
Clinical Scene Segmentation with Tiny Datasets

Thomas J. Smith1 Don Sharkey2 John Crowe3 Michel Valstar1

University of Nottingham

Computer Vision Lab1, School of Medicine2, Faculty of Engineering3

{Thomas.Smith3, Don.Sharkey, John.Crowe, Michel.Valstar}@nottingham.ac.uk

Abstract

Many clinical procedures could benefit from automatic

scene segmentation and subsequent action recognition. Us-

ing Convolutional Neural Networks to semantically segment

meaningful parts of an image or video is still an unsolved

problem. This becomes even more apparent when only a

small dataset is available. Whilst using RGB as the input is

sufficient for a large labelled dataset, achieving high ac-

curacy on a small dataset directly from RGB is difficult.

This is because the ratio of free image dimensions to the

number of training images is very high, resulting in un-

avoidable underfitting. We show that the addition of su-

perpixels to represent an image in our network improves

the semantic segmentation, and that superpixels can be

learned to be detected by Convolutional Neural Networks

if those superpixels are appropriately represented. Here

we present a novel representation for superpixels, multi-

channel connected graphs (MCGs). We show how using

pre-trained deep learned superpixels used in an end-to-end

manner achieve good semantic segmentation results with-

out the need for large quantities of labelled data, by training

with only 20 instances for 23 classes.

1. Introduction

Clinical procedures on newborns can be some of the most

important events in a human’s life as they can make the dif-

ference between a person surviving or not. Resuscitation

is one of the most common procedures performed on new-

borns directly after delivery. Because of the fragility of ba-

bies, it is a more complex procedure than for adults, and the

paediatric staff have to follow a regimented protocol. The

protocol consists of a sequence of actions, usually carried

out by more than one person and involving multiple items

of equipment. Add to this the increasing pressure upon

staff, and it becomes clear that there is ample opportunity

for mistakes to be made. Given the current state-of-the-art

in action recognition, it should be possible to perform auto-

matic scene segmentation and action recognition to monitor

this procedure. This would be of high value as it would al-

low one to establish best practice, could be used as a tool

in training healthcare professionals, and could function as

an early warning system when clinicians deviate from stan-

dard protocol. A similar system has been developed for de-

tection of CPR performed on children. In this study, they

use a dataset populated with simulated CPR videos [14].

However they only detect between performing CPR and not

performing CPR.

To use state-of-the-art deep learning techniques it is

widely accepted that an abundance of training data is re-

quired, with datasets such as MS Coco including 330k im-

ages of 80 semantic segmentation classes [11]. Collecting

datasets of even a moderate size is difficult when it concerns

newborn babies, as it requires a lengthy ethics approval and

one always has to balance the future benefit of a new tech-

nology with the added risk of changing the operational en-

vironment of clinicians, even if that change involves only

small changes in procedures and hardware. And even if we

could collect large amounts of imagery, it would then need

to undergo lengthy manual annotation of semantic segments

for the networks to be able to learn from it.

Semantic Segmentation is the process of segmenting a

scene into meaningful segments [7]. Each segment must

belong to a single class that exists in a dictionary of pos-

sible objects. Multiple smaller elements may need to be

joined together to form a single complex segment. An ex-

ample of this is a car, as a car is made up of several parts

such as the body, windows and wheels. However, in re-

gards to the pixels in an image, these elements can be split

even further into a collection of similar pixels. This is a

type of over-segmentation that is commonly referred to as

superpixels. Superpixels are created using man-made al-

gorithms to cluster similar pixels, generally using a combi-

nation of colour and location similarity as well as size and

shape constraints. If it would be possible to learn the rela-

tionship between pixels and superpixels from a large dataset

of images using Convolutional Neural Networks (CNNs),

we could then construct an end-to-end architecture where

the learned superpixels feed into the segmentation network.



Figure 1. Our end-to-end network architecture takes an RGB image of shape 512 × 512 × 3, and predicts the MCG representation of the

deep learned superpixels in the first hourglass. Then these predicted MCGs plus the original RGB image are fed into a second hourglass

where the network learns the semantic segmentation masks for each class and predicts them as grayscale masks of shape 512× 512. These

masks can then be combined back together to show all classes at ones as an RGB representation where each class has its own colour.

Whilst the network that learns superpixels could use a very

large, unsupervised dataset for training, the greatly reduced

input complexity of superpixels would allow the segmenta-

tion part of the network to learn useful models with a much

smaller dataset.

Learning superpixels from RGB data is surprisingly

hard. In this paper we show why a straightforward approach

of treating each superpixel as a class doesn’t work, and pro-

pose a novel representation for learning superpixels that is

based on Markov Blankets [5]. We then propose a novel

network that learns to do end-to-end superpixel and seman-

tic segmentation. We show that by using learned superpix-

els when analysing a single niche task, as little as 20 train-

ing instances is sufficient to perform semantic segmentation

of clinical procedures, where we can successfully detect 10

classes to the point where they could be successfully applied

to action recognition and scene analysis.

In summary, the contributions of this paper are:

• We propose for the first time to learn superpixel over-

segmentation

• We propose to use learned superpixels to do semantic

segmentation, and show that this can be done using

end-to-end trained Convolutional Neural Networks

• We demonstrate that good domain-specific results can

be obtained with as little as 20 training images for se-

mantic segmentation

2. Related Work

Below we discuss relevant related work in superpixel over-

segmentation and deep-learned semantic segmentation.

2.1. Superpixels for segmentation

In 2003 Ren and Malik [16] proposed learning a classifica-

tion model for segmentation. This is an early example of

using superpixels to perform scene segmentation. In their

work they merge the superpixels by using Gestalt group-

ing cues for the features of a linear classifier. The method

worked well, however some parts of the scene would still

be split into multiple super-regions rather than one segment

per object. Thus complete segmentation was not achieved.

More recently superpixels have been used in video seg-

mentation. Examples of this are; figure/ground video seg-

mentation via low-risk sparse learning by Gu et al. [6],

video segmentation using spectral clustering on superpix-

els by Bhatti et al. [4], and video object segmentation using

multiple random walkers with a GMM restart rule by Heo

et al. [8].

The work of Gu et al. [6] used superpixels to perform

foreground and background segmentation. They use an

adaptive dictionary which remembers n previous frames,

where each frame has the superpixels that correspond to

the foreground and background stored separately using the

L2ECM [10]. The representation is learnt using the Inexact

Augmented Lagrange Multiplier (IALM) method [18].

Bhatti et al. [4] use superpixels as part of a novel solution

combining colour, optical flow and saliency maps. They

make use of several superpixel maps, where each map has

a different resolution of superpixels. These are then merged

to form a more detailed map. Where there is more consis-

tency in the image the superpixels are larger, and they are

smaller around more detailed objects. They then combine

the saliency, merged superpixels and optical flow maps to-

gether to create a foreground separation map. Finally, they

use this new map in conjunction to the saliency and optical

flow maps to create a final segmentation mask. At the time

this achieved the best average score for segmentation on the

SegTrack v2 dataset [9].

2.2. Deep learned semantic segmentation

One of the most popular learnt segmentation methods is the

Fully Convolutional Network (FCN) developed by Long et

al. [12] in 2015. In their work, an end-to-end network is

used to produce pixel-by-pixel predictions. This produces

both segmentations and classification. This is achieved by

use of their skip architecture which makes use of both the

deep coarse semantic information and the shallower appear-

ance information.

Another variation on the learnt segmentation is the



Learned Watershed (LW) method by Wolf et al. [17]. This

method expands on work such as that by Bai and Urtasun

[2] by going a step further and building an end-to-end CNN

that produces segmentations instead of the original energy

maps used. LW keeps the original watershed algorithm un-

changed by starting with seeds and iteratively adding the

best pixels for each seed from their queues, whilst prioritis-

ing closer pixels.

In summary, superpixels have previously been used

for semantic segmentation with some success, but always

by using hand-crafted superpixel methods and combin-

ing superpixels to form super-regions/segments. The most

successful semantic segmentation approaches have been

based on deep learning that make predictions directly from

RGB. However, such techniques would require very large

datasets. Deep leaned superpixels have not been proposed

before, let alone used for semantic segmentation. Mak-

ing use of deep learned superpixels instead of hand-crafted

techniques would allow end-to-end learning. In this work

we show how this can be achieved.

3. Multi-channel Connected Graphs

Learning to detect a superpixel is non-trivial. A straightfor-

ward approach would be to set each superpixel to be its own

class. However, when doing so, training the networks we

experimented with did not converge to anything meaning-

ful. A different representation is thus required. We propose

to use a representation that shows for each pixel’s neigh-

bours whether they are included in the same superpixel or

not. We call this Multi-channel Connected Graphs (MCGs).

The MCGs work similarly to a Markov blanket by rep-

resenting the relationship between neighbouring pixels. To

obtain two-dimensional images that can be used as the tar-

get in e.g. an hourglass network, we use four channels to

represent the four directions where an immediate neighbour

can be: up, right, down and left.

Using superpixels as an example use case, each pixel

in the algorithm’s output mask carries the information of

whether it belongs to the same superpixels as any of its four

neighbours. This means every pixel in our two-dimensional

data space carries connectivity information for the four rel-

ative directions. To represent this in a way where we can

use standard CNN methods, we transform the problem to

multi-channel connectivity maps, one indicating connectiv-

ity in each direction (up, right, down, left).

To transform from a superpixel mask to a MCG repre-

sentation is simple. First, there must be four channels of the

same width and height as the superpixel mask. These chan-

nels must be initialised to zero. Next, the superpixel mask

must be iterated over pixel by pixel, whilst checking if the

current pixel is in the same superpixel as its neighbours. For

each of the pixel’s four neighbours, the respective masks are

updated by setting the cell at the current pixel’s coordinates.

(A) (B)

(C) (D)
Figure 2. The left multi-coloured image represents a small exam-

ple of superpixels where each superpixel is assigned a different

colour. The lines between pixels represent that the pixels are in

the same superpixel as each other. To the right are four MCGs

representing the superpixels in the left image. Here we are using

four directions: up (A), right (B), down (C), and left (D). Each of

the graphs consist of ones and zeros, where one indicates that the

given pixel is in the same superpixel as the pixel in the direction

of the graph, and zero represents otherwise. To help illustrate this

further we have included arrows where the graph is activated and

the direction of the activation. For example, if we take the origin

to be the upper left corner, then the pixel (3, 3) belongs to the or-

ange superpixel. This pixel is in the same pixel as it’s upper and

left neighbours, thus graph A and D at (3, 3) are set to one. As

there are no connections to the right or down of this pixel, graphs

B and C are set to zero at (3, 3).

This will be set to a 1 if the two neighbours are in the same

superpixel, or otherwise this is left at 0. For the edge cases

where it would be indexing out of the superpixel mask, there

are two options. Edge cells would be set to 0 if there is no

evidence that they are connected to the same theoretical su-

perpixel. They would be set to 1 if you assume that the

superpixels expand past the frame. In our work we use the

first assumption, but when working with video it might be

better to use the second one.

In figure 2 we show a small example of how to repre-

sent a superpixel mask in the MCG format, but instead of

using numbers as the unique identifiers for each superpixel,

different colours and connecting lines are used.

The MCG methodology could easily be expanded with a

larger neighbourhood, such as eight neighbours, to include

the diagonal neighbours or even 24 to cover neighbours of

neighbours. However, expanding the number of channels

could cause issues with memory space.

4. Learning Superpixels with MCG

To create a deep learned superpixel predictor that can be

used in a wide range of applications, we need to have a suf-



ficiently large dataset to train our network with. As we are

using a large CNN network we are using an unsupervised

approach to training as it would be impractical to do any-

thing else. We chose the DAVIS [15] dataset as it consists

of 120 HD videos and has a large variation of scenes, rang-

ing from sheep in a field to cars driving around a race track.

As we use relatively large images for training at 512 ×

512 we have cut down the number of images used from the

dataset to three per video: the first, middle and last frames.

This gives us the largest variation per video whilst keeping

the final dataset at a reasonable size for training.

For each of the three frames we run the hand crafted

superpixel algorithm, Simple Linear Iterative Clustering

(SLIC) [1], multiple times with varying numbers of target

superpixels, ranging from 500 to 5000 superpixels in steps

of 500. Varying the number of target superpixels changes

the size constrain of the superpixels. The other SLIC pa-

rameters were set to σ = 1, compactness = 30. This

means there was approximately 3000 images for training

and 1000 for validating the network.

The images were first cropped to 1080 × 1080 pixels

by cropping 420 pixels from the left and right sides of the

frame. Next, we resized them to 512 × 512 pixels because

this is a power of two. This works more appropriately for

the network, so that when down-sampling via max-pooling

with a 2 × 2 kernel there is always the ability to halve the

resolution again.

The network architecture we adopt is the highly success-

ful hourglass network introduced by Newell et al. [13]. To

adapt the network we have changed the input of the network

to allow input of 512× 512× 3. This allows us to input an

RGB image at a high resolution to reduce information loss

when down-scaling the images and superpixel masks. We

have also added two up-scaling layers before the output of

the network to bring the resolution back to 512× 512× 4.

When using the MCG representation, the model did not

predict the superpixels ground truths but instead abstracted

to super-regions. This is a consequence of learning the su-

perpixels at varying size constraints. It does this whilst

keeping good boundary separation.

5. Clinical Use Case Dataset

The Newborn Resus dataset consists of 70 videos of new-

born babies receiving care to ensure that they are in good

health. Some of the babies in the dataset require resusci-

tation or stabilisation performed by the nurses and doctors.

This dataset consists of two different scenarios, firstly full

term babies born by caesarean section (C-section) after a

normal pregnancy, and babies born by ‘any route’ who may

need stabilisation or resuscitation.

The videos taken for the ‘any route’ scenario were col-

lected under different conditions to the C-section scenario.

The main differences were the bed the babies are placed on,

Figure 3. An example frame from the C-section scenarios with

ground truth data generated using the custom image annotation

tool. Key for ground truth colours can be found in table 4.

the colour of the resuscitaires tubes, and the angle at which

the video was shot. The C-section videos were shot top

down whereas the ‘any route’ videos were shot at about 45◦

from the bottom of the bed.

To create the tiny dataset to train and evaluate our model,

we take 50 frames from the 35 ‘good’ videos. To achieve

a good distribution throughout the dataset, the number of

frames from each video was inversely proportional to the

number of instances from the scenario, resulting in a 30:20

split of C-section to ‘any route’ frames.

A custom annotation tool was used to pixel-wise seman-

tically label each frame. The image annotation tool makes

use of SLIC superpixels to speed up annotation, allowing

the user to select the superpixel corresponding to each class.

The SLIC parameters can be adjusted to suit the current data

one is working with. If the images one is working with

aren’t properly segmented by the superpixels, it also allows

the use of polygons for annotation. See figure 3 for example

frame and ground truth data.

6. End-to-End Semantic segmentation with

Deep Learned Superpixels

Our end-to-end network architecture uses two hourglass

networks. The first hourglass is used to predict the deep

learned superpixels, by taking in the RGB frame and out-

putting the MCGs. This first hourglass is pre-trained and

then left unfrozen to allow the superpixels to update with

the different niche tasks. The MCG output plus the orig-

inal RGB is then fed into the second hourglass to predict

x grayscale masks, where x is the number of classes. Ini-

tially to prove that the concept would work we started with

five classes: Gloves, Bed, Baby, Pipes, Stethoscope, and

an unknown class. As a baseline, we used mean squared

error loss for the semantic segmentation sub-network and

trained the network in a traditional multi-class classification

(all classes at once).

To determine the best format for training with such a

small dataset, we changed several variables; loss function,

transfer learning vs. all at once, and adaptive vs. static un-



known class for transfer learning.

The loss functions that we compared are MSE, and

Lovász-Softmax loss [3]. Lovász-Softmax loss, also known

as the Jaccard loss, is an approximation of the intersection

over union metric used to determine the accuracy of the net-

work. Berman et al. showed that their loss function was

able to improve detection of small objects and this property

of Jaccard loss function is applicable to the clinical dataset

as there are many small pieces of equipment.

Transfer learning is common practice in deep learning,

however unlike common practice we aren’t bootstrapping

the semantic segmentation from a well known classifica-

tion dataset such as MS Coco. To pre-train our custom net-

work, it would take a long time and potentially not help the

learning of these niche datasets, because the objects being

detected can be vastly different to the objects in the large

datasets. We use transfer learning to train one class at a

time and iteratively append new classes to the previously

trained models until all classes are learnt.

As part of the transfer learning we tested the use of an

adaptive unknown class. The static unknown class is pre-

defined before training and is learnt as a class, whereas the

adaptive unknown is set to all classes except the current and

previously learned classes. Thus on the next iteration of

the network, we can initialise the weights of the new output

layer to be the same as the unknown class because the new

class exists in the previous unknown class. This means that

the network only has to learn what isn’t in the unknown and

what is the new class.

To train the network we partitioned the 50 frames into

three sets with 20 training, 20 test, and 10 validation in-

stances. There are no frames from the same video span-

ning multiple sets. We then trained the network with 14

pipelines, table 1, to compare the previously mentioned

network parameters. When looking at the results in table

1 the best performing pipeline is M1 using transfer learn-

ing, descending order, and MSE. However, when manu-

ally inspecting the prediction of the network it was noted

that frames that differ greatly from the majority performed

poorly, and these brought down the average results.

We then refined the dataset to remove the frames that

came from the babies born by ‘any route’ as these videos

consisted of completely different lighting and work space

setup. To replace these images we added additional frames

from the ‘good’ videos to create a more consistent dataset.

The test set can be seen in figure 4. As it can be seen in

this figure, the majority of the input frames have the same

exposure and use the same work space setup. On row nine

of figure 4 the first input image isn’t as brightly lit due to

the staff turning off the light and the performance of the

network is drastically reduced.

The pipelines were then rerun with the newly refined

dataset and the results can be seen in table 2. When com-

Loss F1 % Incorrect

ID Pipeline Function Score Pixels

A1 MCL RO PU MSE 0.556 28.80%

B1 MCL RO PU Jaccard 0.578 24.86%

C1 TL RO PU MSE 0.46 17.68%

D1 TL RO PU Jaccard 0.537 18.86%

E1 TL RO AU MSE 0.551 17.97%

F1 TL RO AU Jaccard 0.556 19.65%

G1 TL SF PU MSE 0.558 18.11%

H1 TL SF PU Jaccard 0.581 21.34%

I1 TL SF AU MSE 0.578 19.67%

J1 TL SF AU Jaccard 0.569 21.34%

K1 TL AO AU MSE 0.587 27.61%

L1 TL AO AU Jaccard 0.565 23.27%

M1 TL DO AU MSE 0.622 28.20%

N1 TL DO AU Jaccard 0.571 22.69%

Table 1. Comparison of the average performance of the test set
with the 14 pipelines in regards to F1 score and percentage of in-
correct pixels. Trained using the original dataset.
(MCL) Multi-Class Learning, (TL) Transfer Learning, (RO) Random Or-

der, (SF) Stethoscope First, (AO) Ascending Order by number of pixels in

class, (DO) Descending Order by number of pixels in class, (PU) Prede-

fined Unknown, (AU) Adaptive Unknown. BOLD best in subset.

paring the performance of the two datasets it can be clearly

seen that the second refined dataset has a higher average

performance across all pipelines. However, now the gains

difference between the pipelines has decreased. To help

evaluate this, we combine the F1 score with the percentage

of incorrect pixels by combining them with equal weight-

ing, one-to-one. The results of this can be seen in table

3. When looking at the top four performing pipelines it is

now clear that the ordering of the classes does not have a

large impact on the performance of the network. M2 (de-

scending order) performs the best but is within the margin

of error with K2 (ascending order), and F2 (random order).

The adaptive unknown class and the use of transfer learn-

ing results show in both cases to be better than static un-

known class, and multi-class learning respectively. Unfor-

tunately, the Jaccard loss isn’t consistently better than MSE,

and often the performance between the two loss functions is

similar. In the ordering pipelines the Jaccard loss actually

performs worse than MSE in both F1 and percentage of in-

correct pixels.

The network using the pipeline M2 has performed re-

markably well with a relatively high F1 score and a low

percentage of pixels to update, considering that it is only

trained with 20 instances. Next we trained a model using

the parameters from the M2 pipeline but have increased the

number of classes from six to 23. The performance for each

class and the average performance can be seen in table 4.

At first glance, the average performance looks poor with

the lower F1 score of 0.437 and average percentage of in-



Loss F1 % Incorrect

ID Pipeline Function Score Pixels

A2 MCL RO PU MSE 0.591 17.60%

B2 MCL RO PU Jaccard 0.633 15.14%

C2 TL RO PU MSE 0.695 17.81%

D2 TL RO PU Jaccard 0.701 18.66%

E2 TL RO AU MSE 0.625 17.83%

F2 TL RO AU Jaccard 0.727 18.49%

G2 TL SF PU MSE 0.706 17.47%

H2 TL SF PU Jaccard 0.699 18.24%

I2 TL SF AU MSE 0.710 17.88%

J2 TL SF AU Jaccard 0.694 18.05%

K2 TL AO AU MSE 0.726 17.38%

L2 TL AO AU Jaccard 0.701 18.80%

M2 TL DO AU MSE 0.727 17.03%

N2 TL DO AU Jaccard 0.716 17.48%

Table 2. Comparison of the average performance of the test set
with the 14 pipelines in regards to F1 score and percentage of in-
correct pixels. Trained using the refined dataset with image frames
from videos that have similar lighting and work space setup.
(MCL) Multi-Class Learning, (TL) Transfer Learning, (RO) Random Or-

der, (SF) Stethoscope First, (AO) Ascending Order by number of pixels in

class, (DO) Descending Order by number of pixels in class, (PU) Prede-

fined Unknown, (AU) Adaptive Unknown. BOLD best in subset.

% Incorrect

ID F1 Pixels Score Rank

M2 0.727 17.03% 0.779 1

K2 0.726 17.38% 0.776 2

N2 0.716 17.48% 0.771 3

F2 0.727 18.49% 0.771 4

I2 0.710 17.88% 0.766 5

G2 0.706 17.47% 0.766 6

H2 0.699 18.24% 0.759 7

C2 0.695 17.81% 0.759 8

J2 0.694 18.05% 0.757 9

L2 0.701 18.80% 0.757 10

D2 0.701 18.66% 0.757 11

B2 0.633 15.14% 0.741 12

E2 0.625 17.83% 0.723 13

A2 0.591 17.60% 0.707 14
Table 3. Comparing the pipelines using the refined dataset and then

ordering them best to worst by score, where the score is a weighted

sum of the F1 score and percentage of incorrect pixels. Here we

weight the two metrics one-to-one.

correct pixels being 24.458%, which is worse than the six

class problem we had been working with previously.

When the distribution of classes, figure 5 , and the confu-

sion matrix, figure 6, is examined it can be seen that not all

classes exists in the training set, meaning that the network

would never be able to predict these unseen classes. This

arised due to the nature of the dataset because each video

% Incorrect

Class F1 Precision Recall Pixels

Unknown 0.672 0.564 0.833 14.03%

Gloves 0.795 0.812 0.780 15.62%

Bed 0.857 0.831 0.884 22.19%

Baby 0.762 0.779 0.745 22.97%

Pipes 0.676 0.791 0.590 23.36%

Stethoscope 0.504 0.580 0.445 23.45%

Arms 0.739 0.623 0.909 23.97%

Hat 0.320 0.515 0.232 23.98%

Machines 0.865 0.987 0.770 24.21%

Syringe 1.000 1.000 1.000 24.21%

Blue Towel 0.000 0.000 1.000 24.70%

Scissors 0.000 1.000 0.000 24.71%

Electric
Patches 0.000 1.000 0.000 24.71%

Mobile 0.000 1.000 0.000 24.72%

Plastic Bag 0.000 1.000 0.000 24.72%

Packaging 0.134 0.747 0.074 24.75%

Umbilical
Cord Clamp 0.000 1.000 0.000 24.75%

Pink Jacket 1.000 1.000 1.000 24.75%

Wires 0.163 0.363 0.105 24.75%

Name tag 0.000 1.000 0.000 24.75%

Umbilical
Cord 1.000 1.000 1.000 24.75%

Clothing 0.570 0.508 0.648 24.75%

Airway

Opener
0.000 1.000 0.000 24.75%

Average 0.437 0.787 0.479 23.46%

Table 4. The 23 classes shown with their respective F1, precision,

recall and incorrect pixel percentages.

doesn’t follow an exact procedure, meaning that some of

the objects do not appear in some videos. Additionally, only

taking a few frames for each video drastically reduces the

probability of the majority of classes being present in ev-

ery frame. The performance of the classes that exist in the

training sets are a lot better than the average. The network

misclassifies classes that are very similar to the unknown or

bed classes. We hypothesise that this is due to the difficul-

ties that arise by the over-exposure of the dataset, making

most classes white-washed. Despite this, the network still

manages to detect almost all classes in the training set. The

prediction of the network on the test set can be seen in 4.

7. Conclusion and Future Work

To conclude, we have shown that the MCG representation

firstly allows the superpixels to be learned by a CNN. Sec-

ondly, we have shown that the learned superpixels used in a

end-to-end manner reduce the number of training instances



Figure 4. Confusion matrix for the refined dataset. Prediction is across the horizontal axis, and ground truth is across the vertical axis. The

darker the colour, the higher the count.

Figure 5. Class occurrences for the refined dataset between training, test, and validation sets.

required to get good performance on niche dataset with-

out having a pre-trained network to bootstrap onto. Do-

ing this shows that small niche datasets should be able to

take advantage of the current state-of-the-art deep learning

networks without having to have thousands of training in-

stances.

We plan to add more classes and instances of each class

to the dataset whilst keeping the number of training in-

stances low to fully annotate the dataset with full scene se-

mantic segmentation. This will then be used to train an-

other network to detect the series of actions performed to

help them evaluate the procedure. A possibility would be to

test pre-training the network on a large dataset with a wide

variety of objects and see if this improves performance. An-

other possibility is to test augmenting the input data for

brightness and saturation to see if with limited data this is-

sue can be over come.



Input Target Prediction Input Target Prediction

Input Target Prediction Input Target Prediction
Figure 6. Full test set of images, from left to right: input image, ground truth and prediction. Performance for images with similar exposure

performs well, however the underexposed image on row nine performs poorly. Key for ground truth and prediction colours can be found

in table 4.



References

[1] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and

S. Süsstrunk. Slic superpixels compared to state-of-the-art

superpixel methods. IEEE transactions on pattern analysis

and machine intelligence, 34(11):2274–2282, 2012.

[2] M. Bai and R. Urtasun. Deep watershed transform for

instance segmentation. arXiv preprint arXiv:1611.08303,

2016.

[3] M. Berman, A. Rannen Triki, and M. B. Blaschko. The

lovász-softmax loss: A tractable surrogate for the optimiza-

tion of the intersection-over-union measure in neural net-

works. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 4413–4421, 2018.

[4] A. H. Bhatti, A. Rahman, and A. A. Butt. Video segmen-

tation using spectral clustering on superpixels. In Image

Processing (ICIP), 2016 IEEE International Conference on,

pages 869–873. IEEE, 2016.

[5] C. M. Bishop. Pattern recognition and machine learning.

springer, 2006.

[6] S. Gu, J. Wang, L. Pan, S. Cheng, Z. Ma, and M. Xie. Fig-

ure/ground video segmentation via low-rank sparse learning.

In Image Processing (ICIP), 2016 IEEE International Con-

ference on, pages 864–868. IEEE, 2016.

[7] Y. Guo, Y. Liu, T. Georgiou, and M. S. Lew. A review of

semantic segmentation using deep neural networks. Interna-

tional journal of multimedia information retrieval, 7(2):87–

93, 2018.

[8] M. Heo, W.-D. Jang, and C.-S. Kim. Video object segmenta-

tion using multiple random walkers with gmm restart rule. In

Signal and Information Processing Association Annual Sum-

mit and Conference (APSIPA), 2016 Asia-Pacific, pages 1–5.

IEEE, 2016.

[9] F. Li, T. Kim, A. Humayun, D. Tsai, and J. M. Rehg. Video

segmentation by tracking many figure-ground segments. In

Computer Vision (ICCV), 2013 IEEE International Confer-

ence on, pages 2192–2199. IEEE, 2013.

[10] P. Li and Q. Wang. Local log-euclidean covariance matrix

(l 2 ecm) for image representation and its applications. In

European conference on computer vision, pages 469–482.

Springer, 2012.

[11] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ra-

manan, P. Dollár, and C. L. Zitnick. Microsoft coco: Com-

mon objects in context. In European conference on computer

vision, pages 740–755. Springer, 2014.

[12] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional

networks for semantic segmentation. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 3431–3440, 2015.

[13] A. Newell, K. Yang, and J. Deng. Stacked hourglass net-

works for human pose estimation. In European Conference

on Computer Vision, pages 483–499. Springer, 2016.

[14] M. A. Panicker, H. Frigui, and A. W. Calhoun. Identifica-

tion of cardio-pulmonary resuscitation (cpr) scenes in med-

ical simulation videos using spatio-temporal gradient orien-

tations. In 2015 International Conference on Image Process-

ing Theory, Tools and Applications (IPTA), pages 365–369.

IEEE, 2015.

[15] J. Pont-Tuset, F. Perazzi, S. Caelles, P. Arbeláez, A. Sorkine-

Hornung, and L. Van Gool. The 2017 davis chal-

lenge on video object segmentation. arXiv preprint

arXiv:1704.00675, 2017.

[16] X. Ren and J. Malik. Learning a classification model for

segmentation. In null, page 10. IEEE, 2003.

[17] S. Wolf, L. Schott, U. Köthe, and F. Hamprecht. Learned wa-

tershed: End-to-end learning of seeded segmentation. arXiv

preprint arXiv:1704.02249, 2017.

[18] T. Zhang, B. Ghanem, S. Liu, and N. Ahuja. Low-rank sparse

learning for robust visual tracking. In European conference

on computer vision, pages 470–484. Springer, 2012.


