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Abstract

Visualizing an outfit is an essential part of shopping for

clothes. Due to the combinatorial aspect of combining

fashion articles, the available images are limited to a pre-

determined set of outfits. In this paper, we broaden these vi-

sualizations by generating high-resolution images of fash-

ion models wearing a custom outfit under an input body

pose. We show that our approach can not only transfer the

style and the pose of one generated outfit to another, but

also create realistic images of human bodies and garments.

1. Introduction

Fashion e-commerce platforms simplify apparel shop-

ping through search and personalization. A feature that can

further enhance user experience is to visualize an outfit on

a human body. Previous studies focus on replacing a gar-

ment on an already existing image of a fashion model [5, 2]

or on generating low-resolution images from scratch by us-

ing pose and garment color as input conditions [8]. In this

paper, we concentrate on generating high-resolution images

of fashion models wearing desired outfits and given poses.

In recent years, advances in Generative Adversarial Net-

works (GANs) [1] enabled sampling realistic images via

implicit generative modeling. One of these improvements is

Style GAN [7], which builds on the idea of generating high-

resoluton images using Progressive GAN [6] by modifying

it with Adaptive Instance Normalization (AdaIN) [4]. In

this paper, we employ and modify Style GAN on a dataset

of model-outfit-pose images under two settings: We first

train the vanilla Style GAN on a set of fashion model im-

ages and show that we can transfer the outfit color and body

pose of one generated fashion model to another. Second,

we modify Style GAN to condition the generation process

on an outfit and a human pose. This enables us to rapidly vi-

sualize custom outfits under different body poses and types.

2. Outfit Dataset

We use a proprietary image dataset with around 380K en-

tries. Each entry in our dataset consists of a fashion model

wearing an outfit with a certain body pose. An outfit is com-

posed of a set of maximum 6 articles. In order to obtain the

body pose, we extract 16 keypoints using a deep pose esti-

mator [10]. In Figure 1, we visualize a few samples from

our dataset. The red markers on the fashion models repre-

sent the extracted keypoints. Both model and articles im-

ages have a resolution of 1024× 768 pixels.

Figure 1: Samples from our dataset (red markers represent

the extracted keypoints).

3. Experiments

The flowchart for the unconditional version of Style

GAN is illustrated in Figure 2(a). We have 18 generator

layers that receive an affinely transformed copy of the style

vector for adaptive instance normalization. The discimina-

tor is identical to the original Style GAN. We train this net-

work for around four weeks on four NVIDIA V100 GPUs,

resulting in 160 epochs.

In the conditional version, we modify Style GAN with

an embedding network as shown in Figure 2(b). Inputs to

this network are the six article images (in total 18 channels)

and a 16-channel heatmap image that is computed from 16

keypoints. The article images are concatenated with fixed

ordering for semantic consistency across outfits. We can

see this ordering in Figure 1. If an outfit does not have an

article on a particular semantic category, it is filled with an

empty gray image. The embedding network creates a 512-

dimensional vector, which is concatenated with the latent

vector in order to produce the style vector. This model is

also trained for four weeks (resulting in 115 epochs). The

discriminator in the conditional model uses a separate net-

work to compute the embedding for the input articles and



heatmaps, which is then used to compute a final score us-

ing [9].
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Figure 2: The flowcharts of our (a) unconditional and (b)

conditional GANs.

3.1. Unconditional

In Figure 3, we illustrate images that are generated by the

unconditional model. As we can see, not only the articles,

but also the human body parts are realistically generated at

the maximum resolution of 1024× 768 pixels.

During the training, one can regularize the generator by

switching the style vectors for certain layers. This has the

effect of transferring information from one generated image

to another. In Figure 4, we illustrate two examples of infor-

mation transfer. First, we broadcast the same source style

vector to layers 13 to 18 (before the affine transformations

in Figure 2) of the generator, which transfers the color of

the source outfit to the target generated image, as shown in

Figure 4. If we copy the source style vector to earlier layers,

this transfers the source pose. In Table 1, we show which

layers we broadcast the source and the target style vectors

to achieve the desired transfer effect.

Color Transfer Pose Transfer

Source 13-18 1-3

Target 1-12 4-18

Table 1: Layers to broadcast the style vector.

3.2. Conditional

After training our conditional model, we can input a de-

sired set of articles and a pose to visualize an outfit on a

human body as shown in Figure 5. We use two different out-

fits in Figure 5(a) and (b), and four randomly picked body

poses to generate model images in Figure 5(c) and (d), re-

spectively. We can observe that the articles are correctly

rendered on the generated bodies and the pose is consis-

tent across different outfits. In Figure 5(e), we visualize the

generated images using a custom outfit by adding the jacket

from the first outfit to the second one. We can see that the

texture and the size of the denim jacket are correctly ren-

dered on the fashion model. Note that, due to the spuri-

ous correlations within our dataset, the face of a generated

model might vary depending on the outfit and the pose.

In our dataset, we have fashion models with various body

types that depend on their gender, build, and weight. This

variation is implicitly represented through the relative dis-

tances between extracted keypoints. Our conditional model

is able to capture and reproduce fashion models with dif-

ferent body types as shown in the fourth generated images

in Figure 5. This result is encouraging, and our method

might be extended in the future to a wider range of cus-

tomers through virtual try-on applications.

3.3. Quantitative Results

We measure the quality of the generated images by com-

puting the Fréchet Inception Distance (FID) score [3] of the

unconditional and conditional GANs. As we can see from

Table 2, the unconditional GAN produces higher quality im-

ages, which can be observed by comparing Figure 3 and

Figure 5. The conditional discriminator has the additional

task of checking whether the input outfit and pose are cor-

rectly generated. This might cause a trade-off between im-

age quality (or ‘realness’) and the ability to directly control

the generated outfit and pose.

FID Score Training Epochs

Unconditional 5.15 115

Conditional 9.63 115

Table 2: FID Score for the models.

4. Conclusion

In this paper, we proposed two ways to generate high-

resolution images of fashion models. First, we showed

that the unconditional Style GAN can be used to transfer

the style/color and the pose between generated images via

swapping the style vectors at specific layers. Second, we

modified Style GAN with an embedding network, so that

we can generate images of fashion models wearing a custom

outfit with a give pose. As future work, we plan to improve

the image quality and consistency of the conditional model

on more challenging cases, such as generating articles with

complicated textures and text.



Figure 3: Model images that are generated by the unconditional Style GAN.
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Figure 4: Transferring the colors of an outfit or a body pose to a different generated model.
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(a) Outfit #1 (b) Outfit #2

(c) Generated model images with outfit #1

(d) Generated model images with outfit #2

(e) Generated model images with outfit #2 and the jacket from outfit #1

Figure 5: Two different outfits (a) and (b) are used to generate model images in (c) and (d). (e) The jacket from outfit #1 is

added to outfit #2 to customize the visualization.


