
 

 

 

Abstract 

 

Body temperature acting an important role in medicine, 

a number of diseases are characterized by a change in 

human body temperature. Monitoring body temperature 

also allows the doctor to track the effectiveness of 

treatments. But current continuous body temperature 

measurement (CBTM) system is mainly limited by reaction 

time, movement noise, and labor requirement. In addition, 

the traditional contact body temperature measurement has 

the problem of wasting consumables and causing 

discomfort. To address above issues, we present a non-

contact, automatic CBTM system using a single thermal 

camera. By applying deep-learning based face detection, 

object tracking, and calibrated conversion equation, we 

can successfully extract subject’s forehead temperature in 

real-time. The experimental results show that the overall 

mean absolute error (MAE) and root-mean-squared-error 

(RMSE) of our proposed framework compared with 

industrial instrument are 0.375 °C and 0.439 °C, 

respectively.  

 

1. Introduction 

Body temperature is one of the most important vital signs 

in human bodies. By monitoring the subject's body 

temperature, it is most directly known whether the patient 

has a fever or not, and even further can speculate on the 

effect of the treatment on the patient. It is especially 

important for users who need long-term monitoring (e.g., 

infants and the elderly). So now in hospitals, the body 

temperature is an indicator most commonly used by 

physicians to judge the subject's physiological conditions. 

Therefore, automated CBTM system has become a 

worldwide research issue, and the main goal is to measure 

body temperature accurately and for a long time.  

As [1] mentioned, today's continuous body temperature 

measurement methods can be mainly divided into 2 types: 

the direct contact type and the non-contact type. The contact 

measurement method has the advantages of being 

unconstrained by the environment and having a wide 

temperature measurement range (about -90 °C to 300 °C). 

At present, most of the contact methods are used to measure 

body temperature (e.g., medical thermometers and 

thermistors), but this method not only requires labor, time 

and consumables, but also increases the workload of the 

care workers and causes a waste of resources. In addition, 

for the accuracy in the measurement process, the subject's 

activities will be limited, and the process may also cause 

discomfort. In contrast to the contact methods, non-contact 

body temperature measurement uses infrared (IR) 

techniques that do not require any contact with skin tissue 

during the procedure. Two types of infrared systems are 

mainly used, IR thermometers and thermal cameras. In this 

work, we chose the thermal camera to visualize the body 

temperature as an image, and measure the temperature at 

many points over a specific area. 

This paper is organized as follows. In Section 2 presents 

the related work. In Section 3, we describe the proposed 

framework and our methods. In Section 4, the experiment 

and results are presented. Discussions and possible 

improvements for this work are drawn in Section 5. Finally, 

the conclusion is given in Section 6. 

2. Related Work 

Many papers on CBTM have been proposed today, while 

the main measurement methods are using non-invasive 

contact sensors. As W. Chen et al. introduced in [2], they 

use thermistors to monitor the baby's body temperature. 

However, when the user moves, the measured resistance 

will shift and cause temperature changes and errors. Also, 

it takes a long time to wait for the stable measurement 

reaction time, so the baby's body temperature cannot be 

known immediately. To improve the reaction time, the 

paper [3] proposed a multiple Artificial Neural Networks 

(ANNs) based wearable CBTM method to correct the 

thermistor, but the temperature will still be interfered by the 

user's movement. In 2018, NA. Livanos et al. proposed a 

handheld device using passive microwave radiometer 

(MWR) technology to measure the internal body 

temperature of a human body [4]. The device uses a non-

contact measurement method to avoid user’s movement 

artifacts. However, this device requires the user to aim at 

the part that he wants to measure, so the automatic 

measurement cannot be achieved.
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Figure 1. The proposed thermal camera-based continuous body temperature measurement framework. 

Face detection is a very popular research topic in image 

processing, which has also been developed very maturely 

in the field of general full-color RGB cameras. On the other 

hand, to the best of our knowledge, there are currently three 

main methods for face detection in thermal images: 

1) Image Projection method firstly convert thermal 

image to gray-scale image, and binarize the image by using 

the Ostu’s method. After that, the vertical and horizontal 

projection of the binarized image is calculated, facial part 

can be defined from projection curve finally. In [5][6], this 

method has achieved good results and short processing time. 

However, it can only detect one face at a time. 

2) Haar-Cascade method also known as Viola-Jones (VJ) 

method [7]. It can detect objects based on Haar-like features, 

Integral image, Adaptive Boosting (AdaBoost), and 

Cascade Classifier. This method has been successfully 

applied in several object detection applications such as face, 

animal, and vehicle detection. Authors of [8][9] used this 

algorithm to detect thermal face; however, the presented 

results indicated that the method was sensitive to the 

subject’s head movement. 

3) Machine Learning-based method was proposed in 

[10][11], the authors introduced a high-resolution thermal 

facial image database, which can be used to adapt methods 

from the visual domain for IR images. But unfortunately, 

the training images data of this database is too different 

from our camera specifications (our image has a poor-

resolution while their database were recorded with 

1024x768 pixel-sized). The application way are also 

dissimilar, so it is not suitable for this paper. 

To sum up of the advantages and disadvantages of above 

papers, it can be observed that the current CBTM system is 

mainly limited by reaction time, movement noise and 

whether it can achieve automation. In this paper, we 

proposed a novel system according to these limitations. We 

used a thermal imaging sensor to build a non-contact 

CBTM system, and added the neural network-based face 

detection method and object tracking algorithm. After the 

thermal face detection is performed, the face is 

automatically tracked and the surface temperature in the 

region of interest (ROI) will be measured. 

3. Methods 

As the proposed framework illustrated in Figure 1, we 

adopt a FLIR Lepton 2.5 with breakout board to fetch 

sequential thermal images of subjects. FLIR Lepton 2.5 is a 

long-wave infrared (LWIR) camera sensor. It can capture 

infrared radiation input and output a uniform thermal image, 

where image size is 80x60 pixels, and thermal sensitivity is 

less than 50 mK (0.05 °C). The sensor’s export compliant 

frame rate is around 9 Hz, video data can be accessed 

serially via the Serial Peripheral Interface (SPI) protocol. 

Each frame is analyzed with the proposed framework. 

First of all, we use thermal face detection and tracking to 

locate the ROI in the facial part. Next, the raw value of body 

surface temperature is extracted from the determined ROI, 

and then pass through the calibrated formula to get the 

result. Our methods are constructed on the NVIDIA Jetson 

TX2 and written with C++ language and OpenCV library. 

3.1. Thermal Face Detection 

In this work, a good face detection is an important step 

for further processing. To achieve this goal, we decided to 

train a new model based on deep-learning method. Our 

method adopted the Single-Shot-Multibox Detector (SSD) 

[12] with MobileNet [13]. The MobileNet-SSD architecture 

is shown in Figure 2. One issue with deep-learning is the 

heavy demand for training data. To tackle this problem, we 

transferred the learned weights from pre-trained model [14], 

and fine-tuned it to our thermal images. This transferred 

learning process helped our detection model capture the 

features of thermal face with only a small dataset. The data 

used in our work came from a series of  real-time execution,



 

 

Figure 2. The overview of detection network architecture. Here, classes indicates the number of classes, which is 2 (thermal face and 

background) in this paper. 

 

Figure 3. The result of deep-learning based thermal face 

detection. 

which we sampled 1000 images in total. Among these 

images, 80% are used for training, 10% for validation, and 

10% for testing. After 20000 iterations, our model had a 

loss rate of 0.169352. If any face is found, it returns the 

positions of detected faces as (1): 

 (1) 

where  and  represent the coordinate of the top-left 

corner,  means width of the rectangle and  for height. 

Once we get these locations, we can easily draw a green 

rectangle for the face. Figure 3 shows the corresponding 

results of our thermal face detection. 

3.2. Face Tracking 

Although our deep-learning based face detection can 

accurately determine the location of the face in each frame, 

there is a disadvantage that the processing time is too long, 

leading to a decrease in frames per second (FPS). Therefore, 

we have added face tracking algorithm to improve the FPS 

in this system. Once the face is detected, kernel correlation 

filter (KCF) tracker [15] will be used to track the face region 

across each images. KCF is a highly accurate tracking 

algorithm. The general flow of the algorithm is as seen in 

Figure 4. 

Figure 4. General flow of KCF algorithm. 

 

Figure 5. The illustration diagram of ROI assignment. 

3.3. ROI Locating 

After the face detection and tracking, we can determine 

the position of the subject’s face in consecutively frames. 

For the subsequent measurement of body temperature, we 

use the face facial features to define the forehead area as 

our ROI (see Figure 5). The formula is defined as (2) and 

(3) below. 
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 (2) 

 (3) 

3.4. Body Temperature Measurement 

By referring the document [16], when radiometric mode 

is enabled, the 14-bit pixel value from Lepton is stabilized 

and normalized. A scene will correspond to a particular 

value in the video stream. The signal from the camera is 

called flux-linear because it is linear to the radiometric flux 

within Lepton’s spectral band. The flux-linear signal is 

related to scene temperature by the Planck curve: 

 (4) 

where  is the output signal.  and  define the spectral 

band.  is Planck’s constant.  is the velocity of light.  is 

Boltzmann’s constant.  is the camera responsivity.  

is absolute temperature in units of Kelvin. 

Since equation (4) is impractical to calculate in software, 

the conversion is typically approximated by equation (5):  

 
(5) 

where  denotes the output signal from the camera. , , , 

and  are parameters generated during calibration.  is the 

target’s absolute temperature in units of Kelvin. The 

conversion from flux to temperature is performed using the 

inverse of equation (5). So we can express equation (5) as: 

 (6) 

3.5. Parameters Updating 

In this paper, we can use the FLIR Lepton 2.5 camera 

sensor to get the thermal scene. However, the output of this 

camera is the unstabilized 14-bit pixel value instead of the 

actual temperature value. Therefore, in order to get accurate 

human body temperature, we must first perform the 

radiometry calibration on this sensor. According to the 

specification manual [16], we used the Keysight U5855A 

thermal imaging camera with temperature-variety water to 

correct the , , , and  parameters used in equation (6). 

Ideally, the heat source should be located at the distance 

similar to targets of interest in the applications. In this study, 

our system is measuring subjects at 40-80 cm to the camera. 

For the purpose of collecting data for curve-fitting, it is 

recommended to average the values in a ROI of the image. 

Typical expected ranges for , , , and  parameters are 

revealed in [16], which are shown below: 

 (7) 

The  parameter is generally not varied from a value of 

 except for measuring a very high scene temperature 

outside of camera’s valid range. The typical values for  

parameter is , which is given in the document. If  

and  are fixed at the typical values, it is possible to 

calibrate the  (the camera responsivity) and  (the offset) 

by fitting the regression line. Figure 6 shows the output 

curve fitting with the nonlinear least squares (NLS) method. 

The calibrated value of  and  are  and  

, respectively. Finally, we can rewrite equation (6) 

to equation (8): 

 (8) 

where  is our measured skin temperature in units of 

Celsius.  denotes the output signal from the thermal 

camera. Through equation (8), we can get the forehead 

temperature  (in units of Celsius) in each frame. 

 

  

Figure 6. The fitting result of measured output. 



 

 

Figure 7. Illustration of the study setup. 

Figure 8. Experimental protocol. 

4. Experiment and Results 

4.1. Experimental Setup and Protocol 

The experiment was conducted with 6 healthy subjects 

(4 males and 2 females). During the experiment, the FLIR 

thermal camera was set up 40-80 cm in front of the subjects 

to capture the sequential images at the speed of 26 FPS. All 

subjects were instructed to sit and maintain a stationary 

state. Furthermore, the Keysight U5855A camera was also 

placed to synchronize the ground-truth (GT) temperature at 

the maximum speed of 8 FPS. Figure 7 illustrates the 

measurement scenario. 

In addition, the study protocol was carried out in a period 

of 16 minutes, which is represented in Figure 8. First, we 

measured the stable body temperature for two minutes 

(Phase A). Then, in order to simulate the change of body 

surface temperature, we put an ice bag and hot bag on the 

subject's forehead for two minutes, and then measured the 

body temperature change trend for five minutes,  

respectively (Phase B and C). 

4.2. Experiment Results 

In this paper, we adopted mean absolute error (MAE) and 

root-mean-squared-error (RMSE) metrics to express the 

difference between the proposed framework and the 

verified device. The operations are shown in (9) and (10). 

Table 1 shows the evaluation results provided by each 

subject. 

 (9) 

 (10) 

where  is the average temperature of all pixel points in 

ROI.  denotes the average temperature of similar area 

acquired from the GT device. These values are compared 

every 10 second.  refers to the number of obtained 

temperature within 10 second. 

Finally, Figure 9 presents an example of the temperature 

estimated from our methods as well as the temperature 

corresponding to the GT. These representative signals are 

from subject 6. 

 

Table 1. The results of the proposed CBTM system. 

Subject 
Phase A Phase B Phase C 

MAE RMSE MAE RMSE MAE RMSE 

1 0.423 0.459 0.391 0.412 0.278 0.365 

2 0.482 0.556 0.347 0.461 0.408 0.478 

3 0.358 0.422 0.491 0.524 0.391 0.431 

4 0.181 0.223 0.476 0.492 0.452 0.597 

5 0.472 0.579 0.386 0.420 0.435 0.509 

6 0.142 0.179 0.324 0.400 0.321 0.417 

Average 0.343 0.403 0.402 0.451 0.380 0.466 

The unit of the values are Celsius (°C). 

 

Figure 9. Representative example of the temperature of subject 

6. The blue line indicates the temperature obtained from our 

system and the red line represents the ground-truth (GT). 
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5. Discussion 

5.1. Face Detection 

We have described a deep-learning approach to achieve 

this function. Although deep-learning based method 

requires more computing power and time than traditional 

image processing methods, it can overcome uncontrolled 

and complex environments in practical applications (i.e., in 

bedtime condition or some heat sources in background). On 

the issue of computing speed, we added a tracking method 

to improve the FPS of our system (from ~10 FPS to 26 FPS), 

the deep-learning based detection method will only be 

reused in the first frame or lost tracking. Therefore, we can 

fulfill the good detection accuracy and low execution time 

at the same time.  

5.2. Experiment Methods 

Our experimental results are compared with an industrial 

instrument. However, this limits our ability to only require 

the subject to remain stationary state during the experiment 

because it cannot track a specific area like our proposed 

system. For further experimentation, it is recommended to 

use an additional contact sensor such as medical 

thermometers or thermistors. In doing so, there may be a 

deviation between our non-contact method and contact 

method needs to be adjusted. 

5.3. Future Work 

In addition to body surface temperature, it is also 

possible to measure the core temperature of the human body. 

The scholars of the paper [17][18] used the body surface 

temperature ( ), heat flow ( ), heart rate ( ) and other 

parameters to estimate the change of core temperature, 

which is also one of the main researches in the future. 

Since thermal images have many advantages, such as 

unaffected by illumination variation, working well in 

darkness, and hard to fake than visible images, they are 

widely used in biometric applications. In the future, we can 

combine thermal face recognition and vital signs (i.e., pulse 

rate and respiration rate) monitoring under daily life. 

6. Conclusions 

In this paper, we developed a real-time, and contactless 

CBTM system with a low-cost and poor-resolution LWIR 

camera. To locate the subject’s face, we trained a new 

model based on deep-learning method with our own dataset. 

We also applied a tracking algorithm to track detected face. 

Further, the immediate forehead temperature is obtained by 

the calibrated conversion formula. The experiment for the 

proposed framework shows that our system’s overall mean 

absolute error (MAE) and root-mean-squared-error (RMSE) 

are 0.375 °C and 0.439 °C. 
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