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Abstract

Apnea detection is extremely important in neonatal set-

tings because hypoxia can lead to permanent impairment.

Short cessations of breathing are very common in infants

and could be used for example for the prediction of longer

apneas. The aim of this study is to investigate the accu-

racy of our on-line cessation of breathing detector. Sig-

nals obtained through camera-based respiration monitor-

ing were analyzed in five infants with 91 annotated cessa-

tions of breathing. The method proposed is based on the

comparison of short-term and long-term standard devia-

tions allowing the detection of sudden amplitude reduction

in the signal with a low latency. A new strategy able to de-

tect short cessations of breathing on-line was successfully

validated yielding an average accuracy of 93%.

1. Introduction

Vital signs are of critical value to check the health of

premature infants. Their monitoring is therefore standard

practice in Neonatal Intensive Care Units (NICUs). Since

Apnea Of Prematurity (AOP) is common in this population,

continuous respiration monitoring is crucial [11]. Apneas

are prolonged pauses in the respiration and are common

in infants with a gestational age below 34 weeks [12], the

hypoxia typically associated with apnea could cause long-

term or permanent impairment [14]. Respiration monitoring

based on Chest Impedance (CI) currently used in NICUs

presents limitations when detecting apneas, in particular,

cardiac artifacts are a common cause of missed apnea de-

tection [24], moreover, motion artifacts and other thoracic

movements can also be misinterpreted as respiration [7].

Apneas are strictly defined as a Cessation Of Breathing

(COB) longer than 20 seconds or a COB of 10 seconds ac-

companied by bradycardia and/or desaturation [28]. How-

ever, discussions on the definition of clinically relevant ap-

neas move the focus also on shorter COB [13]. Short apneic

episodes are common in infants and are defined as a respi-

ratory pause of at least 3 seconds [8]. Moreover, this type of

events can provide insights on the infant’s respiratory sys-

tem [33] and lead possibly to apnea prediction [6].

Since adhesive electrodes and sensors can cause stress or

even skin damage to the infants’ sensitive skin [1], research

in this field has been focusing on alternative non-contact

respiration monitoring techniques. Between these, radars

[21, 15], RGB or Near InfraRed (NIR) cameras [35, 23, 22],

vision system based on depth sensing [5, 29] , thermal cam-

eras [27, 2], and pressure sensitive mattress [19, 4] are the

most researched for respiration monitoring in a NICU en-

vironment. Cameras represent one of the best solutions

for NICUs applications. In the first place, because they

are completely unobtrusive passive sensors and they allow

to monitor multiple vital signs simultaneously. Moreover,

cameras also provide contextual information that would be

useful to nursing staff for infants’ observation, and it would

promote family-centred NICUs through live video feed to

parents [31].

In this paper, we propose an approach for the on-line de-

tection of short apneic events through camera-based res-

piration monitoring. Many methods for respiration detec-

tion algorithms using cameras have been proposed targeting



Figure 1. Main processing steps leading to the detection of Cessation Of Breathing (COB).

an infant population. Jorge et al. [18] proposed a camera-

based approach for respiration monitoring based on a skin

detection algorithm, which is not ideal for NICUs applica-

tions since infants’ abdominal areas are commonly covered

with blankets or snuggles. Though remote PPG-based ap-

proaches, e.g. [32], also rely on skin visibility, they can

work on facial skin that is more likely uncovered. How-

ever, motion robustness necessitates multi-wavelength cam-

eras. RGB-cameras are a seemingly logical choice, but vis-

ible illumination may disturb sleep and is therefore not al-

lowed. Proposals using wavelengths in the infrared range

suffer from high cost of multi-wavelength cameras, or par-

allax when using 3 cameras in parallel. Therefore, remote

PPG-based solutions are not straightforward in such a com-

plex environment. However, when monitoring respiration

based on motion, skin visibility and color information are

not indispensable for the signal detection. For example,

Allinovi et al. [3] proposed a method based on maximum

likelihood modeling and motion magnification able to auto-

matically select the Region Of Interest (ROI). The method

proposed was tested on a limited dataset of adults and in-

fants videos, with a window size of 20 seconds for estima-

tion of the respiration signal and the respiration rate. The

latency (caused by the processing window) is particularly

important when aiming at apnea detection and therefore,

the method proposed by Janssen et al. [16] was preferred

as a starting point for our work. The method, called Video

Respiration Monitoring (VRM), was extensively tested on

adults videos, but limited experiments were performed on

infants. Still, we consider this method very appealing for

NICU-applications, particularly because of its attractive au-

tomatic ROI detection independent on skin visibility and the

low latency of the method.

The output of the VRM algorithm is used as starting point

for the detection of short apneic events in the respiration

signal. Other works have been focusing on apnea detection

strategies starting from video extracted respiratory signals,

Jorge et al. [17] proposed an approach based on camera

where COB longer than 20 seconds were classified based

on the Respiration Rates (RRs). If the RRs of the videos

were lower than 20 breaths per minute for a period longer

than 20 s and no other motion was present in the video seg-

ments then it was classified as an apnea. However, aiming

at the detection of short apneas time-domain approaches are

preferable being more sensitive to particularly short varia-

tions. Also Cattani et al. [9] tested camera-based respira-

tion signal for the detection of apneas. The apnea detection

strategy was to compare the time domain signal with an em-

pirical constant threshold equal to 0.14. Constant thresholds

have the drawback of not being able to adapt dynamically to

changes in the signals, such as reductions in amplitude. Lee

et al. [24], instead, proposed an approach based on mod-

eling the distribution of normal breathing patterns and ap-

nea ones reaching an average detection performance over

90% by analysing chest impedance signals. The approach

is, however, suitable only for retrospective analysis as spec-

ified by the authors, since the empirical parameters were

optimized after filtering and baseline removal of the entire

signal. This method has been widely used in apnea related

publications, e.g. [26, 25, 10, 34], and has also been em-

ployed for the detection of short apneic events [6], therefore

we decided to use it for comparison purposes.

The main contribution of this work is the development of an

on-line short cessation of breathing detection strategy based

on the comparison of the short-term standard deviation with

the long-term standard deviation. The respiration rate is ob-

tained as a byproduct of our processing. This is the first

method able to detect short cessations of breathing with a

low latency. The rest of the paper is organized as follows:

Section 2 explains the method used and the dataset, Section

3 presents the results. Sections 4 and 5 contain respectively

the discussion and the conclusion.

2. Materials and methods

2.1. Method

Figure 1 summarizes the principal steps of the process-

ing algorithm. The NICU-videos are input to our process-

ing. The VRM-algorithm of Janssen et al. (Section 2.1.1)

is used to extract the respiratory signal. On this respiratory



signal, we run our COB-detector described in Section 2.1.2.

Additionally, we compute and output the respiratory rate.

In our benchmarking, we shall compare our COB-detector

with the results from Lee et al. [24], and the RR with the

CI-reference. The proposed algorithm was implemented in

MATLAB (MATLAB 2018b, The MathWorks Inc., Natick,

MA, USA).

2.1.1 Video respiration monitoring algorithm

The VRM algorithm proposed by Janssen et al. in [16]

is a respiration-motion detection algorithm based on Opti-

cal Flow (OF). The algorithm automatically detects the ROI

for respiration detection and returns the respiration signal.

When motion not related to the respiration is detected, the

respiration waveform is put to zero and a template indicat-

ing that motion unrelated to respiration is present can be

obtained. The same parameters introduced in the paper for

the neonatal case were used in this work.

The CI signal and the respiration signal obtained from the

videos are both filtered using a band-pass Butterworth fil-

ter of the 4th order between 30 and 80 Breaths Per Minutes

(BPM) since this is the normal range of respiration rate in

NICU infants including also tachypnea cases [30]. The sig-

nals have different sampling frequencies corresponding to

15 frames per second or 20 frames per second depending

on the acquisition and are processed with a sliding window

approach with a window size of 3 seconds and a slide of 1
frame.

2.1.2 Cessation of breathing detection

In case of a central apnea breathing cessation, a strong

decrease in amplitude of the respiratory signal could be ex-

pected. Hence, our proposed COB-detector aims at signal-

ing relative decreases in standard deviation of the respira-

tory signal. Such a decrease can be recognized, by the short-

term standard deviation σs becoming significantly smaller

than the long-term standard deviation σl. Parameters in

such an approach are the window-lengths for computation

of the two standard deviations, and the threshold to define if

a drop is “significant”. Therefore, two window lengths are

defined: a short window ls in which a feature, correspond-

ing to the short-term standard deviation, is estimated, and a

long window ll in which the long-term standard deviation

is calculated. The calculation of σl is performed as median

of the previously evaluated σs. The median operation was

preferred to the average for its robustness to outliers that

can be present as sudden high signal amplitude due to unde-

tected non-respiratory motion. The duration of ls and ll was

chosen considering the length of the targeted COBs, which

varies from 3 to 10 seconds. Moreover, the short window

should contain at least a single period of respiration to be

able to detect also the RR. Since the minimum RR expected

is 30 BPM, ls can be minimum 2 seconds. We arbitrarily

decided to use a ls equal to 3 seconds. Furthermore, a too

long ll will cause the threshold to not adapt dynamically to

changes in the amplitude of the signal. While, a too short ll
will result in adapting also during apneic events. Therefore,

as a compromise ll was chosen to be equal to 11 seconds.

More formally, let resp(nTs) be the time domain signal af-

ter filtering obtained either from videos or from the refer-

ence, n depends on the current window and it is defined as

n = 0 + (j − 1), 1 + (j − 1), ..., N + (j − 1). Where,

j indicates the current window, the number of samples per

window is N = ls/Ts and Ts the sampling time. Then the

short-term standard deviation is evaluated according to:

σs(j) =

√

∑N+(j−1)
n=0+(j−1)(resp(nTs)− µ(j))2

N
, (1)

where, µ(j) is the average of resp(nTs). Thus, a value

corresponding to the standard deviation of the time-domain

signal will be obtained for each 3 seconds window. The

long-term standard deviation will be evaluated on a window

length ll equal to 11 seconds, however to reduce the delay

in the detection, σl is estimated with a fewer number of σs

until j > H with H = ll
Ts

:

σl(j) =

⎧

⎨

⎩

median
1≤k≤j−1

(σs(k)) j ≤ H

median
j−H≤k≤j−1

(σs(k)) otherwise.
(2)

In each window σs(j) and σl(j) are compared. If the

ratio between the two standard deviations results in being

lower than 33%, the j-th window is considered to contain a

COB and a binary template, CD, is created as follows:

CD(j) =

{

1 σs(j) ≤ σl(j)/3

0 otherwise.
(3)

CD(j) indicates if the window j contains a COB. Figure

2 shows two examples, a signal containing COBs and one

without.

Lee’s method is applied on each video retrospectively on

both CI and VRM signals. The method returns a probability

of apnea, that is then converted to the weighted apnea du-

ration as the area under the probability curve. The limit on

the duration of the apneas detected, previously defined by

Lee et al. as 5 seconds, is adjusted to this case making the

smaller apnea detectable equal to 3 seconds, and obtaining

therefore a second binary template for reference.

In the VRM respiration signal, since also motion informa-

tion is available, cessations are not considered when motion

unrelated to respiration is present and the standard devia-

tion value σs(j) for a j-th window containing motion is not

considered in the calculation of the σl(j).



Figure 2. Examples of respiration signals, the two upper plots show a VRM respiration signal containing two cessations of breathing

and a VRM respiration signal without cessations. The binary template, CD, labelled as ”COB detected” has been multiplied for 100 for

visualization purposes. The two plots in the bottom show the σs used as feature for cessation of breathing detection and the threshold based

on the σl.

2.1.3 Respiration rate estimation

In each 3 seconds window the respiration rate is esti-

mated as the frequency corresponding to the peak in the

spectrum for both VRM signal and CI. The spectrum is eval-

uated using FFT, zeropadding is performed reaching a num-

ber of samples equal to 120 · 3 · fs with fs equal to the sam-

pling frequency. Moreover, to compensate for small vari-

ations, the RRs obtained are filtered using a moving mean

filter followed by a moving median filter each with a win-

dow size of half a second.

2.1.4 Evaluation

To compare respiration rates obtained with CI and VRM

respiration signals the percentage of time in which the dif-

ference between the two is within ±6 BPM is used as met-

ric. This percentage has been evaluated in each video and

then averaged. Moreover, for fair comparison, the RRs esti-

mated in windows containing COBs according to the anno-

tations and those estimated in windows where motion of the

infant unrelated to the respiration was detected from VRM

algorithm have not been considered in the calculation of this

metric.

To evaluate the difference between the COB detection algo-

rithm proposed in this work and the one proposed by Lee

et al. [24], sensitivity and specificity are calculated for each

method using the manual annotation of the videos as refer-

ence. As defined in [9] sensitivity will be:

SE =
TTP

TTP + TFN
, (4)

with Time True Positive (TTP) and Time False Negative

(TFN) being respectively the total duration of the time in-

tervals with COBs detected correctly and with COBs incor-

rectly missed by the algorithm. And specificity will be:

SP =
TTN

TTN + TFP
, (5)

with Time True Negative (TTN) being the duration of the

time intervals with no COBs in which there are no wrong

detection while, Time False Positive (TFP) is the total

length of the time segments with no COBs in which COBs

are erroneously detected. Therefore, sensitivity represents

the ability of the algorithm to correctly detect COBs when

present whereas specificity is the ability to correctly exclude

the presence of COBs particularly important to avoid false

alarms. The accuracy can be therefore defined as:

ACC =
TTN + TTP

TTN + TTP + TFP + TFN
. (6)

2.2. Study design

Videos were collected in the NICU of the Maxima Med-

ical Center (MMC) in Veldhoven, The Netherlands. Two

different setups were used for the data collection. Both

studies received approval from MMC and one study also

received approval from the Internal Committee for Biomed-

ical Ethics in Philips Research (ICBE2013-41-3797). In-

formed parental consent was obtained for all the infants in-

volved in the studies.

The videos were annotated by a single author, the COBs

were annotated only when clearly visible in the video. In

total, 5 infants were included, Table 1 shows the PostMen-

strual Age (PMA) expressed as the gestational age plus

the postnatal age, the total duration of the videos per in-

fant, and the number of short apneic event annotated. The



ID
PMA

(weeks)

Number

of videos

Total Duration

(min)

COB

annotated

1 36+6.71 10 16.5 11

2 30+4.85 20 34.3 4

3 30+2.42 10 49.8 31

4 30+2.42 10 46.2 24

5 29+1.14 9 43.6 21

Overall 59 190.4 91

Table 1. Video details and parameters of the infants in the dataset.

dataset includes both videos containing COBs and videos

not containing any cessation events for control purposes.

The videos have different duration going from 1 minute to 5
minutes reaching a total cumulative duration of 190.4 min-

utes. In total 91 short apneic events were annotated, the

average duration and standard deviation of the COBs popu-

lation are 5.4± 1.9 seconds.

2.3. Experimental setup

The dataset compromises of videos collected with two

different setups. In both cases the CI from the patient

monitor (Philips MX800) was also acquired for reference

purposes. In the first study a camera (UI-2220SE, IDS)

was positioned using a tripod to have view of the infants

chest/abdomen area, some videos were collected from the

top and others from the side. The videos were collected un-

der visible light conditions with a frame rate of 20 frames

per second and with a resolution of 768× 576 pixels. Since

color information is not relevant for respiration-motion de-

tection we used the raw gray-scale images. The videos were

selected based on the quality of the reference signal and on

the light conditions since the dataset also included measure-

ments taken in particularly dark settings. Two infants (ID 1

and 2 in Table 1) were selected with a total video duration

of 50.8 minutes.

The second setup included a monochrome visible light cam-

era with the NIR filter removed (UI-22330SE, IDS) posi-

tioned on the incubator using suction cup mounting and

visualizing an overview of the infant. NIR custom made

illumination was used since the normal workflow of the

NICU was not disrupted and the incubator was covered,

as common practice, limiting the ambient light. The illu-

mination unit comprised of LED arrays at three different

wavelengths (660, 760, and 810 nm). The illumination level

of all LEDs resulted in being around 0.2 mW/cm2 at the

skin level of a patient, definitely below the imposed lim-

its (ANSI/AAMI/IEC 60601-2-21:2009). The videos were

collected with a frame rate of 15 frames per second, a reso-

lution of 608×864 pixels, and subjected to compression. In

this case, the videos were selected only based on the quality

SE (%) SP (%) ACC (%)

VRM
Ours 76.32 94.39 93.16

Lee’s method 86.68 91.50 90.64

CI
Ours 83.15 96.97 96.00

Lee’s method 77.02 97.99 96.60

Table 2. Average sensitivity, specificity, and accuracy results ob-

tained with the method proposed in this work, indicated as ours,

and Lee et al. method.

of the reference signal. Using this setup, three infants are

recorded as part of this dataset with a total video duration

of 139.6 minutes.

3. Results

Table 2 contains the average results obtained for all the

infants, sensitivity, specificity, and accuracy were estimated

by comparing the detection of COBs performed with the

method proposed in this work and Lee’s method on both

CI and VRM signals. The results were obtained using the

parameters described in Section 2.1.2. In bold are indi-

cated the best results comparing our method and Lee’s. Fig-

ure 3 shows some examples of the obtained results. Fig-

ure 3a contains an example where motion but no COB was

present, while Figure 3b shows the results obtained when

three COBs were present. In the CI case, the COBs were

all correctly detected by our methods, while the detection

is incomplete in the video signal case for both the proposed

method and the benchmark one.

4. Discussion

The method proposed in this work was proven to be

able to detect short apneic events. Preliminary results

were obtained with videos of five infants containing 91
COBs in total. The comparison between our method and

the one previously proposed by Lee et al. shows that our

method resulted in higher specificity and accuracy for

the respiration signals obtained on the videos, while the

opposite happens in the chest impedance case. More-

over, the results were always higher in the case of Chest

Impedance signal compared to the VRM signal using our

COB detector. This is most likely due to the noisiness of

the signals, the VRM respiration signal relies on the correct

detection of the ROI, that can be momentarily lost after

strong movements causing low amplitude in the signal

that can be misinterpreted as COBs. On average for both

CI and VRM signals our method reached an accuracy of

94.6% against the 93.5% of Lee’s method. Considering

the high false alarm rate already present in the NICUs

[20] it is of paramount importance to prefer specificity to

sensitivity especially in the short apnea cases for which



(a)

(b)

Figure 3. Example of results obtained: (a) CI and VRM respiration

signal and RR when motion unrelated to respiration is detected;

(b) case with COB annotated. The amplitudes of the respiration

time-domain signals were scaled to 1 for visualization.

clinical relevance is still under discussion. Moreover, our

method is able to work in an on-line fashion while, Lee

et al. claim that their method requires several minutes of

clean signal to work accurately and that an adaptation is

needed for on-line detection [24], this is mostly due to the

filtering and removal of baseline from the signal before

the estimation of the moving standard deviation, on which

the parameters of the Fermi function were optimized. Our

method is also based on standard deviation but proved to

work with a sliding window of 3 seconds, making COB

rapidly detectable by the system.

Moreover, the respiration rate obtained with the video

signal and the CI as reference were compared. The RR

extracted from the VRM signal is 75% of the time within 6
BPM from the Chest Impedance one. Higher errors were

obtained for infants with ID 3,4, and 5, this can be due to

the compression of the videos and/or to a higher number

of events with small motions unrelated to respiration.

It should be considered that most of the studies using

frequency-based RR detection used windows ranging from

8 to 20 seconds [32, 3, 17] in our case the 3 second window

in which the FFT was performed leads to fast estimations

but can also cause higher errors due to the poor frequency

resolution.

This work introduced a new method for the detection of

short apneas that can work on-line. The results are still con-

sidered preliminary, first of all the cessations of breathing

were not annotated by an expert, however the use of videos

and not of CI for the annotations makes the result less sub-

jective. Moreover, also longer apnea should be considered,

there is no suggestion that such a method would not work

for a different COB population, however, parameters such

as ll would need to be adjusted. The parameters used in this

work were chosen arbitrarily or based on reasoning and the

same parameters were chosen for CI and VRM signals, an

optimization of these parameters could lead to improved re-

sults.

VRM delivered a respiration signal from videos with vary-

ing orientations and settings, e.g. containing motion or with

infants covered. The algorithm is characterized by a set

of empirically chosen parameters, we believe that adjust-

ing the parameters could lead to improved respiration signal

thanks to a more accurate detection of unwanted motion and

a faster adaptation of the ROI following big movements.

5. Conclusion

The method described in this study proved in being able

to detect short apneic events yielding an accuracy equal to

93.16% in the video signal case. The method can on-line

detect cessations of breathing with a low latency and it is

based on the comparison of short-term and long-term stan-

dard deviations. The detection of such short apneic events

could lead to apnea prediction preventing hypoxic damages

in infants.
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