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Abstract

Imaging photoplethysmography (iPPG) and imaging

ballistocardiography (iBCG) are popular approaches for

unobtrusive camera-based measurement of vital signs.

These involve recovering pulse signals from very subtle

variations in video pixel intensities, which are easily cor-

rupted by noise. Therefore, while the signal might be easy to

obtain from high quality uncompressed videos, the signal-

to-noise ratio drops linearly with video bit-rate. Uncom-

pressed videos require large amounts of storage making

them prohibitive to store, stream and transfer in large quan-

tities. By learning compression specific models we show

that supervised learning can be used to increase the signal-

to-noise ratio (SNR) of pulse signals and reduce the mean

absolute error (MAE) of heart rate estimates extracted from

temporally compressed videos. We perform a systematic

evaluation of the performance of our algorithm showing

that the network trained on compressed videos consistently

outperforms the model trained on the original less com-

pressed compressed videos, both on videos with and without

significant head motions. We found improvements in SNR of

up to 8 dB and MAE of 6 BPM.

1. Introduction

Imaging photoplethysmography (iPPG) and imaging

ballistocardiography (iBCG) leverage subtle changes in

light reflected from the skin and motions of the body,

respectively, to capture cardiac activity. These signals

can be recovered from many types of commercially avail-

able and low-cost cameras (e.g., webcams, cellphones and

DSLRs). Research over the past decade has shown that

heart rate (HR) [17, 14, 1], heart rate variability (HRV) [13]

and breathing rate (BR) [13] can be measured from video

recordings of the human body. Measuring vital signs re-

motely with a camera offers several advantages over the

contact devices traditionally used in pulse oximetry or elec-

Figure 1. We show how a supervised deep-learning-based network

can be used to combat the impact of video compression on non-

contact physiological measurements. By training on compressed

videos we achieve better performance when testing on compressed

videos than when training on high-quality uncompressed videos.

trocardiograms. Imaging-based methods can be used in ap-

plications where direct contact with the skin should be min-

imized or where wearing contact devices hinders the tasks

that need to be performed. It is particularly attractive for

contexts that require unobtrusive, continuous and long-term

measurements. For example, non-contact sensors can avoid

damaging the skin of, and reduce the risk of infection to,

prematurely born babies [7, 5] and burn victims. Some

applications may require long duration measurements and

using contact devices may be infeasible, cause discomfort

or simply irritate or distract subjects, for example during

sleep monitoring [19], driver monitoring [12] or cognitive

engagement with computer applications [11].

A number of approaches have been proposed to achieve

motion robustness in imaging-based measurement of physi-

ology [14, 3, 16, 4, 18]. The existing methods achieve accu-

racy in heart rate estimation comparable to contact devices

in many natural indoor applications provided that the video



was recorded with sufficiently high quality. Several video

parameters, have been systematically studied and shown to

impact the quality of iPPG signals, such as the camera qual-

ity [15], frame rate [2], the amount of spatial [2, 8] and tem-

poral compression [9]. For a survey see [10].

Both iPPG and iBCG signals are very subtle and con-

sequently most video datasets are captured high with bit-

rates to maximize the signal strength. To achieve the high-

est pulse signal-to-noise ratio videos need to be recorded as

raw lossless images demanding enormous amounts of stor-

age [9]. For example, a 5.5 minute video of one subject

is on average 11.9 GB. Collecting, storing, streaming and

transfering such datasets becomes challenging as the num-

ber of subjects, conditions, and durations of the recordings

increase. This hinders the sharing of datasets and applica-

tions of imaging-based physiological measurement in ap-

plications such as telemedicine. Being able to use spatially

and temporally compressed videos would help address these

challenges, presenting new applications for the technology,

making it easier to share video recordings and helping to

advance the state-of-the-art in research. Not having to store

raw images would also make collecting data easier, allow-

ing researchers to record videos on any device with the de-

fault video settings. Furthermore, reducing video bit-rates

would help facilitate training algorithms on datasets with a

larger number of videos per batch, and thus benefit from the

scalability of deep neural architectures [3].

The problem of very low spatial resolution has been ad-

dressed by using deep image super-resolution, making it

possible to use heavily spatially compressed images and

still recover the pulse signal [8]. Temporal compression

is particularly problematic for iPPG signals because many

of the compression algorithms remove small variations be-

tween frames imperceptible to the human eye in terms of

the video quality, but containing information important for

iPPG signals. The more temporally compressed the video,

the lower the iPPG SNR and the more prone the iPPG sig-

nals to motion artifacts and other sources of noise. How-

ever, while it has been shown that increasing the amount of

temporal compression linearly decreases the iPPG SNR [9],

there has only recently been work specifically addressing

the detrimental effects of temporal compression on iPPG

signals [20]. Yu et al. propose a method that requires a

two step process involving a network for video enhance-

ment followed by a network for recovering the pulse signal.

We choose to tackle the problem in an end-to-end fashion

and train a signal network to recover the pulse signal from

compressed videos.

We show that training the deep learning models on com-

pressed videos performs significantly better than using deep

learning models trained on clean, less compressed data, as

illustrated by Figure 1. We use an attention-based deep

learning approach [3], which outperformed all state-of-the-

art iPPG methods on several publicly available datasets and

a large dataset with different motion tasks [6], to evaluate

our approach at five compression levels.

2. Background

2.1. Video Compression

Raw video has a large memory footprint, therefore com-

pression algorithms are used in almost all video systems.

Applications that use video compression include: video

recording software, video over IP systems (e.g., Skype and

Teams), video sharing sites (e.g., YouTube and Vimeo) and

storage mediums (e.g., DVD and Blue-ray). There are sev-

eral video compression methods which reduce the bit-rate

of the video while retaining information important for vi-

sual quality. These algorithms may use intra-frame com-

pression, inter-frame compression, or they may jointly use

both intra- and inter-frame compression mechanisms.

Intra-frame compression uses the correlation between

similar pixels located close to each other in an image. Pre-

dicted pixel values are computed by extrapolating from a

small number of already coded pixels. Each frame is di-

vided into blocks of pixels. Each block of pixels is then

spatially compressed by applying a discrete cosine trans-

form (DCT), dividing by a compression matrix (also called

the quantization matrix) and rounding to reduce the number

of coefficients required to represent the image. The same

intra-frame compression methods are used for image com-

pression, for example with JPEG coding.

Inter-frame compression is performed for a group of con-

secutive video frames. It uses reference frames (I-frames)

which may be first compressed with intra-frame compres-

sion and motion vectors. The motion vectors may describe

the difference between the current and the previous frame

called predicted frames (P-frames), as well as the differ-

ence between the current frame and both the previous and

the next frame called bi-directionally predicted frames (B-

frames). This allows significant reductions in the amount

of storage required for regions in the video where there are

not large changes between the frames. The P- and B-frames

are placed in between the I-frames and similarly to intra-

frame compression are transformed and quantized to reduce

the memory. Intra- and inter-frame compression algorithms

are often used together for greater efficiency. In order to

maintain a constant compression quality across videos with

different information adaptive quantizers, such as constant

compression rate factor (CRF) are used. CRF values range

between 0 and 51, where 0 is lossless and 51 is the most

lossy. CRF values between 18 and 28 are most commonly

used to reduce bit-rates when visual quality is important.

Video compression methods are typically optimized for

visual quality, not with physiological measurement in mind.

Compression algorithms often assume that small color vari-



ations between frames or between spatial groups of pixels

in an image are not important for the visual quality of the

video and can be removed. However, imaging-based phys-

iological measurement relies on those small variations and

therefore compression algorithms significantly degrade the

quality of the iPPG and to a lesser extent iBCG signals by

removing that subtle information. At higher CRF values,

the video is more compressed and the SNR of the pulse sig-

nals decreases more or less linearly with CRF [8].

2.2. Imaging-Based Physiological Measurement

As imaging-based physiological measurement matures,

the focus has moved towards increasing robustness to body

motions [16, 18, 3]. Supervised deep learning methods have

proven particularly successful [3]. However, significantly

less work has attended to the effects of video quality on

iPPG signals and most existing methods become less robust

to motion with decreasing video quality. McDuff et al. [8]

used deep-learning-based super-resolution to enhance heav-

ily spatially compressed video frames to improve iPPG es-

timation. The super resolution method was able to recover

high frequency spatial information in the facial images and

result in more reliable iPPG signals. Yu et al. [20] presented

the first method to recover iPPG signals from temporally

compressed videos by using a deep-learning-based video-

to-video generator to enhance compressed videos, followed

by computation of iPPG signals from cleaner videos with

an attention-based network. However, both of these meth-

ods require enhancing the images prior to iPPG computa-

tion making it time-consuming and requiring large memory.

In this work, we use deep convolutional models trained

directly on temporally compressed videos to recover the

iPPG signals without the requirement to first enhance the

video. We use an end-to-end framework to measure pulse

signals from input video without the necessity to first de-

tect the face and segment the skin regions [3]. We show

that training and testing on videos with the same compres-

sion level outperforms models trained on the original less

compressed videos.

3. Experiments

3.1. Deep Learning Architecture

Our goal is to systematically analyze the effect of video

compression during training of a supervised network. For

this purpose, we used the existing state-of-the-art convo-

lutional attention network architecture [3]. It uses a mo-

tion representation and an attention mechanism using the

appearance information to discriminate between the differ-

ent motion sources. The motion representation is computed

from a normalized frame difference based on a skin reflec-

tion model [18]. The appearance information is computed

from the color and texture information from input image

frames to guide the motion representation to recover phys-

iological information from the skin region and differentiate

it from other sources of variations, such as head motion or

non-uniform illumination. The appearance and motion rep-

resentations are learned jointly through an attention mech-

anism. As illustrated in Figure 1, DeepPhys uses two sep-

arate models trained on the motion representation from the

difference of two consecutive frames and the appearance

representation from the current input frame. The appear-

ance model has the same architecture as the motion model

but without the last three layers.

The frame difference used as input to the motion model

is computed as follows:

Dl(t) =
Cl(t+∆t)− Cl(t)

Cl(t+∆t) + Cl(t)
(1)

Where C(t) is the current raw RGB image frame and ∆t

is the time between frames, in this case 1/120 seconds. The

illumination intensity is not spatially uniform on the face

and changes with the changing distance of the skin to the

light source causing uneven intensities and shadows on the

face. These variations in videos used as training data would

hinder the supervised learning model. Therefore, the input

to the motion network is first normalized to reduce the de-

pendency of the input signals on the light source and skin

tone which vary across subjects and datasets. AC/DC nor-

malization is applied once for the entire video duration by

subtracting the temporal mean and dividing by the standard

deviation.

The input to the appearance model are the raw RGB im-

age frames, C(t), normalized by centering to zero mean and

scaled to unit standard deviation. We spatially averaged the

input images to 36 x 36 pixels, using a bicubic interpolation,

Figure 2. Examples of face images featuring stationary tasks (A

and B) and random motion tasks (C and D). Each task was repeated

with a solid background (A and C) and a background with texture

(B and D).
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Figure 3. Examples of the detrended and filtered green channel signals for the stationary (left) and random motion (right) tasks at different

compression rate factors (CRF = 12, 18, 24, 30, 36). Examples of face images from these videos are shown, as are zoomed in segments.

At greater CRFs the images become more blurry, especially in the motion condition, and the signal-to-noise ratio of the iPPG signal in the

green channel decreases.

to reduce the camera quantization noise.

We used average pooling instead of max pooling be-

cause in traditional iPPG applications the signal quality

can be improved when several weaker and stronger fea-

tures are combined instead of only keeping the strongest

one. Two-dimensional facial attention masks were esti-

mated using a 1×1 convolution filter right before every

pooling layer to synthesize masks from different levels of

appearance features. The spatial maps guide the motion

model by determining which pixels belong to the skin re-

gions and whether they contain iPPG signals. Hyperbolic

tangent (tanh) was used as the activation functions because

symmetry improved iPPG performance.

The last layer of the motion model has linear activation

units and a mean squared error (MSE) loss to form a con-

tinuous signal as output. The output signal was bandpass

filtered in the physiological range ([0.7 Hz, 2.5 Hz]) and

heart rate was estimated as the frequency with the highest

power spectrum energy.

3.2. Dataset

We used the dataset of facial videos collected by Es-

tepp et al. [6]. Examples of the images in the dataset are

presented in Figure 2. Videos of 25 participants, aged 18

to 28 years, were recorded with a Basler Scout scA640-

120gc GigE-standard color camera with a 16 mm fixed fo-

cal length lens. The images were recorded as 8-bit, 658x492

pixel resolution at 120 frames per second (FPS). Seventeen

of the participants were male, nine wore glasses, eight had

facial hair and four had makeup. The dataset features partic-

ipants with diverse skin tones estimated with the following

Fitzpatrick Sun-Reactivity Skin Types [9]: I-1, II-13, III-10,

IV-2, V0. Ground truth contact physiological signals were

measured simultaneously with each video recording using

a BioSemi ActiveTwo research-grade biopotential acquisi-

tion unit. The participants were recorded during six five-

minute tasks. Each task was recorded with a black uniform

background and repeated with a textured background. We

evaluated two representative tasks in this work.

Stationary Task: The participants were asked to sit still and

look at the camera, allowing for small natural head motions.

Random Motion Task: The participants were asked to ran-

domly reorient their head once every second towards one of

nine positions evenly spaced in an arc around them. The

random sequence of which point to look at was provided

during the data collection as an audio recording. This was

the most challenging motion task in this dataset because it

simulated random head motion and introduced noise at fre-

quencies close to the average resting heart rate (∼ 1 Hz).

3.3. Evaluation Metrics

We used two evaluation metrics for capturing the per-

formance of the pulse signal recovery, mean absolute er-

ror (MAE) and pulse signal-to-noise ratio (SNR). For each

test video we calculated these metrics on a set of 30 second

time windows, with one second overlap, from each video.

We then averaged each metric for all time windows to get

a MAE and SNR for each subject video in the test set. We

removed the first and last 15 seconds of each 5.5 minute

recording. Mean absolute error (MAE):

MAE =

N∑
i=1

|Ri − R̂i|

N
(2)



Table 1. Mean absolute errors (MAE) and signal-to-noise ratios (SNR) at different levels of compression for networks trained on a) less

compressed videos and b) compressed videos. Training on compressed videos was performed at the same CRF as those videos in the

testing set. Results are for participant independent experiments. Overall, training on compressed videos leads to lower MAE and higher

SNR than training on less compressed videos. Bold numbers reflect significantly lower MAE/higher SNR.

Mean Absolute Error (BPM) Signal-to-Noise Ratio

Stationary Random Motion Stationary Random Motion

Trained on

CRF = 12

Trained on

Matching CRF

Trained on

CRF = 12

Trained on

Matching CRF

Trained on

CRF = 12

Trained on

Matching CRF

Trained on

CRF = 12

Trained on

Matching CRF

CRF 12 1.76 ± 0.29 1.76 ± 0.29 4.94 ± 0.9 4.94 ± 0.9 8.09 ± 0.76 8.09 ± 0.76 -1.86 ± 0.71 -1.86 ± 0.71

CRF 18 4.24 ± 0.81 1.54 ± 0.17 11.3 ± 1.32 6.46 ± 1.05 -0.45 ± 0.67 5.8 ± 0.71 -9.03 ± 0.96 -4.56 ± 0.72

CRF 24 4.65 ± 0.61 1.55 ± 0.17 12.09 ± 1.3 6.74 ± 1.04 -3.6 ± 0.62 4.84 ± 0.67 -9.42 ± 1.06 -4.9 ± 0.61

CRF 30 9.55 ± 0.87 3.4 ± 0.41 13.27 ± 1.24 12.09 ± 1.05 -8.56 ± 0.45 -2.53 ± 0.61 -10.29 ± 1.09 -9.5 ± 0.53

CRF 36 10.69 ± 0.9 6.84 ± 0.73 14.3 ± 1.32 15.33 ± 0.98 -9.51 ± 0.4 -6.78 ± 0.41 -11.01 ± 1.14 -11.79 ± 0.46
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Figure 4. Mean absolute error in heart rate estimation in BPM and SNR of the recovery pulse wave in dB at different compression rate

factors. We compare the network trained and tested on compressed videos and trained on less compressed videos and tested on compressed

videos. As the compression level increases training on less compressed videos leads to worse performance (higher MAE and lower SNR)

than when training and testing on videos with the same compression level. The error bars reflect the standard error in the measures.

where N is the total number of time windows, Ri is the

ground truth heart rate measured with a contact ECG sensor

and R̂i is the estimated HR from the video recording.

Signal-to-noise ratio (SNR) was calculated as the ratio of

the area under the curve of the power spectrum around the

first and second harmonic of ground truth HR frequency to

the area under the curve of the rest of the spectrum between

42 to 240 bpm [4]:

SNR = 10 log
10

(
240∑
42

((Ut(f)S(f))
2

240∑
42

((1− Ut(f))S(f))2

)
(3)

where S is the power spectrum of the estimated iPPG

signal, f is the frequency in BPM and Ut(f) is equal to

one for frequencies around the first and second harmonic of

the ground truth heart rate (HR-6 bpm to HR+6 bpm and

2*HR-6 bpm to 2*HR+6 bpm), and 0 everywhere else.

The error bars were computed as the standard error de-

fined as the standard deviation across all subjects results and

divided by the square root of the number of subjects.

3.4. Video Compression Experiments

McDuff et al. [9] showed that the SNR of iPPG signals

decreases more or less linearly with increasing compression

rate up to CRF = 36. Compression rates larger than CRF =

36 destroyed most of the iPPG information. The work also

compared using x264 and x265 codecs and found that x264

performed worse on compressed videos in presence of mo-

tion. In this work we tested five levels of compression using

CRF of 12, 18, 24, 30 and 36, corresponding to approximate

bit rate of 890, 534, 110, 87, 67 kb/s on videos with station-

ary tasks and 1500, 1077, 230, 221, 88 kb/s on videos with

random motion tasks.

We compressed the original less compressed videos us-

ing the x264 codec. We used an open-source codec pro-

ducing H.264 compliant video and the latest FFmpeg Win-

dows 64-bit binary release (at the time of testing: N-94150-

g231d0c819f). Figure 3 shows examples of iPPG wave-

forms computed using spatially averaged green channels of

the videos at different levels of compression with the cor-

responding images. We chose to use the green channel to

demonstrate the impact of compression on iPPG signals in-

dependent of the post-processing algorithms because this

channel has the strongest iPPG signal [17]. We spatially

averaged the video frames, detrended and bandpass filtered

the resulting signals using a passband of 0.7 Hz to 2.5 Hz.

As the compression level increases, the iPPG waveforms

become more noisy. Also, the more temporally compressed

the video is, the less sharp the images are, showing the ef-

fects of intra-frame compression. The compression effects



are particularly evident for CRF = 36, especially on the ran-

dom motion task.

For each compression level, we performed two experi-

ments. First, we trained and tested the deep learning model

on compressed videos. Second, we trained the deep learn-

ing model on the original less compressed videos and tested

on compressed videos. The original videos we used as

benchmark were already moderately compressed with CRF

= 12. The goal of these experiments was to test whether

training on compressed videos, which are more noisy but

are more similar to the test data, performs better than train-

ing on less compressed videos which have cleaner iPPG sig-

nals but are less similar to the test data. The results for these

experiments at different compression levels and compared

to the performance on the original less compressed videos

as benchmark are summarized in Table 1 and Figure 4. For

all experiments we used a five-fold cross-validation where

we used different subjects in the training and test set. For

each validation fold, the training set contained 20 subjects

and the test set contained five different subjects. The pre-

sented results are the means averaged over the five valida-

tion sets. We found that training on data with the same level

of compression as the test set performs better than train-

ing on videos with less compression (at CRF = 12). The

highest compression level (CRF = 36) almost completely

removes the pulse signal and the estimated HR is close to

random, making both DeepPhys networks trained on videos

with both compression levels perform comparably poorly.

4. Discussion

We systematically compared the performance of pulse

wave recovery and heart rate estimation using a supervised

deep neural network. Our results show that training on com-

pressed videos has a significant advantage when testing on

compressed videos with a similar CRF compared to training

on less compressed videos. The SNR of the recovered blood

volume pulse is largest when training on videos of match

compression level. As videos are compressed the perfor-

mance of the neural network trained on CRF=12 videos de-

creases with the compression factor (see Figure 4 - black

dotted line). However, when we retrain the network with

videos at a similar compression factor as those in the test-

ing set the performance is more robust until CRF is greater

than 24 (see Figure 4 - red solid line). This suggests that the

network architecture is able to learn compression specific

information that helps in the recovery of the pulse signal

when videos are compressed. Our results illustrate that it is

not always beneficial to train on “cleaner” data if that data

differs from the domain of application of the model. Many

datasets are compressed and therefore it may be important

to train models on compressed data, or at least include a

proportion of compressed videos in the training set. Our re-

sults show that if this is not done then at higher compression

a supervised deep neural network may perform significantly

more poorly. One could imagine training several iPPG mod-

els and at test time selecting the model that best matches the

compression level of the video being processed, thus being

able to adapt the model to suit the data.

5. Conclusions

Video compression (both intra-frame and inter-frame) al-

gorithms impact the performance of imaging-based physio-

logical measurement algorithms, including iPPG and iBCG.

We have presented a systematic analysis of the performance

of training a supervised deep neural network on temporally

compressed videos. We have shown that the performance

improves when the model is trained on videos with the same

level of compression as the videos in the test set, instead of

training on less compressed videos with a higher SNR. Our

proposed approach shows that it is possible to obtain reli-

able pulse measurements and heart rate estimates from com-

pressed videos even in presence of large motion, so long as

the network is trained with examples of compressed videos.

All our experiments were conducted in a participant inde-

pendent manner. We hope that this work helps advance the

state-of-the-art in image-based physiological measurement

by alleviating the time and memory requirements involved

in the storage of uncompressed raw images or videos.
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