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Abstract

Assessment of motion quality has recently gained high

demand in a variety of domains. The ability to automat-

ically assess subject motion in videos that were captured

by cheap devices, such as Kinect cameras, is essential for

monitoring clinical rehabilitation processes, for improving

motor skills and for motion learning tasks. The need to

pay attention to low-level details while accurately track-

ing the motion stages, makes this task very challenging. In

this work, we introduce A-MAL 1, an automatic, strong mo-

tion assessment learning algorithm that only learns from

properly-performed motion videos without further annota-

tions, powered by a deviation time-segmentation algorithm,

a parameter relevance detection algorithm, a novel time-

warping algorithm that is based on automatic detection of

common temporal points-of-interest and a textual-feedback

generation mechanism. We demonstrate our method on mo-

tions from the Fugl-Meyer Assessment (FMA) test, which is

typically held by occupational therapists in order to moni-

tor patients’ recovery processes after strokes.

1. Introduction

The capability of automatic motion assessment has re-

cently gained high demand. One of the most significant

reasons is the availability of low-cost 3D skeleton recog-

nition devices, such as Kinect, which redefine the target

audience of applications that are based on user pose and

movement, including applications for motion assessment or

motion learning, as well as other tasks, such as surveillance,

entertainment and exercise. Addressing this problem is con-

sidered a hard task, especially when compared to the other

researched tasks in the 3D skeleton-video domain, which

usually give weaker attention to timings, performances and

low-level measurements.

The task of automatic motion assessment is very essen-

1Code available at: http://github.com/skvp-owner/

a-mal

Figure 1: The main principles of the proposed system. A model is

learned solely from properly performed motions and without further an-

notations, by automatic extraction of motion properties, temporal align-

ment and learning of a frame-level statistical model. The model is used to

produce score and feedback by detecting deviating temporal segments.

tial for medical needs. One outstanding example is the Fugl-

Meyer Assessment (FMA) [10] test, which is typically held

by occupational therapists and has a numerical score. The

test is performed from time to time, mainly on people who

are recovering after strokes and aims to monitor their re-

covery processes. Except for the purpose of enabling FMA

tests to be held at home, without the presence of an occu-

pational therapist, the automation of this test has the ma-

jor benefit of increased reliability, by discarding the error

caused by the fact that a patient is sometimes assessed by

different people at different times.

In this work, we aim to provide a solution for the general

motion assessment task. Given a training set of 3D skeleton

videos of a properly-performed motion, performed by dif-

ferent people, our goal is to build a statistical model that will

produce feedback and a score and will deal with the chal-

lenges of the assessment task, such as identifying and pay-

ing attention to the most important low-level features and

tracking the motion stages. Our resulting model produces

numerical scores that accurately discriminate between the

possible scores of the FMA assessment, as demonstrated in

Section 5. The main principles of the proposed system are

illustrated in Figure 1.

We eliminate the joint location differences related to the



camera location and the subject skeleton dimensions and

then time-align the training videos, by automatically de-

tecting mutual temporal points-of-interest (PoIs) and forc-

ing them to occur at the same time in all the videos, which

makes frame-level statistics more effective. The FMA mo-

tions in Figure 8, which have structured rests that can have

different lengths, especially when assessing improperly per-

formed motions, support the idea of using temporal PoIs

for time-alignment, rather than existing off-the-shelf algo-

rithms, such as Dynamic Time Warping (DTW) [2], which

gives an equal weight to all the frames. In assessment mode,

we time-segment the frame-level deviations, to eliminate

false values and produce effective feedback, based on pe-

riods in the motion duration that clearly deviate.

The main contributions of this work are as follows. First,

we present a novel step-by-step algorithm for training a

model that produces scores and feedback, by only learning

from a few videos of a properly-performed motion, which

were captured using a relatively cheap and noisy Kinect2

device. Second, as a part of the flow, we present a novel

time-warping algorithm, which is based on detection of mu-

tual temporal PoIs, which in contrast to DTW, produces a

continuous and more accurate alignment, by exploiting the

rests that exist in the structure of FMA motions. Third, we

present a deviation time-segmentation algorithm that deals

with noisy deviations and produces effective feedback. We

demonstrate the robustness of our model by showing its ca-

pability of accurately discriminating between the possible

FMA performance categories using its produced numerical

scores and by showing its accurate and effective produced

feedback. In addition to the scientific contribution, we de-

veloped an open-source Python framework for processing

skeleton videos, with a new human-readable 3D skeleton

video format and a designated 3D player, which we hope

will help facilitate the future research in this domain.

2. Related Work

Skeleton Tasks. While there are only a few works that try

to provide solutions for the problem of motion assessment

from skeleton data, the problems of motion recognition and

person identification have been widely researched in recent

years, especially since affordable devices such as Kinect be-

came available. While solutions for the motion assessment

problem can be adapted to perform motion recognition, so-

lutions that were designed solely for the motion recognition

problem use aggregative high level features [22, 3, 17, 11]

and pay lower attention to timings, which is not satisfac-

tory for the assessment task. However, while similarly to

motion assessment, motion recognition solutions try to get

rid of motion properties that are person specific, solutions

for of person identification [18, 21] try to exploit them to

discriminate between people.

Skeleton Representations. Han et al. [14] divide the

skeleton representations in their review into four main

types of representations: Displacement-based representa-

tions, which can be pairwise or temporal [31, 35, 5, 36, 39,

19, 32, 15], orientation-based representations, which can

be pairwise or temporal [12, 28, 34, 4, 40], representations

based on raw-joint positions, which may only apply geo-

metric fixes and dimensionality reduction methods [26, 16,

33, 13, 41, 7] and multi-modal representations, which com-

bine any of the three types of representations [37, 20, 38]. In

our work, we combine displacement-based and orientation-

based features for alignment of videos in time, while com-

bining all the three types of features for computing scores

and feedback.

Motion Assessment. The problem of motion assessment

from skeletal data has been researched over the last years.

Some systems and algorithms were proposed for both nu-

merical assessment and feedback generation. Paiement et

al. [23] demonstrated assessment of gait-on-stairs motions,

proposing an online assessment algorithm that is based on

Hidden Markov Models (HMM) for dynamics learning and

assessment and on an independent statistical model for pose

learning and assessment, after reducing dimensionality and

filtering noise using Diffusion Maps [6]. They used nor-

mal occurrences of a motion type in order to train a des-

ignated statistical model. Su [27] demonstrated assessment

of shoulder rehabilitation exercises, describing a personal

assistant system that used DTW to match video frame in-

dices to each-other and a fuzzy logic approach to produce

a score for each joint. Parisi et al. [25] demonstrated as-

sessment of power lifting motions, introducing the MGWR

recurrent neural network, an architecture that is trained

to predict the next frame, and presented an algorithm for

real time assessment and feedback generation. Eichler et

al. [8, 9] demonstrated high performance in classification of

two FMA motions into score categories, combining mul-

tiple depth cameras and proposing an algorithm for cali-

bration and improvement of skeleton location predictions.

Palma et al. [24] conducted experiments, trying to find out

the effectiveness of the DTW and HMM solutions for de-

tecting deviations from normality, during the performance

of physical therapy activities. None of the existing works

used deep learning, mainly because they all had to deal with

very small datasets.

Temporal Alignment. The DTW algorithm [27], finds

the optimal monotonic increasing index matching. Its main

limitation is the fact that it only produces discrete matching

between pairs of indices. HMMs [23], on the other hand,

use sequential training samples to learn the state transition

and observation yielding probabilities. Using Viterbi’s al-

gorithm [30], HMMs predict the most likely sequence of



Figure 2: The main model learning flow in high level, which can be seen

as 3-incremental steps.

states that would yield a sequence of observations, under

the Markovian assumption. Its main disadvantage is the

fact that it requires the training data to be annotated with

the motion stages. The Correlation Optimized Warping

(COW) [29] algorithm finds the optimal time-scaling coef-

ficients of uniformly-divided sequence segments. Its main

limitation is the fact that its scales divisions that are based

on timings, rather than on detected events.

3. Training Method

The method we suggest here, is based on taking a set

of videos of different people properly performing the same

motion and extracting frame-level features. As illustrated

in Figure 2, we normalize all the skeletons and project them

on a uniform coordinate system. We then temporally align

the videos, such that each motion stage will occur at the

same time in all the videos. Having these conditions satis-

fied, we extract frame-level features and learn a model. In

Section 4, we describe the analysis process that is applied

on test videos.

Input Format and Mathematical Notation. We assume

that the input to our algorithm is a list of n skeleton videos,

where a skeleton is defined by a set of joints J and the edges

connecting them e = (j1, j2) ∈ E, j1, j2 ∈ J . The location

(x, y, z) of each joint j ∈ J is known at each frame f ∈ F

in each video. Let us denote Fi as the list of frames in video

i, and let us denote Ljfi as the location of joint j in frame

f ∈ Fi.

When we use the notation x̂, we refer to the normalized

version of vector −→x .

Figure 3: Joints A,B,C,D are Spine-Base, Shoulder-Left, Shoulder-

Right and the average of B and C, respectively.

3.1. Video Normalization

The video normalization step is essential for making the

input videos comparable, by removing unneeded, distract-

ing information from the data.

Skeleton Dimension Normalization. We eliminate the

dimensional body differences between the people in the

training set, by forcing equal skeleton edge lengths in all the

frames, in all the videos. For each performing person i, we

compute the average length ‖ei‖ of each edge e = (p, q) ∈
E, over all the video frames, to get a reliable measure of its

length. We then for each edge e = (p, q) ∈ E, compute its

average length ‖e‖ over all the performing people, to get the

designated skeleton edge lengths. We then scale the edges

in all the frames in all the videos, so their lengths will be

equal to the designated skeleton. We use the Breadth-First

Search (BFS) strategy to scan and alter the skeleton joints

hierarchically. We start from an arbitrary joint p and alter

the joint locations according to their BFS order that starts

from p. We set the new location of every neighboring joint

q, by adding the vector −→pq to the new location of p, after

scaling the vector to have the same magnitude as in the des-

ignated skeleton.

Alignment to Body-Plane Coordinate System. We

project all the joint 3D locations on a coordinate system that

is based on a body-center plane that we compute at each

frame. We use the locations of the Spine-Base, Shoulder-

Left and Shoulder-Right joints, which we mark as A,B,C,

respectively, as visualized in Figure 3. Let us define the

point D = 1
2 (B + C), as the average of the two shoulders

B,C. The vector Ŷ will be the normalized vector
−−→
AD. The

vector Ẑ will be the normalized vector
−→
AC×

−−→
AB. The vec-

tor X̂ , will be the normalized vector Ŷ × Ẑ. We project the

joints on the system by multiplying them by a matrix that

consists of X̂, Ŷ and Ẑ as row vectors. We finally subtract

the Spine-Base joint location from all the joints, to translate

the skeleton to the origin.



3.2. Video Temporal Alignment

We detect mutual temporal PoIs in the training videos

and force them to occur at the same time in all the videos, in

order to have more meaningful information at each frame.

We do that by temporally scaling the sequences between

them, such that they will have an equal length in all the

videos. Our scaling is done using linear interpolations of

joint locations.

Active Joint Detection. We want to discriminate between

the active and inactive joints of the motion in order to detect

the rest sequences of the active joints and use their temporal

boundaries as temporal PoIs. Let us introduce Lji, as the

mean of the joint locations Ljfi of joint j in video i, over all

frames f ∈ Fi. We use it to compute the variance σ̂2(Lji):

σ̂2(Lji) =
1

‖Fi‖ − 1

‖Fi‖∑

f=1

∥∥Ljfi − Lji

∥∥2. (1)

We use the mean of the joint variances as a threshold be-

tween the inactive and active joints of the video. We even-

tually consider a joint as active in the motion, if at least

p ∈ [0, 1] of the training videos agreed on it as such, where

p is a parameter. We used p = 0.8 in our experiments.

Rest Sequences Detection. We aim to detect frame se-

quences in which the velocities of the active joints are close

to 0. We start by filtering and smoothing the noisy videos

output by the device using a median filter and a temporal

Gaussian pyramid. We then compute the joint velocities,

given as the discrete temporal derivative of the video, which

is the subtraction of the location vectors of each joint, for

every pair of consecutive frames. We then apply a median

filter on the velocities. We then compute vη as a function

of the velocity v, which flips the velocity values, where

η < −1 is a parameter. We use the mean as a threshold

between rest and non-rest frames. We use η = −1.5 in

our experiments. Figure 4 visualizes this process. We fi-

nally consider a frame as a rest frame, if at least p ∈ [0, 1]
of the active joints consider it as such. In our experiments,

we use p = 0.3. In order to turn the rest indices into rest

sequences, we iterate on the indices. If the difference be-

tween the current index and the previous index is more than

ρ ∈ [0, 1] of the video length, then we decide that the cur-

rent index starts a new sequence. We use ρ = 0.075 in our

experiments. We repeat this step over all the training videos,

minding that different amounts of rest sequences can be de-

tected for each video. We use the median over all the train-

ing videos in order to define the designated number of rests

in the motion. For videos that reported more sequences, we

only keep those that best match in time to the other videos.

Figure 4: Detection of three motion-structural rest sequences using the

velocities of the right hand. From left to right, the raw velocity magni-

tudes (a) are time-filtered (b) and finally flipped and thresholded (c).

Figure 5: The temporal PoI based warping algorithm in two running ex-

amples. The blue and red lines are the hand velocity magnitudes in the

reference and aligned videos, respectively (best viewed in color).

For videos that reported less sequences, we repeat the detec-

tion process, each time multiplying η by 0.9, until enough

rest sequences are detected.

Warping the Videos to Match Temporal PoIs. We use

the rest sequences start and end frame indices as mutual

PoIs and force them to occur at the same time in all the

videos. We choose one of the videos to be a reference, such

that all the other videos will be temporally aligned to it. The

video that is closest to the centroid of all the videos in terms

of PoI indices is selected. Then, for each video we tem-

porally scale the sequences between every pair of adjacent

PoIs, such that their length will be equal to those from the

reference video. Figure 5 illustrates the effectiveness of this

step.

3.3. Model Learning

Based on the fact that the skeletons in all the videos are

normalized and fixed to the body-center plane and that the

videos are aligned in time, the features we extract on every

frame are the 3D locations of the joints, their 3D velocities,

their pairwise distances and the angles between their edges.

Additionally, we use the original lengths of the motion and

the sequences from Section 3.2 as time-related parameters.

Let us introduce oi the observation of the parameter o in

video i. We only use scalars as observations, which means

that vectors, such as locations and velocities, are separated

into their three components. Let us introduce o as the mean

of all the observations oi and oi as the mean of all the ob-

servations excluding oi. We use the leave-one-out method



Figure 6: The assessment method in high level.

to learn the legitimate deviation of each parameter o. We

do that by computing all the differences |oi − oi| and then

computing their mean Mo and standard deviation So, which

we will use for normalizing deviations when we assess in-

put videos. Our final trained model contains the triplets

(o,Mo, So) for every parameter. In addition, it contains the

designated skeleton dimensions from Section 3.1, the video

lengths, the detected active joints, the designated indices of

the PoIs and the original lengths of the sequences from Sec-

tion 3.2.

4. Assessment Method

As shown in Figure 6, given a trained model and an in-

put video to assess, we apply the normalization stage from

Section 3.1, using the designated skeleton dimensions from

the trained model. We then time-warp the input video us-

ing the algorithm from Section 3.2, using the detected ac-

tive joints and rest sequences from the trained model. We

then compute the parameter deviations. For each parameter

o, we denote do as the absolute difference between the in-

put video value and the mean of observations o, which we

have computed in Section 3.3. We then represent the dif-

ference in standard deviations, using the distance mean Mo

and standard deviation So, which we have in the model too:

Do =
do −Mo

So + ε
. (2)

We use ε = 0.0005 in our experiments, to avoid divi-

sion by zero. We threshold the deviations in order to dis-

criminate between accepted and unaccepted ones, using the

threshold parameter γ, which we have set to 2.5 standard

deviations in our experiments:

Do =

{
Do Do > γ

0 otherwise
. (3)

4.1. Parameter Deviation Time Segmentation

We aim to aggregate the frame-level deviations into tem-

poral segments that differ by deviation type, as illustrated in

Figure 7, which is essential for producing meaningful feed-

back and eliminate local deviation noise. As mentioned in

Section 3.3, all the deviations are scalars. Therefore, the ag-

gregated deviation types we support are: 1. No Deviation.

2. Positive Deviation. 3. Negative deviation. 4. Unstable

deviation.

Figure 7: The segmentation aggregates the frame-level deviations

(squares) of each scalar parameter into temporal segments, to produce

higher-level, more meaningful feedback to the user. The algorithm aims to

desirably temporally-segment the deviations, balancing between sequence

classification significance and length (best viewed in color).

Sequence Classification. We build a classifier that will

classify input sequences into one of the four deviation cat-

egories and output classification confidences, which will be

used for finding the optimal time segmentation for each pa-

rameter. For that reason, let us introduce the rate measure

RT , which is the rate of the sequence indices that have de-

viation of type T . We then introduce the scattering measure

ST , which aims to tell how well deviation type indices are

scattered in the sequence. It computes the index variance

of deviation type indices, which we mark as σ̂2(seqT ) and

compares it to the index variance of all the sequence indices,

which we mark as σ̂2(seq). A small difference between the

variances will indicate a good scattering.

ST =

(
σ̂2(seqT )− σ̂2(seq)

σ̂2(seq)

)2

. (4)

We compute the classification score for each elementary

deviation type T , which can be positive, negative or none,

where λ is a parameter that we set to 0.25 in our experi-

ments:

ScoreT = λRTST . (5)

We then compute the rate measure of the unstable devi-

ation type R∼ = min(1, ρ · min(R+, R−)), where ρ is a

parameter that we set to 2 in our experiments and R+, R−
are the rate measures of the positive and negative deviation

types, respectively. The scattering measure S∼ is simply

the average of the scattering measures of the positive and

negative deviation types. The final score of the unstable de-

viation class is then computed as Score∼ = R∼S∼. We

finally add another dummy deviation type that is used to

catch all the cases that do not have a clear classification,

with score Score∗ = min(1 − S+, 1 − S−, 1 − S0). We

apply the Softmax function on the vector of scores and out-

put the class with the highest score. If the dummy class has

the highest score, then we output zero score, to prevent the

sequence from becoming a segment.

Optimal Time Segmentation. The trivial, yet useless op-

timal segmentation will be treating each frame as a perfectly

classified segment. We exclude such segmentations, by re-

warding longer sequences, by multiplying their classifica-

tion scores by (1 + ln(|seq|))ξ, where |seq| is the sequence



length and ξ ∈ R is a parameter. We use ξ = 0.2 in our

experiments. Let us define L = {0, 1, ..., |seq| − 1} as the

set of all frame indices in the sequence seq. Let us denote

P(L) as the power set of L, such that |P(L)| = 2|seq| and

such that every l ∈ P(L) is a sorted array. We want to find

the subset of sorted indices l ∈ P(L) that gives the highest

average classification score when used as boundaries, which

denote |l|+ 1 segments. We therefore want to find

arg max
l∈P(L)

{
1

|l|+ 1
[cs(seq[0 : l[0]])+

|l|−1∑

i=1

cs(seq[l[i− 1] : l[i]]) + cs(seq[l[|l| − 1] : |seq|])

,

(6)

where the function cs(sequence) returns the sequence

classification score, multiplied by the sequence length re-

ward and where seq[i : j] is the subsequence of seq from

index i to index j, non inclusive. In order to find the opti-

mal segmentation, we implement a dynamic programming

algorithm, with the array Scores that will store for each in-

dex in the sequence the score of the best segmentation up to

that index, such that for each i ∈ {1, 2, |seq| − 1}:

Scores[i] = max
0≤j<i

{
1

Segj + 1
(Scores[j] · Segj

+ cs(seq[j + 1 : i+ 1]))}

, (7)

where Segj denotes the number of segments in the opti-

mal segmentation up to index j.

4.2. Numerical Assessment Score

We aggregate the parameter deviations into a final qual-

ity score. We reduce noise by utilizing the classified seg-

ments from Section 4.1, discarding all the deviations that

were not a part of a segment classified as deviating. We

divide our parameters into three sets: A,N and T , which

are the set of active-joint related parameters, the set of non-

active joint related parameters and the set of time-related

parameters, respectively, as described in Section 3.3. For

each set S ∈ {A,N, T}, we define the subset Sd ⊆ S to

be the set of all the deviating parameters from S. We re-

duce more noise by multiplying all the active-joint related

deviations by αd, where α ∈ (0, 1) is a parameter and d is

the average number of deviating segments. We do it as we

expect longer, yet fewer deviating segments on improper

performances. We use α = 0.75 in our experiments. The

score of the parameter set S will be:

Score(S) = 1−min(1,
1

|S|

∑

s∈Sd

s), (8)

We then compute the final score using the weight param-

eters αA, αN , αT ∈ R, such that αA + αN + αT = 1,

which determine the weights of active joint related param-

eters, non-active joint related parameters and time parame-

ters, respectively. The final score we output is:

Score = αAScore(A) + αNScore(N) + αTScore(T ).
(9)

In Section 5, we demonstrate how the produced score

accurately discriminates between motions of different per-

formance qualities. We use αA = 0.73, αT = 0.25 and

αN = 0.02 in our experiments. We use a low value for

αN in order to almost cancel its contribution to the score,

while keeping the non-active joint deviations usable for tex-

tual feedback production.

4.3. Feedback Generation

We utilize the output of the deviation segmentation algo-

rithm described in Section 4.1 and collect all the segments

that were not classified as proper ones, where each segment

represents the behavior of a single parameter over a range

of time. Since all our parameters are scalars, the deviation

types can only be too high, too low or unstable. An exam-

ple for such a segment can be a too high horizontal velocity

of the right elbow, between two points in time. In addition

to the joint-related deviations, we also use all the time pa-

rameters. We compute the loss each segment has caused to

the final score, according to the process described in Sec-

tion 4.2 and sort them by importance, to output the most

crucial and effective feedback items. We stop generating

feedback items when the loss of the current item is less than

a half of the loss of the previous item, or when we have al-

ready output five items. Figure 10 demonstrates feedbacks

that were generated by the algorithm.

5. Experimental Results

FMA Motion Dataset. We tested our method on a dataset

of three FMA motion types that are illustrated in Figure 8.

We acquired it in a hospital, under guidance of an occu-

pational therapist, who also labeled the motions with FMA

scores. These motions have 3 possible scores: 0 if the mo-

tion cannot be performed, 1 if it is improperly performed,

or 2 if the motion is properly performed. The properly-

performed motions, which are the only motions we use for

training, were performed by the medical staff, men and

women ranging between 30-60 years old. The other mo-

tions, were performed by the Occupational Therapy de-

partment patients, men and women ranging between 45-75

years old, who were recovering after strokes. The numbers

of training and testing video clips are detailed in Table 1 and

Table 2, respectively.

Motion Structures and Objectives. As illustrated in Fig-

ure 8, in motion number 1, the patient should raise their



Figure 8: Representative frames from proper performances of the three

FMA motion types our model has been trained and tested on. The first

motion contains three motion rests, while the second and third motions

contain one rest each.

hand in front of their body with a fully extended elbow,

such that their shoulder is in 90◦, then raise their hand un-

til it is straight above their head, keeping their elbow ex-

tended, then lower their hand back to the front of the body

and finally, lower and relax their hand. In motion number 2,

the patient should raise their hand aside of the body with a

fully extended elbow, such that their shoulder is in 90◦, then

lower and relax their hand. In motion number 3, the patient

should raise their hand and touch their head, by raising their

elbow aside of the body and bending it, with shoulder in

90◦, then lower and relax their hand.

Evaluation and Ablation Study. We aim to show that

even though the model has only been trained on properly-

performed motions, the numerical scores it produces can ac-

curately discriminate between videos from the three FMA

score groups. When we assess videos from classes 0 and 1,

we will use a model that has been trained on all the proper

videos of the motion. When we assess videos from class 2,

which are the proper videos, we will use a dedicated trained

model for each tested video, such that the videos of the

tested person will not be included in the training set. As il-

lustrated in Figure 9, for each of the three motions, we look

for the pair of thresholds that will most accurately divide

the scores into the three classification groups and show the

confusion matrix they produce. Table 3 shows the results of

the ablation study we have conducted. Since our test data

contains videos of real patients, who usually perform the

motions slowly, we also show the classification accuracies

with αT = 0, to demonstrate that our model can accurately

discriminate between the categories even when timings are

ignored. In addition, we turn on and off the joint-grouping

feature, denoted by JG, the time-warping feature, denoted

by TW and the deviation-segmentation feature, denoted by

DS, to demonstrate the importance of each. The joint group-

ing feature is responsible for giving joints that were detected

as active a higher weight in the score. The time-warping

feature is responsible for video alignment during training

Figure 9: From left to right, the average classification F1 scores at each

pair of thresholds, of our three tested FMA motion types and their corre-

sponding confusion matrices with the best pair of thresholds (best viewed

in color).

Motion #Clips #People #People with Two Clips

Motion 1 11 7 4

Motion 2 9 5 4

Motion 3 19 10 9

Table 1: The numbers of training videos and performing people per motion

type. The training videos only contain properly-performed motions.

Motion #Class 0 clips #Class 1 clips

Motion 1 15 8*

Motion 2 5 7

Motion 3 6 11

Table 2: The number of testing videos of classes 0, 1 per motion. (*) As

we only had a single genuine video of class 1 for Motion 1, we added seven

artificial videos, by applying minor distortions on proper videos.

and testing. The deviation-segmentation feature is responsi-

ble for exclusion of deviating parameters that do not belong

to a deviating segment. The ablation study demonstrates

the essentiality of each component and the superiority of

our temporal PoI based time warping algorithm over DTW.

The COW time-warping results were excluded, as they un-

derperformed both DTW and our warping algorithm.

Produced Feedback Examples. We used the feedback

generation method detailed in Section 4.3, to generate tex-

tual feedback for the most crucial deviations of each of the

tested videos. As explained in the method in Section 4.3,

the number of feedback items can differ between videos and

depends on their relative significance. Figure 10 shows rep-

resentative frames from improperly performed motions and

the feedback that has been generated for them.

6. Conclusions

In this work, we presented an automatic end-to-end mo-

tion assessment and feedback generation algorithm that

only learned from properly-performed motion videos, with-

out further annotations and which overcame the data noisi-

ness of the relatively cheap Kinect2 device. We introduced

a novel continuous time-warping algorithm, based on mu-



Setting Metric Motion 1 Motion 2 Motion 3 Average

αT = 0.25 / αT = 0 αT = 0.25 / αT = 0 αT = 0.25 / αT = 0 αT = 0.25 / αT = 0
TW Mean F1 0.73 / 0.72 0.80 / 0.57 0.78 / 0.70 0.77 / 0.66

MSE 0.32 / 0.41 0.33 / 1.00 0.17 / 0.25 0.27 / 0.55

JG+TW Mean F1 0.76 / 0.83 0.78 / 0.58 0.80 / 0.73 0.78 / 0.71

MSE 0.29 / 0.24 0.24 / 0.43 0.14 / 0.22 0.22 / 0.30

JG Mean F1 0.77 / 0.82 0.86 / 0.70 0.78 / 0.76 0.80 / 0.76

MSE 0.59 / 0.18 0.14 / 0.24 0.17 / 0.19 0.30 / 0.20

DS Mean F1 0.83 / 0.82 0.82 / 0.78 0.85 / 0.84 0.83 / 0.81

MSE 0.24 / 0.62 0.19 / 0.24 0.14 / 0.14 0.19 / 0.33

DS+TW Mean F1 0.84 / 0.74 0.82 / 0.77 0.85 / 0.82 0.84 / 0.78

MSE 0.32 / 0.68 0.19 / 0.24 0.14 / 0.17 0.22 / 0.36

DS+JG Mean F1 0.93 / 0.90 0.87 / 0.81 0.91 / 0.87 0.90 / 0.86

MSE 0.06 / 0.18 0.14 / 0.19 0.06 / 0.11 0.09 / 0.16

DS+JG+DTW Mean F1 0.96 / 0.90 0.83 / 0.74 0.94 / 0.91 0.91 / 0.85

MSE 0.03 / 0.18 0.19 / 0.24 0.06 / 0.08 0.09 / 0.17

DS+JG+TW Mean F1 0.94 / 0.90 0.92 / 0.81 0.96 / 0.91 0.94 / 0.87

MSE 0.15 / 0.18 0.10 / 0.19 0.03 / 0.08 0.09 / 0.15

Table 3: Ablation study. The mean F1 score and the corresponding MSE refer to the classification with the best pair of thresholds.

Figure 10: The generated textual feedbacks on improperly performed motions, using the trained models, which were only trained on proper motions.

tual PoIs that were automatically detected and extracted

from the training samples. Using additional techniques,

such as active joint detection and parameter deviation time-

segmentation, we demonstrated the robustness of our model

on FMA motions, even without time-warping and when ig-

noring the almost obviously deviating patient timings.

In the future, we plan to extend this work and demon-

strate its natural adaptation to other medical tests, such as

Berg Balance Scale (BBS) [1]. Additionally, we plan to ex-

tend and improve the work by extending the variety of PoI

types used as warping anchors. Another future direction

may be the synthesis of training samples from our statistical

model, which may serve as an input for learning algorithms

that are based on the availability of large training sets.
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