o. meta. Fig.8

shows the result of two tasks.

We can see that separately removing the training stages,

and memory will damage the retrieval performance of

SCML method to varying degrees, e.g., the performance of

SCML w.o. meta is inferior to SCML, which re-confirms

that the ability of meta-learner in SCML for dealing with

the catastrophic forgetting problem. The result also indi-

cates that each stage and components of SCML are essen-

tial for sequential cross-modal representation learning and

have separated contributions to the final performance.

5. Conclusion

In this paper, we have presented a novel cross-modal rep-

resentation learning method, name SCML, for retrieval task.

Unlike previous methods that design multiple sub-models

for each modality and joint learn them with aligned multi-

modality data, our method conforms to the human’s cogni-

tive mechanism, and it only includes one unified model to

be sequentially trained on different modalities to map them

into the common feature space. Particularly, to overcome

the catastrophic forgetting in sequential learning, we pro-

pose to learn an optimizer to guide the update of the unified

model. Our experimental results demonstrate that the pro-

posed method can sequentially perform cross-modal learn-

ing and achieves state-of-the-art retrieval performance on

three popular datasets.
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