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Abstract

Facial expression recognition (FER) aims to encode ex-

pression information from faces. Previous studies often hold

the assumption that human subjects should properly face

the camera. Such a laboratory-controlled condition, how-

ever, is too rigid for in-wide applications. To tackle this

issue, we propose a single image facial expression recog-

nition method that is robust to face orientation and light

conditions. We achieved this by proposing a novel face re-

centralization method by reconstructing a 3D face model

from a single image. We then propose a novel end-to-end

deep neural network that utilizes both re-centralized 3D

model and landmarks for FER task. A comprehensive eval-

uation on three real-world datasets illustrates that the pro-

posed model outperforms the state-of-the-art techniques in

both large-scale and small-scale datasets. The superiority

of our model on effectiveness and robustness is also demon-

strated in both laboratory conditions and wild images.

1. Introduction

Facial expression recognition (FER) is an important

computer vision task. According to the subjects of the prob-

lem, the tasks can be divided into two categories: image

sequence-based and single image-based problems [8, 20].

The single image-based approaches provide the basic model

for facial expression recognition problems, and they can be

extended to sequence-based approaches with a few modifi-

cations.

Most of the existing works are based on the assumption

that the given faces should be in the right orientation and

lighting conditions (i.e., right front of the camera and in

normal lighting conditions). These methods work well for

standard datasets in laboratory conditions like CK+ [15],

JAFFE [16] and OULU-CASIA [29].

However, the facial images collected in real practice are

Figure 1. Facial images in challenging conditions and the classifi-

cation results: (a) an image with side face and (b) an image with

dark shadow.

usually in various orientations and lighting conditions. Dif-

ferent orientations can affect the extraction of key facial

features; likewise, the shadow caused by different light-

ing conditions can also cause some confusions. Owing to

these deviations, the previous models, especially the neural

network-based ones, have resulted in inaccurate findings.

Figure 1 shows two sample images under challenging con-

ditions and the classification results of some popular meth-

ods.

To tackle this problem, we propose to use 3D face recon-

struction to re-centralize the facial images for FER task. It is

based on the understanding that facial expression is highly

related to face geometry (facial muscle movement) while

3D geometry is invariant from shading and orientation. As

illustrated in Figure 2, our method could robustly recon-



struct the 3D face from a single image under various ori-

entation and lighting condition. After that, we re-align the

face such that it is rightly facing the camera and then gener-

ate the shading. In such a case, the facial expression would

be much easier to infer as the shading could efficiently de-

pict the geometric features.

As shown in Figure 6, we have proposed a full pipeline

for single-image FER tasks which integrates our 3D re-

centralization sub-network and 2D facial landmarks sub-

network into a multi-modal deep neural network. The fa-

cial landmarks characterize the key points in the face, and

the 3D sub-network takes advantage of the best perspective

and the geometry of the image for FER. Our experiments on

three widely used datasets show the superior performance

of the proposed approach among state-of-the-art in terms of

both accuracy and robustness.

In this paper, our contributions are three-fold:

• We propose a novel 3D facial reconstruction method to

centralize the single still face image. This process can

significantly reduce the influence of orientations and

shadows for a wide range of FER tasks.

• We propose a novel end-to-end neural networks for

single image-based FER. This method incorporates the

re-aligned 3D facial geometry and landmark features

to achieve robust expression detection.

• The experimental results on three widely used datasets

demonstrate that our model outperforms the existing

state-of-the-art approaches in terms of accuracy and

robustness.

2. Related Work

2.1. DNN for FER Problems

In recent years, well-known deep neural network (NN)

algorithms such as convolution neural networks (CNNs),

recurrent neural networks (RNNs) and the long short-term

memory (LSTM) models have gained popularity in FER

tasks [25, 10, 21]. With the development of deep learning,

complicated deep neural networks (DNNs) have further im-

proved the performance, especially for large datasets. [8]

first applies DNNs in combination with landmark features.

Mollahosseini et al. use three inception structures in con-

volution for FER to extract the deeper features of the im-

ages [17]. Zhao et al. propose a Peak-Piloted network,

which is proven to be robust and effective for sequence-

based FER problems [30]. The work of [11] considers the

context information and their method works well for pro-

cessing wild facial images. Zhu et al. improve the tradi-

tional DNN model by combining RNN and CNN to carry

out the classification [32]. [24] supposes the facial expres-

sion can be seen as the expressive component and the neu-

tral component, and they designed a de-expression residue

learning method to separate these two components. Zhang

et al. consider the influence of poses and perspectives and

propose an adversarial network for FER [27]. [19] provides

a novel method to compare the similarity among different

facial expressions. Jia et al. [7] apply local low-rank label

correlations in their networks.

2.2. Facial Landmarks

Facial landmarks are the key points in a human face.

These points include the contour of the face and the po-

sitions of the eyes, mouth, nose, and eyebrows. Numer-

ous studies have been conducted on extracting facial land-

mark points, and several robust methods have been pro-

posed [22, 9]. Many approaches for FER tasks based on

landmark features have also gained great achievements.

For example, [3] builds a system only based on land-

mark points. They use both geometric and shading features

generated from landmark points to conduct the classifica-

tion. This approach has achieved high accuracy for specific

datasets. However, it is not robust to classify the expres-

sions merely based on landmark points because of the lim-

ited information they can provide. These points are gener-

ally taken as a secondary channel to provide auxiliary infor-

mation for FER tasks in other situations [8, 23].

2.3. 3D Facial Features for FER Systems

Although 3D features have been applied to FER sys-

tems for many years, most of the previous works use either

3D landmarks or 3D coordinates to carry out the classifi-

cation [2]. [27] also takes advantage of the 3D model, but

they use the 3D model to generate multi-poses and multi-

perspectives facial projection to improve the FER.

Different from the previous approaches, the proposed

method uses the 3D model to re-align the facial images,

which can reduce the influence of orientation and lighting,

thus improve the performance of expression classifiers.

3. Single Image 3D Facial Re-centralization

As mentioned above, in-wild facial images may be of

various positions and perspective. They may also contain

different degrees of facial shadows. Figure 3 lists several

examples of real-world facial images.

Noted that the 3D geometry, which is highly related

to the expressions, is invariant from shadows and orienta-

tions. We propose a pipeline to reconstruct and align the

3D face model from a single image through the following

three steps: 3D model generation, face re-centralization and

shading generation. The whole process is demonstrated in

Figure 2.

3.1. 3D Model Generation

The foundation of the whole process is to build a reliable

3D model from one single image. We adopt the method



Figure 2. The whole process of 3D Face Re-centralization.

Figure 3. Potential problems in real-world facial expression recog-

nition: different orientations (the first two rows) and different

shadows (the last row).

initially proposed by Feng et al. [4] in our study. This

model applies a Position map Regression Network (PRN)

with an encoder-decoder architecture to reconstruct the 3D

face. This network incorporates the context information by

tracking the facial landmarks. As shown in Figure 2, this

step delivers a position-color point cloud from a single im-

age. We adopt a pre-trained model on 300-WLP dataset [31]

in this paper.

3.2. Face Re-centralization

We re-centralize the 3D face by tracking the 3D land-

marks. Assume P records the positions of landmark points

in the generated face and P
∗ denotes the locations of re-

ferred landmarks of centralized face. Then the problem is

to find a Matrix R so that:

R = argmin
Ω

‖ΩP−P
∗‖. (1)

Since the problem is also essentially a 3D rotation prob-

lem and R is the rotation matrix, R would be an orthogo-

nal matrix. Then this problem becomes an orthogonal Pro-

crustes problem [5] and could be solved by singular value

decomposition (SVD) of P∗
P

T.

The solution of this equation requires at least six pairs

of corresponding points. In our method, sixty-eight pairs of

points extracted by [22, 9] are used.

A potential concern for the re-centralization process is

the extravagant distortions when images are of extreme ori-

entations. However, in practice, these images are also chal-

lenging for state-of-the-art FER methods. Compared with

the original 2D image, the re-aligned face model can pro-

vide more reliable information for expression recognition

even though it is not completely precise. We show some

examples in Figure 4.

Above model-based 3D reconstruction and re-

centralization provides us the occluded face part. However,

we do not use it in the FER task, because it still lacks

reliable information through hallucination. Specifically,

before the 3D rotation, we check the 3D vertices first. For

the points in the point cloud, if several points share the

same x, y coordinates, we only keep the outer-most two

points and mask the others. Then the generated parts, which

are invisible from the original image, will be discarded.

3.3. Shading Generation

The re-centralized 3D model is represented by a 3D point

cloud. A straightforward approach is to build a 3D cube

based on the point cloud. However, introducing the 3D cube

requires considerable memory and calculation time, which

poses a heavy burden for real-time expression recognition.

Therefore, we generate 2D shading image to represent

3D geometry to support our FER network. Based on Lam-

bertian reflection [1], the shading image of each point on

the given lighting can be modeled as:

I = N · L, (2)

where I is the shading image density, N is the surface

normal, and L represents incoming light direction. To re-

duce the influence of lighting, we relight the face with a

standard L.

Now we estimate the normals N of the given 3D face.

For each point in the centralized point, we select n nearest



Figure 4. 3D face re-centralization better aligns the face and pre-

serves the facial expression: images in the first two rows are se-

lected from existing database, those in the last two rows are col-

lected by us. The occluded part are also visualized for illustration

but will not be used in the estimation.

points of it. Then we fit a plane with the minimum error

based on them, the normal of that plane is considered as the

normal of the selected point. In our experiments, we set n

as 10.

Once we obtained the normals, we relight the face with

L = [1, 0, 0], which is right facing the front face. Then

we can generate a shading (N ·L) map [18] that effectively

reflects geometric facial features as shown in Fig 5.

4. Facial Expression Recognition

Based on the proposed face re-centralization method, we

propose a novel end-to-end deep model for single image

facial expression recognition. As shown in Figure 6, our

model integrates the re-aligned 3D facial geometry and fa-

cial landmarks to recognize facial expression from a single

image.

4.1. 3D Re-centralization Sub-network

Given the generated shading image of the size 100×100
, we extract the features with 3 convolution layers of the

filter numbers as 256, 128 and 64. The kernel size of each

convolution layer is 3, and the stride is 2. Then two fully-

connected layers are applied to encode the 3D geometric

feature vector into 1× 128.

Figure 5. Shading image examples that effectively represent facial

features without influence of shadow.

4.2. 2D Landmark Sub-network

Since facial landmarks convey much information on ex-

pression [3], we incorporate 2D Landmark information for

expression recognition.

We determine the face contour by [22] and locate the

facial key points by [9]. Following [3], we then combine

them to generate Sixty-eight landmark points recorded in

total as follows:

LP = [x1, y1;x2, y2; · · · , x68, y68] . (3)

With the extracted points, we normalize their coordinates

by max-min normalization with the position of the nose as

the origin point. We then measure the distances between

each pair of points as

D = [d1,2, d1,3, · · · , d67,68] . (4)

In the formula, di,j means the normalized distance between

the ith and the jth landmark points.

After that, we encode the landmark features via four

fully connected layers whose hidden dimensions are 1024,

512, 256 and 128. The final dimension of this path is 128.

4.3. Network Structure

Given an input image, we at first detect the human face

with Haar cascades [13] to crop it and resize into 100×100.

Then we encode the details with ResNet [6] structure. We
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Figure 6. Overall architecture of the proposed model.

Dataset Orientation Lighting SU FE DI HA SA AN NE CO Total

RAF-subset(train) Y Y 735 167 472 3157 1263 418 1481 - 7693

RAF-subset(test) Y Y 195 34 97 791 299 99 410 - 1925

OULU-CASIA N Y 240 240 240 240 240 240 - - 1440

CK+ N N 83 25 59 69 28 45 - 18 327

Table 1. Details of RAF-subset, OULU-CASIA and CK+ dataset. “SU”, “FE”, “DI”, “HA”, “SA”, “AN”, “NE” and “CO” stand for surprise,

fear, disgust, happiness, sadness, anger, neutral and contempt expressions.

apply a separate convolution layer followed by one iden-

tity block and one convolution block to extract the global

features of the detected 2D face. There are 7 convolution

layers in total, and the number of filters for each layer are

128, 64, 64, 128, 64, 64, and 256. This is followed by a

max-pooling layer with the pooling size 4. We further en-

code the 2D global feature by adding three fully connected

layers whose hidden layers are 1024, 1024 and 128. The

shape of the bottleneck output feature is also 128.

Finally, we fuse the above ResNet bottleneck feature

with 3D geometry and landmark features by concatenating

them together into a [384, 1] vector. The concatenated fea-

tures are passed into two fully connected layers. The hidden

layers of these two layers are 512 and 128. Finally, we clas-

sify the expression with a softmax layer.

5. Experiments

5.1. Implementation Details

In our experiments, the batch size is 128. The opti-

mizer is Adam with learning rate initialized to 0.01. The

dropout rate is 0.4 and we apply an early stopping method

with training patience as 10. To attain a more robust model,

we introduce Gaussian noise in the training process. The

variance of Gaussian noise is set to 0.5. We use categori-

cal cross entropy as loss function in our experiments if not

specially declared. Besides, all the subnets have not been

pre-trained before fusion.

5.2. Experiment Setting

Datasets We evaluate our experiements on

RAF [12],OULU-CASIA [29] and CK+ dataset [15].

RAF dataset [12] contains many challenging cases, par-

ticularly including large face orientation and shadow. No-

tice that we did a clean up for RAF dataset that we remove

invalid label (images containing more than 2 major faces)

and tiny faces (the facial region is smaller than 50 pixels).

For clarity, we name the clean dataset as RAF-subset.

OULU-CASIA dataset [29] contains image sequences

in laboratory conditions, the lighting of which is standard

but not perfect. For each image sequence, we pick the

first, third and fifth images in reverse order in our experi-

ments. The reason is that these images contain the peaks

of the expressions and also differ from one another. CK+



Model SU FE DI HA SA AN NE Acc C-Acc

Li-2017 60.51 44.12 42.27 91.02 67.22 63.64 87.56 78.85 65.19

Jung-2015 73.85 41.76 37.11 92.65 72.24 69.70 80.73 80.14 66.78

Zhang-2017 69.74 38.24 31.96 91.78 72.91 57.58 72.93 76.92 64.01

Fabian-2016 56.41 29.41 24.74 90.52 47.83 49.5 80.49 71.83 54.13

INC-2016 62.05 26.47 37.11 86.85 66.22 55.56 55.37 69.28 55.66

Zeng-2018 67.69 47.06 42.27 92.41 68.90 61.62 83.41 79.47 66.19

Our Model 75.38 41.18 38.14 94.31 71.91 70.71 83.17 81.60 67.83

Our Model(FL) 73.33 64.71 57.73 92.92 72.58 75.76 81.95 82.29 74.14

Table 2. Results on RAF-subset dataset: “SU”, “FE”, “DI”, “HA”, “SA”, “AN”, “NE” stand for the accuracy for “Surprise”, “Fear”,

“Disgust”, “Happiness”, “Sadness”, “Anger” and , “Neutral” expressions in the dataset. “Acc” is the accuracy for this dataset and “C-Acc”

is the class accuracy. “Our Model(FL)” means our model with focal loss. All the values in the table are percentages (%).
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Figure 7. Representative results from RAF dataset.

dataset [15] is relatively small, and it is used to test the ro-

bustness of our model in the small dataset. Following pre-

vious works [8, 25], we apply the 10-fold cross validation

method on the last two datasets.

Table 1 lists the details of all the three datasets.

Methods to compare we compare with six most recent

and well-performing methods: Li-2017 [12] is the baseline

model for RAF dataset. Jung-2015 [8], Zhang-2017 [28]

designs the special fusion network for landmark points and

combine them with deep neural networks. Fabian-2016 [3]

uses landmark points to calculate the geometric and shad-

ing features of the face. INC-2016 [17] introduces incep-

tion modules for FER. Zeng-2018 [26] proposes a multi-

database learning framework for FER tasks. Zhang et al.’s

method [27] requires multi-input, is not compared. Yang et

al.’s method does not provide code and does not have suf-

ficient detail for implementation, and therefore is not com-

pared [24].

During our experiments, the landmark points used the

compared approaches are extracted by the same method as

ours. We retrain all the compared models based on the orig-

inal articles or the released codes. A single image is treated

as a sequence with only one frame for the sequence-based

models (Jung-2015 [8] and Zhang-2017 [28]). Besides, we

do not apply data augmentation or cross-database learning

for all the models.

Evaluation metric We evaluate the performance by the

classification accuracy on individual dataset that describes

the overall performance of the compared models. We de-

note it as Accuracy and reported in percentages (%). We

also report Class Accuracy on average accuracy for all the

classes as RAF-subset and CK+ suffer class imbalance.

5.3. Results

5.3.1 RAF-subset dataset

RAF-subset contains many cases with large face orientation

or strong shadow. The representative results are shown in

Figure 7. As shown in Table 2, our model reaches the best

performance in terms of both Accuracy and Class Accuracy.

We also provide the confusion matrix of our model in

RAF dataset in Table 4. Interestingly, we find that ”fair” is



Model SU FE DI HA SA AN CO Acc C-Acc

Li-2017 100.00 56.00 93.22 97.10 57.14 82.22 55.56 86.24 77.32

Jung-2015 100.00 92.00 89.83 98.55 75.00 80.00 50.00 89.60 83.63

Zhang-2017 97.59 92.00 96.61 100.00 60.71 91.11 44.44 90.52 83.21

Fabian-2016 100.00 84.00 96.61 98.55 85.71 86.67 55.56 92.35 86.73

INC-2016 95.18 48.00 88.14 97.10 60.71 75.56 50.00 82.57 73.53

Zeng-2018 95.18 48.00 89.83 94.20 60.71 88.89 50.00 84.10 75.26

Our Model 100.00 84.00 94.92 100.00 85.71 97.78 83.33 95.41 92.25

Table 3. Results on CK+ dataset. “CO” stands for “Contempt”, “Acc” is the accuracy and “C-Acc” is the class accuracy. All the values in

the table are percentages (%).

SU FE DI HA SA AN NE

SU 75.4 0.0 2.1 4.6 2.6 3.6 11.8

FE 23.5 41.2 0.0 0.0 14.7 11.8 8.8

DI 1.0 1.0 37.1 15.5 9.3 13.4 22.7

HA 0.5 0.0 0.6 94.3 1.0 0.3 3.3

SA 1.0 0.3 5.7 6.4 71.9 2.0 12.7

AN 5.1 0.0 10.1 7.1 1.0 70.7 6.1

NE 1.7 0.2 3.9 4.9 5.9 0.2 83.2

Table 4. Confusion matrix of our model on RAF-subset dataset.

All the values are reported in percentage (%).

most likely to be misclassified as ”surprise”.

Focal loss Since the number of each category in the

dataset is imbalanced (Table 1), there is a gab between Ac-

curacy and Class Accuracy. To relieve the imbalanced class,

we introduce focal loss [14]. The normal categorical cross

entropy loss has the following form:

CE(pt) = −log(pt), (5)

where pt is a function of y and p. y ∈ {±1} indicates the

ground-truth class, and p ∈ [0, 1] is the model’s estimated

probability for certain class y = 1:

pt =

{

p if y = 1,
1− p otherwise.

(6)

Then the focal loss for categorical cross entropy is:

FL(pt) = −αt(1− pt)
γ log(pt). (7)

In the formula, αt is the balanced coefficient, which has

a similar definition as pt:

αt =

{

α if y = 1,
1− α otherwise.

(8)

and γ controls the rate of weight conduction. In our experi-

ment, α is set as 0.25 and γ is set as 2.

When trained with the above focal loss, the performance,

particularlly the class accuracy has been significantly im-

proved as reported in Table 2.

Model SU FE DI HA SA AN Acc

Li-2017 49.58 95.00 72.92 85.83 72.08 66.25 73.61

Jung-2015 45.83 76.67 61.25 97.50 62.92 56.67 66.81

Zhang-2017 87.08 93.33 61.67 92.08 68.33 90.83 82.22

Fabian-2016 68.75 92.92 65.00 91.67 72.50 79.17 78.33

INC-2016 50.00 80.83 61.25 52.50 62.08 70.00 62.78

Zeng-2018 66.25 61.67 82.92 55.83 62.92 52.08 61.02

Our Model 87.50 98.33 72.08 89.17 83.33 78.75 84.86

Table 5. Accuracy on OULU-CASIA dataset. All the values in the

table are percentages (%).

5.3.2 OULU-CASIA Dataset

OULU-CASIA dataset is collected in laboratory conditions

with face properly facing the camera, but the lighting con-

dition is not satisfactory which results in facial shadows.

The experimental result on OULU-CASIA dataset is

shown in Table 5. As OULU-CASIA dataset is a balanced

dataset, C-Acc has a same value as Acc and we only report

Acc in Table 5.

5.3.3 CK+ dataset

CK+ dataset is a small dataset in proper laboratory situ-

ations. We also report the performance in Table 3 and

demonstrates the superior performance of the proposed

model.

5.4. Ablation Study

To analyze the effect of the individual component in

our proposed method, we conduct an ablation study. Since

the features from 3D re-cenralization sub-net and landmark

sub-net are fused into the main network, we could choose

to connect the main network to specific sub-net or not. In

this section, we name 3D for the 3D re-cenralization sub-

net and Landmark for landmark sub-net. When neither 3D

or Landmark is fused, we call the rest as Base. Thus, we

also evaluate these four types of networks and reported their

performance in Table 6.

From the result, we can see that both re-centralized 3D

geometry features and landmark features could help to im-

prove the FER performances. Combing two features to-

gether could further boost the performance significantly.



RAF-s OULU CK+

Model Acc C-Acc Acc Acc C-Acc

Base 78.69 64.96 76.11 85.93 77.89

Base+Landmark 79.62 68.37 76.60 93.88 90.78

Base+3D 79.73 67.80 77.36 92.04 88.57

Whole Model 81.60 67.83 84.86 95.41 92.25

Table 6. Ablation study of individual component on three datasets.

“Acc” stands for accuracy and “C-Acc” stands for class accuracy.

All the values in the table are percentages (%).

The only exception is for RAF-subset dataset where the

class accuracy falls when including 3D geometric features.

We believe it is due to the imbalanced class distribution as

discussed in RAF-subset dataset. The ablation analysis val-

idates the effect of our proposed 3D re-centralization and

landmark sub-networks.

5.5. Time Consumption

We test and compare the whole executive time

(including pre-processing time) with 2 Titan X GPU

among all the models. The per-frame process time is re-

ported in Table 7. As can be seen, the proposed method only

takes slightly more time than existing methods but achieves

much more accurate result.

Model Time(s)

Our Model 0.123

Li-2017 0.084

Jung-2015 0.086

Zhang-2019 0.090

Fabian-2016 0.089

INC-2016 0.097

Table 7. Time consumption analysis.

5.6. Failure Cases

Figure 8 lists three representative failure cases. These

images contain a huge part of occlusions in the front face,

which will cause serious distortion of 3D reconstruction

and further influence the shading generation. However, as

shown in Figure 8, these images would also confuse alter-

native existing methods.

6. Conclusions and Future Work

This study proposes a novel system for single image Fa-

cial Expression Recognition (FER). To reduce the influence

of orientations and shadows, we propose a novel approach

to reconstruct and re-centralize a 3D facial model from a

single image. Re-aligned 3D facial geometry and land-

marks are then integrated into the proposed network for

the robust FER. The experiments on three datasets demon-
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Figure 8. Failure cases from RAF dataset.

strate that the proposed model obtains state-of-the-art per-

formance.

For future work, we consider optimizing our model

in two directions. We will extend our model in image

sequence-based emotion classification, which is more prac-

tical in the real world. We will also commit to further en-

hancing the robustness of 3D face alignment for extreme

orientation cases.
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