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Abstract

To improve online shopping experience, many fashion

retailers try to provide high quality garment images, cap-

turing fine details as well as various opacities. A skilled

operator can deliver a satisfactory result using manual seg-

mentation tools, but it is challenging to scale up this process

to address seasonal demands. To balance the quality and

the processing cost, we investigate the use of a deep learn-

ing based matting technique that can produce a high qual-

ity alpha map from an approximate garment segmentation.

The proposed model adopts the deep image matting model

[10], but we replace the refinement network with a sequence

of recursive convolutional network (RCN) units. Our main

motivation for this modification is that the fine garment de-

tails created by different materials are represented better

with the mixture of the image features from different scales.

Therefore, we need to construct deeper convolutional lay-

ers for better scale analysis but we also need to maintain

the number of unknowns low as producing training data is

expensive. The proposed RCN based refinement network

can address these conflicting restrictions well and our ex-

periments demonstrate that it can achieve a lower training

loss and produce better prediction results than the baseline

refinement model under the same training condition.

1. Introduction

Realistic garment visualisation is a fundamental func-

tionality requested by most online fashion retailers. Con-

ventional approaches used in many e-commerce platforms

heavily rely on a static garment image dressed on a fixed

mannequin. This passive visualisation is often considered

as a limitation for delivering a better user experience, and

various immersive visualisation techniques have been tried

recently [4]. If we adopt simple image-based rendering for

photorealistic garment visualisation, e.g. producing a final

rendering result by overlaying a warped garment image on

a rendered 3D body model (see Fig. 1(b) and (c)), it is nec-

essary to prepare a garment dataset extracted from initial

studio photographs (see Fig. 1(a)). However, populating
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Figure 1: Example of virtual try-on using garment images;

a) a process of extracting an initial cutout from a few 2D

control points, which will be used to deliver a trimap for

our matting solution; b) different views of a garment ren-

dered by a 3D body model and garment cutouts; and c)

warped garment images on personalised body models gen-

erated from different body measurements.

such a dataset is not trivial due to the complex shape of a

garment and the various opacities created by different gar-

ment materials.

This image separation problem is closely related to an

image matting problem, where the main objective is es-

timating the unknown alpha values involved in the image

compositing process [6]. For example, if we denote the al-

pha values as a single channel float matrix, A, the image

composition result Ic from a foreground (FG) image If and

a background (BG) image Ib can be described as

Ic = A⊙ If + (1−A)⊙ Ib, (1)

where ⊙ denotes an elementwise multiplication operator

and each element of A is between 0 and 1.

Although most general garments (e.g. simple trousers or

a T-shirt) can be safely extracted by latest semantic segmen-

tation techniques, the fuzzy separation shown in (1) is much
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Figure 2: Network topology of the proposed recursive re-

finement network (RRN), where S-Net is designed to ex-

tract multiple frequency details from different scales whilst

B-Net blends them to produce a final result. F and K values

shown under each CNN layer diagram (i.e. the blue block)

denote the number of feature maps and the size of a convo-

lutional kernel, respectively.

suitable for capturing the high frequency image details ob-

served in many fashion garments. The difficulty is that re-

covering A, If , and Ib from given Ic in (1) is a highly ill-

posed problem [3]. Thus, it is normally incorporated with

additional constraints provided by users, such as a trimap

(which is an initial image segmentation defining true FG,

true BG, and unknown pixels) or simple scribbles on an im-

age.

The latest approaches argue that this manual annotation

could be an issue for developing a fully automated matting

system, and propose to learn the initial segmentation (i.e.

a trimap) as well as an alpha map using deep learning net-

works [9, 12, 1]. However, we have noticed that many fash-

ion retailers prefer to have some interaction points (such as

a set of control points defining a trimap) to adjust the mat-

ting quality. In addition, conventional photograph processes

have already implemented a pipeline performing initial gar-

ment segmentation to remove the background scene (see

Fig. 1(a)). Thus, our question in this project is more about

developing a semi-automated system, which can utilise the

existing initial cutouts as the matting constraints.

2. The Proposed Model

Deep CNN matting (DCNN) is one of the early deep

matting networks developed for a natural image matting

problem [2]. However, this model can be seen as refining

the alpha maps from the initial estimations from conven-

tional approaches rather than giving direct estimation from

an input image. More practical matting solution can be

found in Deep Image Matting (DIM) [10]. In this approach,

the matting problem is posed as image translation, where a

RGB image is augmented with a trimap to produce a sin-

gle channel alpha map. At the beginning of this model, the

VGG network is used to encode a natural input image to a

Figure 3: Example of S-Net results: the proposed RRN pro-

duces the final results (the last column) by blending the re-

sults from intermediate scales (the column 2-5).

set of smaller feature maps, which turn into a scaled-up al-

pha map in a follow-up decoding network. It is also worth

noting that DIM employs an additional refinement network

on top of the encoder-decoder network (EnDecNet) struc-

ture, and the authors mentioned that the additional refine-

ment is beneficial to enhance the oversmoothed alpha maps

produced from the initial result.

An intriguing observation from the recent development

is that the refinement network originally proposed in DIM

is getting redundant [8]. This is mainly because of the emer-

gence of accurate networking techniques and adversarial

training. However, the advances in deep Single Image Su-

per Resolution (SISR) [11] support the argument that a sim-

ple convolutional network is actually effective to learn the

non-linear mapping from a low resolution image to a high

resolution output. We believe this incremental refinement is

better than having a single EnDecNet in our working sce-

narios; e.g. we can only retrain a small refinement network

whenever we have more challenging garments.

Based on this observation, we have developed a new re-

finement network. Since a deeper network generally per-

forms better in SISR, we need to implement multiple con-

volutional layers. However, we also need to minimise the

number of unknown parameters because preparing high res-

olution training samples (particularly for a complex gar-

ment images) is very expensive and there is no publicly

available garment image dataset with high resolution al-

pha maps at the moment to the best of our knowledge. To

address this, we adopt a recursive convolutional network

(RCN) [7]. Since a RCN reuses fixed weights over time,

it does not increase the number of unknown parameters too

much but simulates a similar effect that a deeper network

can create.

Figure 2 shows the overall network architecture for the

proposed Recursive Refinement Network (RRN). We use

the same EnDecNet proposed in DIM to generate the ini-

tial alpha map (i.e. Â′ in Fig. 2), which will be fed to the

RRN with a 320×320 composite RGB image, Ic. The RRN



consists of two subnets called a scale analysis network (S-

Net) and a blending network (B-Net). The main motivation

of S-Net is capturing the fuzziness of furry garment more

accurately. For example, a garment with fine hair strands

or voile materials may be considered as high frequency im-

age features only but in a larger scale these fine details are

better to be represented with a smooth transition. In other

words, to represent the garment details more effectively, we

need a special image sharpener that can blend the features

from multiple different scales. The recursive connection in

a RCN can create an effect of increasing the size of filter

kernel [5] which allows us to perform this scale analysis.

To understand what is trained in the S-Net, we store the

results from each RCN unit1. Since they are a single chan-

nel feature map, we can visualise them as an image, which

is shown in Fig. 3. As shown in the figure, we have found

that each RCN unit works as an image sharpener and em-

ploying multiple RCN units can help to enhance image fea-

tures from different scales. As the RRN goes deeper, we can

add more features from higher scales and this scale analy-

sis is good for depicting the different size of the gaps in a

voile pattern and it makes fine hairs look more highlighted

by producing smoother alpha values in its background.

3. Experimental Results

To compare the performance of the proposed refinement

network, we adopt an incremental training strategy. For ex-

ample, the first subnet of DIM (i.e. the EnDecNet) is trained

initially and the same model is attached to different refine-

ment networks for additional training.

As a loss function for the EnDecNet, we use the same

metrics suggested in DIM, i.e. a weighted sum of the alpha

prediction loss and the composition prediction loss defined

on the unknown area of a trimap. To facilitate the training

process, a pre-trained VGG model is imported to initialise

the encoder network and the zero-mean normalisation is ap-

plied to the RGB values of an input image. This can help us

to achieve 0.064 loss for the EnDecNet after 94 epochs. On

the other hand, when training the refinement network, we

only use the alpha prediction loss, and a standard Adam op-

timisation with a fixed learning rate is used for all training

sessions.

The training and testing samples are obtained from the

Adobe dataset [10]. Since the number of the images in the

dataset is not sufficient for training a large network (e.g. in

our test we use 429 foreground images for training and 50

foreground images for testing), each sample FG image is

subdivided and composited with a random background im-

age from MS-COCO for training and ImageNet dataset for

testing. Random data augmentations, such as random scal-

ing and image flipping, are also applied dynamically during

1A single RCN unit in our paper denotes a sequence of layers, such that

RCN-BN-ReLU-CNN.

(a)

(b)

Figure 4: Examples of garment prediction: the estimate re-

sults from different parts of a garment are presented in the

second row (RRN) and third row (DIM).

each batch construction, and this can help to improve the

generality of a trained model.

The matting performance is generally dependent on an

initial trimap. In order to make the resulting model more ro-

bust against different tirmaps, we populate multiple trimaps

for the same alpha map during the training stage. Various

morphological operators (e.g. eroding, dilating, opening,

closing with different kernel sizes and processing iterations)

are applied to a reference alpha map for the automatic cre-

ation of such a trimap.

Figure 4 shows the prediction results from the actual gar-

ment images captured from a studio environment. This stu-

dio image normally has less cluttered background but the

colour values can be affected by different lighting condi-

tions. Although both RRN and DIM are trained with the

same dataset, the proposed method generally performs bet-

ter than DIM and it also demonstrates that the proposed

RRN can be used for extracting the fine garment details

which look more like refined binary segmentation (see Fig.

4(b)) as well as the fuzziness of hair strands shown in Fig.

4(a).

Fig. 5 (a) summarises the training performance of the
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Figure 5: (a) The training performance of 4 different mat-

ting methods at a fixed learning rate (lr), where the dotted

lines represent the results of a different lr value with the

same RRN and DIM model; (b) Evaluation results of differ-

ent matting methods.

different models. Four refinement networks (i.e. DIM,

RRN, RRN-u3, and RRN-u2) are trained up to 50 epochs

using the same optimisation parameters, i.e. 8 samples

for each training batch and a fixed learning rate at 10−4.

Our baseline refinement network (i.e. DIM) is quickly con-

verged around 0.049 (see the solid blue line in Fig. 5 (a)).

However, the proposed RRN can start from lower loss (i.e.

0.065) and produce better converged values around 0.043

(see the solid red line in the figure). A lower learning rate

10−5 is also tested to see the performance change and it

shows that DIM (i.e. the dotted blue line) is more sensitive

to the learning rate than the proposed RRN (i.e. dotted red

line).

RRN-u3 and RRN-u2 are created to test the performance

of a simpler RRN configuration. These networks are exactly

same as the refinement network of DIM but some convo-

lutional layers are modified to include additional recursive

loops, e.g. RRN-u3 has 3 recursive convolutional layers.

Thus, the number of trainable parameters of RRN-u2 is the

same as that of DIM and RRN-u3 has 36,928 more param-

eters than DIM. Although there is no change in terms of

the number of the trainable parameters, RRN-u2 performs

worse than DIM and converges around 0.067 and the RRN-

u3 produces a similar result (i.e. 0.066).

4. Conclusions and Future Work

In this paper, we propose a new refinement network that

can improve the performance of garment image matting for

virtual try-on solutions. Motivated by the recent develop-

ment in the SISR research, the proposed method adopts a

recursive convolutional network (RCN) to configure a new

refinement model. The use of RCN proves that we can

maintain the number of unknown parameters low, whilst

producing a similar effect created by a deeper network.

The proposed method is intended to provide a semi-

automatic image matting solution, so that a human creator

can adjust results by tweaking an initial trimap, if needed.

Therefore, the best training result is achieved when we can

simulate the trimap patterns that human operators would

create. These patterns can be trained with an additional

sub-network or using recent GAN approaches, but we have

found collecting such training data is expensive. In the fu-

ture, it is worth investigating new subjective metrics for gar-

ment matting. Also, hardware-based image segmentation

should be reviewed as a means of populating a new garment

image dataset for matting more efficiently.
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