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Figure 1: Example of visual clothing transferring. Left, original image of an iconic computer science clothing style. Right, the result

of transferring the cloths from the left image to other images containing one or several subjects in unconstrained poses and background.

This figure illustrates results in individual images, but the system is able generate space-time consistent novel views of clothing in videos.

Abstract

We present a system to photo-realistically transfer the cloth-

ing of a person in a reference image into another person in

an unconstrained image or video. Our architecture is based

on a GAN equipped with a physical memory that updates an

initially incomplete texture map of the clothes that is pro-

gressively completed with the new inferred occluded parts.

The system is trained in an unsupervised manner. The re-

sults are visually appealing and open the possibility to be

used in the future as a quick virtual try-on clothing system.

1 Introduction
Virtual dressing rooms are expected to have a major impact

in the fashion e-commerce industry. A major limitation of

existing systems is that they rely on expensive setups (e.g.

depth cameras) and/or require building sophisticated phys-

ical models of the clothing. We present a simple yet effec-

tive solution to the problem, which does not require mod-

eling the underlying physics of the clothes, while still pro-

ducing photo-realistic results. Fig. 1 illustrates the problem

that this paper addresses. Our model is able to synthesize

space-time consistent novel views of the source clothing,

while simultaneously fitting them to the target person body

shape and maintaining the original background. The pro-

posed method is learned in an unsupervised fashion, that is,

we do not require pairs of images of the same person with

same clothes in different positions.

To address all these challenges, we combined a cloth-

ing segmentation output with a temporally-consistent Gen-

erative Adversarial Network (GAN). Our main contribu-

tion consists in equipping a standard GAN architecture with

a memory module that progressively refines a source tex-

ture map and adapts it to the target person, by filling oc-

cluded regions and adapting to new lighting conditions and

body pose. This work is related to recently proposed deep-

learning approaches for transferring clothes [4, 10]; how-

ever, while these models provide visually compelling re-

sults, they typically rely on 3D human models, and their re-

sults are limited to non-cluttered backgrounds, mild lighting

conditions and require supervised training. Our approach

offers a simple but effective unsupervised image2Video

approach that is shown to be robust results across pose,

background, lighting and body variability without the need

of knowing the underlying geometry of the body nor the

physics ruling the cloth deformations.

2 Problem Formulation
Let Ic ∈ R

H×W×3 be an input RGB image of a dressed

person (source), and let xT
1
= (X1, . . . ,XT ) be the target

video, where Xt ∈ R
H×W×3 and the subindex t denotes

the video frame. The target video can be of the same per-

son in Ic or a different one. Our goal is to learn a map-

ping M to transform xT
1

into an output video yT
1

where





Figure 3: Memory state and segmentation tracking. Top-Left: Input source image Ic. Bottom-Left: First frame Xt of

the target video in which we seek to transfer the clothes of Ic. Top-row (columns 2-5): Visualization of the memory Tt,

initially containing only the parts visible in Ic. Novel regions hallucinated for the frames Xt are progressively added into the

texture map. Bottom-row (columns 2-5): Segmentation masks Mt (automatically estimated) and cloth transfer results Yt.

Generator: The incomplete image X′

t and the input

segmentation masks are passed to the generator G :
(X′

t,Mt) → Yt. We force G to primarily focus on the

segmented regions of the body, by adapting the lighting in

the regions of X′

t which already have texture information,

and inpainting those which do not have.

Memory Update: The new regions in Yt the generator has

hallucinated are mapped back to the texture memory using

the inverse of the mapping we considered during the mem-

ory query phase, that is, Φ−1 : (Yt,Mt,Ut) → Tt.

Multilevel Discriminator: The photo-realism of the gen-

erated image Yt is evaluated with the network D(Yt,Mt).
Its structure is similar to the multilevel PatchGan [9], which

is made of two discriminators with identical architecture

that operate at different image resolutions, one having a

global view of the image to guide the generator to produce

cloth labels, and the other focused on fine texture details.

3.1 Learning the Model
We train our model with a loss made of three terms:

Image Adversarial Loss (LI ): We extend the standard

min-max strategy [3] to enforce the model not just to pro-

duce photo-realistic images but also to be consistent with

the cloth segmentation labels. Concretely, we add an ex-

tra term in the adversarial loss that aims to classify a mis-

matched image-mask pair as a negative sample. Formally,

let X be the input image with cloth segmentation labels M;

Pr the data distribution of the input images and Pg the dis-

tribution of the generated images X̂ = G(X′,M); and M̂ a

segmentation mask randomly chosen from the training set.

The extended adversarial loss LI is defined as:

LI = EX∼Pr
[log(D(X,M))] + λ(EX∼Pr

[log(1−D(X, M̂))]

+ E
X̂∼Pg

[log(1−D(X̂,M))]), (1)

where λ = 0.5 allows balancing the positive-negative rate.

Masked Perceptual Loss (LP ): In order to stabilize the

training, we added a perceptual loss [5] masked over the

clothing regions. This loss penalizes the L1 distance be-

tween the original and inpainted images after being pro-

jected into a high dimensional feature space.

Feature Matching Loss (LF ): To further stabilize the

training process we penalize high level features on the dis-

criminators [9], by enforcing the generator to match statis-

tics of the original and inpainted images at multiple feature

levels of the two discriminators.

Total Loss: The final min-max problem is:

G⋆ = argmin
G

max
D

λILI + λPLP + λFLF (2)

where λI , λP and λF are the hyper-parameters that control

the relative importance of every loss term and G⋆ draws

samples from the data distribution.

4 Experimental Evaluation
We next report quantitative and qualitative results for both

images and videos. Table 1 provides a quantitative compar-

ison with the state-of-the-art [7, 2, 4] using the Inception

Score (IS) [8]. Despite [10] is also a closely related work,

its code is not available, preventing its comparison. Our re-

sults are consistently better than the other approaches, and

very close to the real data IS.

Fig. 4-left depicts results on still images. In some of the

examples (e.g. woman with a large coat) there exist large

differences between the source and target clothes but the

results are still very photo-realistic. Fig. 4-right presents

results on image-to-video cloth transfer. In each sequence

the left-most column corresponds to two reference cloth im-

ages Ic (source) to be transferred to the target images Xt

displayed on the top row. For every video frame, we show

the cloth segmentation estimation Mt and the output im-

ages Yt with the transferred clothes. Note that our model



Figure 4: Transferring clothes in images and videos. Left: Cloth transfer in still images, between a source Ic and target Xt.

In each case we report the initial estimation X′

t and the final result Yt. Missing areas after removing the original cloth and

warping the reference cloth are marked in yellow. Right: Image-to-video cloth transfer.

Method mean std

Pose GAN [7] 2.46 0.80

Pose Variational U-NET [2] 2.79 0.36

VITON [4] 3.11 0.68

Ours X′

t
(only Memory Query) 3.47 0.56

Ours Yt (Memory Query + Generator Completion) 3.94 0.89

Real Data (Upper Bound) 4.21 0.62

Table 1: Quantitative evaluation using the Inception

Score [8] metric (the highest the better).

shows remarkable temporally consistent results and robust-

ness to cluttered backgrounds and different body postures.

Furthermore, in contrast to previous methods [6, 4], we do

not require the person nor the reference cloth to be initial-

ized from a predefined position. This provides our system

with a high flexibility towards being applied on unrestricted

images from the Internet.
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