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Abstract

In this work, we approach the problem of semanti-

cally segmenting fashion images into different categories

of clothing. This problem poses particular challenges be-

cause of the importance of both textural information and

cues from shapes and context. To this end, we propose a

fully convolutional neural network based on feature pyra-

mid networks (FPN), together with a backbone consisting

of the ResNeXt architecture. Our experimental evaluation

shows that the proposed model achieves state-of-the-art re-

sults on two standard fashion benchmark datasets, and a

qualitative study verifies its effectiveness when applied to

typical fashion images. The approach has a modest mem-

ory footprint and can be used without a conditional ran-

dom field (CRF) without much degradation of quality which

makes our model preferable from a computational perspec-

tive. When comparing all methods without a CRF, our

approach outperforms all state-of-the-art models on both

datasets by a clear margin in all evaluated metrics. In fact,

our approach achieves a higher accuracy without the CRF

than the state-of-the-art models using CRFs.

1. Introduction

Analysing trends is an important strategic activity in the

fashion industry, which is increasingly becoming a task

of identifying trend setting individuals, following them on

blogs and social media platforms. Fashion is to a large ex-

tent communicated with images, and going through large

quantities of photos is one of the key tasks. Visual data

is useful for successful fashion forecasting. Al-Halah,

et.al. [1] used image features produced by a convolutional

neural network (CNN) model trained for image classifica-

tion to perform fashion style forecasts. We assume that the

richer information given by semantic segmentation is ben-

eficial of such downstream tasks. Having the right tools at

hand to aid this work can allow analysts to work more effec-

tively, and extracting semantically rich representations from

images can be such a tool, providing detailed information to

sort through the massive stream of data.

Figure 1: From left to right: the input image, the ground

truth segmentation, the predicted segmentation (ResNeXt-

FPN), the prediction with CRF, and the incorrectly classi-

fied pixels (shown in black) for two top scoring test data

image predictions from refined Fashionista.

We consider an important part of such a toolchain: se-

mantic segmentation of fashion images. That is, the divi-

sion of the image into different regions of clothing.

Figure 1 shows an example image, with the ground truth

segmentation, and predicted segmentation maps produced

by our approach. Each pixel in the image is classified, and

the output is a semantic analysis showing which clothing

items are present, where in the image these are, and what

shape they have. Shapes of clothing items are an important

feature for fashion analysis. For example, a hat could have

many different shapes, and the shape of a hat may go in and

out of fashion over time.

We use a feature pyramid network (FPN) [8] with a

ResNeXt [11] backbone for the semantic segmentation of

fashion images. The feature pyramid structure makes the

model more robust against images of different scales, and

allows both high and low level features to be used in the

prediction of the semantic segmentation map. The filters

learned by the early layers in a CNN usually resemble

Gabor filters or color blobs [13] and such low level fea-

tures have been shown to improve the accuracy of cloth-



Figure 2: The feature pyramid network architecture used in

this work. Images are fed into the bottom layer of the left

column. Predictions are produced in the yellow module.

ing parsing methods when fused in the late stages of a fully

CNN [5]. We assume that the extraction of Gabor-like fea-

tures can be learned by the early layers of the ResNeXt

backbone, and the FPN enables these to be used directly

in the prediction of the segmentation map.

We perform a thorough experimental analysis and show

that our approach obtains strong results. In fact, our model

achieves higher prediction accuray, without using condi-

tional random fields (CRFs), than the baselines with the

CRF enabled. When our model is used together with the

CRF, we obtain even stronger results.

2. ResNeXt-FPN

We introduce a model consisting of a ResNeXt [11]

backbone, which uses an aggregated residual transforma-

tion [11], arranged as a feature pyramid network (FPN) [8].

The model can be used with or without a CRF, and both

configurations are explored in the experimental evaluation.

Feature pyramid network. A typical CNN use pooling

layers or convolutional layers with a stride of two to reduce

the spatial dimension of the input to extract higher-level fea-

tures. All layers with output features that have the same

spatial dimensions are said to belong to the same stage. The

last features from each stage are combined into a feature

pyramid [8] (see figure 2). This means that we extract a

set of features {C2, C3, C4, C5}, corresponding to features

from the stages with a spatial dimension reduced by 4, 8, 16,

and 32 times in the ResNeXt backbone, respectively (C1 is

omitted for computational efficiency).

A set of feature maps Fi are then extracted by a point-

wise convolution with each Ci to reduce the channel dimen-

sion. The high-level features are upsampled and combined

with lower-level features via element-wise addition by

Pi = Upsample(Pi+1, 2) + Fi, (1)

where P5 = F5 and Upsample(·, k) is a nearest neighbor

upsampling by a factor of k. We end up with a pyramid of

features {P2, P3, P4, P5}.

We upsample each Pi to match the spatial dimension of

P2. These upsampled layers and P2 are concatenated and

go through two convolutional layers, a softmax layer and a

final upsampling layer to get the final prediction.

Conditional random field. Post-processing the predic-

tions using a CRF has been shown to increase the accu-

racy in clothing parsing tasks [10, 4]. The densely con-

nected conditional random field [7] is a probabilistic graph-

ical model which is used to improve the same class con-

sistency of predicted labels for similar pixels and for pixels

that are close. This is encoded as pair-wise potentials using

an appearence kernel and a smoothing kernel.

3. Previous work

Clothing parsing, semantic segmentation for clothing

items, has gained interest recently [12, 9, 10] due to po-

tential applications in the fashion industry such as fashion

trend prediction and image-based information retrieval. Pi-

oneering work used meta tags, in addition to the raw fashion

images, to parse the content in an image [12, 9]. In this work

we consider the scenario where only image data is available.

Recent work has used fully-convolutional neural net-

works (FCNs) with additional feature branches fused at a

late stage in the network to improve performance [10, 5].

Tangseng et.al. [10] use features from an image-level classi-

fication network and Khurana et.a. [5] use features extracted

by Gabor filters. Ji et.al. [4] propose training a PSPNet [14]

using semantically similar image pairs and an auxiliary re-

construction loss to make the training more stable.

4. Experiments

In this section we present the datasets that we evaluate

our model on and the implementation and training details

for the model.

4.1. Datasets

We evaluate our method on the refined Fashionista [10]

and color-fashion (CFPD) [9] datasets. There are relatively

few training examples in these datasets, making it a chal-

lenge to train a model without overfitting. The model needs

to be data efficient and learn from relatively few examples.

The images in the datasets are mainly of single person fe-

male models in varying poses taken with full body frontal

view.

There are 25 different classes in refined Fashionista. The

dataset consists of 685 fashion images split into a training

set of 456 images and a test set of 229 images. We use 45 of

the training images as a validation set. Predicting only the

background class gives 77.58% accuracy on the test data.

The color-fashion dataset (CFPD) [9] consists of 2,682

fashion images with pixel level annotations for 23 different



Refined Fashionista CFPD

Accuracy IoU Accuracy IoU

OE [10] 91.50 46.40 91.52 51.42

PSPNet [4] 92.53 46.68 - -

FPN 93.26 49.81 93.52 53.00

Table 1: The average per pixel accuracy and the mean

intersection-over-union for two state-of-the-art models [4,

10] and FPN on the refined fashionista dataset and the CFPD

dataset without CRF.

Refined Fashionista CFPD

+ CRF Accuracy IoU Accuracy IoU

OE [10] 91.74 51.78 92.35 54.65

PSPNet [4] 92.93 47.85 - -

FPN 93.62 50.64 93.82 54.39

Table 2: The average per pixel accuracy and the mean

intersection-over-union for two state-of-the-art models [4,

10] and FPN on the refined fashionista dataset and the CFPD

dataset with CRF.

classes. We use the same data split as in [10] where 2,146

images are used as a training set and 536 images are used

as a test set. We use 108 of the training images as a valida-

tion set. Predicting only the background class gives 79.41%

accuracy on the test data.

Pre-processing. The input data is augmented by random

horizontal flips and since the weights of the backbone

have been pre-trained on ImageNet we have subtracted the

channel-wise mean from the RGB channels of the input data

and divide by the channel-wise variance. The mean and

variance have been pre-computed on ImageNet.

4.2. Implementation details

We implement the model in the Keras [2] framework us-

ing the ResNeXt backbone with weights pretrained on Im-

ageNet. The model is trained on a NVIDIA TESLA V100

GPU using the Adam [6] optimizer with a learning rate of

1e-4, β1 of 0.9, β2 of 0.999, no decay and a batch size of

five. We choose the model with the highest validation accu-

racy after 100 training epochs as the final model.

The hyper parameters of the CRF [7] are chosen with

respect to validation accuracy using random search. We

uniformly sample 50 hyper parameter configurations for

the appearance kernel with θβ ∈ {1, 2, . . . , 100}, θα ∈
{1, 2, . . . , 40} and w1 ∈ {1, 2, . . . , 15} using the same no-

tation as in [7]. The number of iterations for the mean field

approximation is set to 10.

5. Results

Quantitative results. When comparing all methods with-

out a CRF we increase the state-of-the-art accuracy by

0.73 percentage points on refined fashionista and 2.00 per-

centage points on CFPD, and the state-of-the-art mean

intersection-over-union by 3.13 on refined fashionista and

1.58 on CFPD (see table 1). When comparing all meth-

ods with a CRF we increase the state-of-the-art accuracy by

0.69 percentage points for refined Fashionista and 1.47 per-

centage points for CFPD while the mean intersection-over-

union is marginally worse on both datasets (see table 2).

Notably, the FPN model has a consistently higher accu-

racy without a CRF than other methods with a CRF (see ta-

ble 1 and table 2). Adding a CRF to the FPN does improve

results, but only marginally. Using a CRF is not always de-

sirable since it adds a significant computation overhead. In

our setting we are able to make predictions for 1.95 images

per second without a CRF but only 0.20 images per second

with a CRF. An order of magnitude in difference.

We also tried using densely connected CNNs [3], with

up to four times fewer parameters, as backbones in the FPN,

and observed only a marginal decrease in accuracy. Mak-

ing the FPN a suitable choice for applications with a low

computational budget.

Note that both OE [10] and PSPNet [4] have been fine-

tuned on other large-scale semantic segmentation tasks con-

taining tens of thousands of annotated image examples prior

to training on refined Fashionista and CFPD, while our

model uses weights pre-trained only on ImageNet.

We should note that [4] report a 93.06% accuracy and a

mean intersection-over-union of 53.51 on another test split

for the CFPD data. Similarity, [5] report a 93.5% accuracy

and a mean intersection-over-union of 58.7 for another test

split of the CFPD data. We have chosen not to make a direct

comparison to these methods in table 1 and table 2 since the

test splits are not publicly reproducible. However, the re-

sults are interesting and the results in [5] highlights the po-

tential need for models that are able to discriminate between

different textural features for clothing parsing.

Qualitative results. In our qualitative analysis we show

two of the best scoring predictions form our model, and the

confusion matrix for the CFPD dataset.

In figure 1 we show two top scoring predictions on the

refined Fashionista dataset. The main source of prediction

errors in these examples are predictions along the edges of

the semantic regions. There is a bag present in each im-

age which the model detects. The model also detects the

bracelet in the upper image and the necklace in the lower

image. However, applying the CRF leads to over-smoothing

such that skin is predicted instead of the bracelet.



Figure 3: Confusion matrix for predictions on the test set

for the CFPD dataset. (Best viewed zoomed in.)

We also plot the confusion matrix for the CFPD test

dataset (see figure 3). The class labels have been ordered

such that clothing items that are typically worn on neigh-

bouring parts of the human body are close to each other on

the diagonal of the confusion matrix. We can see that cloth-

ing items that are typically worn on different parts of the

human body, such as pants and sweater, are not often con-

fused with each other. However, there are some confusions

between classes along the diagonal of the confusion matrix,

meaning that clothing items that are typically worn on the

same part of the body are sometimes confused by the model.

We can also see that small objects, such as belt, necklace,

scarf/tie, watch/bracelets are often confused for the clothing

items that they are typically occluding.

6. Discussion

In this work, we have demonstrated that a simple feature

pyramid network gets state-of-the-art accuracy and mean

intersection-over-union on two standard clothing parsing

datasets. The method does not need a conditional random

field to perform well, in fact it outperforms previous state-

of-the-art methods in accuracy even without a CRF, and

uses fewer parameters than previous state-of-the-art meth-

ods which is an advantage in settings with low computa-

tional budgets.

The model learns which body parts of the human body

that different clothing items are typically placed on. How-

ever, distinguishing between, for example, a t-shirt and a

blouse or a pair of leggings and a pair of pants remains a

challenge. To discriminate between, e.g, a blouse and a t-

shirt low level textural features, for example from Gabor

filters, may be necessary [5]. The early layers of a CNN

usually learns Gabor-like filters and color blobs [13]. We

argue that the importance of the feature pyramid is that both

low and high level features are used in concert in the final

pixel-wise prediction which potentially enables discrimina-

tion between clothing items that have similar shapes and

colors but have different textural patterns.
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