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Abstract

While most existing remote photoplethysmography

(rPPG) approaches employ off-the-shelf visual object de-

tection and tracking algorithms, these algorithms may not

be well suited for rPPG problem. The detection and track-

ing algorithms are designed to be robust to fast deforma-

tions, non-distinctive color, fast translations, etc. while

rPPG cares about background intervention, region consis-

tency, smoothness of the traces, etc. Hence, there is a gap

between a good detection and tracking algorithm and the

rPPG measurement accuracy. This paper aims at bridging

this gap by evaluating the performance of popular detection

and tracking algorithms widely used in rPPG methods. We

establish a processing pipeline and choose four detection

and tracking algorithms. Experiments are conducted on two

publicly available datasets and one self-collected dataset.

We find three key factors that affect the rPPG accuracy: 1)

stability of the tracking trajectory, 2) content consistency,

and 3) robustness to deformation and fast translation. This

study highlights the need for developing novel detection and

tracking algorithms dedicated to rPPG and gives some use-

ful insights.

1. Introduction

Remote photoplethysmography (rPPG) has recently at-

tracted much more attention and has already become a

cutting-edge technique which measures one’s physiologi-

cal parameters including heart rate, respiratory rate [23],

blood oxygen saturation [7], blood pressure [15], etc, with-

out the need of any physical contact with the subject [12].

The consumer-level digital cameras are sensitive enough to

detect the subtle variations of the light reflected from the

skin, in which part of the incident light is absorbed by the

blood in the micro-vessels beneath the skin. The color vari-

ations of the skin region carry information associated with

the heart activities, with the oscillation frequency being e-

qual to the heart rate. The significance of rPPG lies in the

non-contact feature in comparison with those conventional

photoplethysmography (PPG) measurements, which elim-

inates the inconvenience during measurement [36]. This

feature enables rPPG applicable to both clinical and non-

clinical scenarios, such as incubator monitoring [18], home

health monitoring [23], fitness training [29], driver monitor-

ing [36], etc.

Visual object detection and tracking has long been a clas-

sic computer vision task and undergone intensive investi-

gation. Some well-known challenges like PASCAL Visual

Object Classes (VOC) challenge [10], ImageNet Large S-

cale Visual Recognition Challenge (ILSVRC) [9], and Vi-

sual Object Tracking (VOT) challenge [24] are attracting

numerous participants every year. However, the main focus

of these detection and tracking algorithms may not be of in-

terest of rPPG. For example, the performance of detection

and tracking algorithms is evaluated by mean average preci-

sion (mAP) and intersection over union (IoU) and does not

take into account the continuity between successive frames,

which is particularly important for rPPG. Current detection

and tracking algorithms aim to improve the accuracy within

one single frame while rPPG is determined to maintain con-

sistency between frames, or the smoothness of the tracking

trajectory. It is important for rPPG that the tracked area

between frames keep as same as possible, no new area in-

volved and no old area removed. Otherwise, the resulting

rPPG measurement after spatial averaging (also called raw

trace) will introduce noise. Unfortunately, the detection and

tracking algorithms are not designed to solve these prob-

lems. Therefore, it is necessary to investigate the impact of

visual object detection and tracking algorithms on the rPPG

measurement and the final accuracy.

This paper focuses on the visual detection and track-

ing algorithms in rPPG. Most of existing rPPG processing

pipeline consists of three components: 1) image preprocess-

ing, 2) region of interest (ROI) detection and tracking, 3)

pulse extraction and heart rate calculation. Image prepro-

cessing refers to the preparation of visual data. ROI detec-



tion and tracking determine the location of skin regions in

every frame. Pulse extraction converts the visual data to

the time series that represents the pulse signal. Researchers

have paid a large amount of attention to the first and third

components so far. For example, in the image preprocessing

phase, the impact of video compression [26, 38, 37] and im-

age resolution [25] on the estimated pulse has been studied.

In the pulse extraction and heart rate calculation phase, var-

ious models have proposed for pulse extraction, e.g., blind

source separation [27], skin reflection model [34], camer-

a acquisition model [19], etc. However, to the best of our

knowledge, there is little research regarding the ROI detec-

tion and tracking in the field of rPPG.

As a key component in the rPPG processing pipeline,

ROI detection and tracking plays a role as important as

the other two steps. First, the tracking robustness refers to

whether the ROI can be reliably tracked if the target exhibits

translation, rotation, occlusion, etc, which ensures the raw

trace has minimum background noise. Second, the track-

ing smoothness refers to whether the same area is tracked

during the tracking process, which ensures the raw trace

has a minimum disturbance. The tracking robustness and

smoothness have equal significance for rPPG because both

of them have direct impact on the trace waveform and thus

the pulse extraction model design.

In this paper, we systematically investigate the impact

of detection and tracking algorithms on the trace waveform

and the final measurement accuracy and show that a good

visual object detection and tracking algorithm for rPPG is

more than robustness. We first perform an extensive lit-

erature review, summarizing the commonly used face de-

tection and tracking algorithms. Then, we establish a typ-

ical rPPG processing pipeline and choose four representa-

tive detection and tracking algorithms in the pipeline. The

performance is evaluated by signal-to-noise-ratio (SNR),

mean of absolute error (MAE), and root mean squared er-

ror (RMSE). Three datasets are used, two publicly available

datasets and one self-collected dataset. In addition to the

robustness of the tracking algorithm, we are particularly in-

terested in the smoothness. We gain some deep insights

from the experiments, which can be a good tip for design-

ing a dedicated ROI detection and tracking algorithm for

rPPG. We believe that this is the first attempt to revealing

the problems of using off-the-shelf visual object detection

and tracking algorithms in rPPG and the start of designing

dedicated detection and tracking algorithms.

2. Detection and tracking algorithms in rPPG

Object detection refers to localize the position and size of

a target in a given image while object tracking refers to lo-

calize the position and size of a target in a number of video

frames. In rPPG, the face/skin area is often determined by

a detection algorithm and tracked by a tracking algorith-

Method citation Method citation

Viola-Jones[33] 52 KCF[14] 2

Facial landmark 41 SSD[21] 1

KLT[28] 27 OpenFace[1] 1

Skin detection 14 EBGM[16] 1

CSK[13] 2 NPD[20] 1

Table 1. Detection and tracking methods used in rPPG literature

and the number of papers used that method.

m. However, nowadays, the difference between object de-

tection and tracking has become more and more vague. If

one applies object detection to every frame, it can also be

called object tracking. Moreover, the models of detection

and tracking are merging at a deeper level, e.g., detection

model trained online during tracking [13]. Hence, in this

paper, we discuss both of them.

We performed an extensive search on the internet for the

rPPG related papers from 1995 to 2019 and obtained 312

papers. We know that we cannot exhaust all related litera-

ture but we tried our best to search for the papers as com-

prehensive as possible. We recorded the ROI detection and

tracking algorithms used in these papers. Table 1 reports

several popular algorithms and the number of papers that

used this algorithm.

The most frequently used detection algorithm is Viola-

Jones face detector [33], which is a cascade of boosted clas-

sifier with 14 Haar-like digital image features. The detector

is robust, easy to use, and has already been integrated in

the OpenCV library. It can be applied to every frame of

a video or the first frame and followed by a tracker. Fa-

cial landmark is the second frequently used method. Facial

landmark refers to a set of algorithms [17, 2, 35] that detect

various landmark points on the face. It is often used to se-

lect specific facial regions that contain strong rPPG signals

such as nose, cheeks, mouth, etc. Similarly, facial landmark

algorithms can either be applied to every frame or the first

frame followed by a tracking algorithm.

Kanade-Lucas-Tomasi (KLT) is the most frequently used

tracking algorithm. The tracker is based on the early work

of Lucas and Kanade [22], then developed fully by Tomasi

and Kanade [32], and explained clearly in the paper by Shi

and Tomasi [28]. The tracker is simple, easy to implement,

and is usually used in conjunction with a face detector.

Another main group is skin detection, which localizes

the skin pixels. Unlike the face detection and tracking algo-

rithms that output a bounding box, the output of skin detec-

tion is irregular shaped. Skin detection can be done by nu-

merous approaches, including skin color thresholding [25],

superpixel segmentation [5], convolutional neural networks

[31], etc. An accurate skin detection algorithm can effec-

tively eliminate background noise. However, it is usually



time-consuming.

The last several approaches in Table 1 include face detec-

tion algorithms (e.g., single shot multi-box detector (SSD)

[21], OpenFace library [1], elastic bunch graph matching

(EBGM) [16], normalized pixel difference (NPD) [20]) and

tracking algorithms (e.g., circulant structure of tracking-by-

detection with kernels (CSK) [13] and kernel correlation fil-

ter (KCF) [14]). They are recently developed face detection

algorithms more advanced than Viola-Jones and KLT.

3. Method

This section describes the processing pipeline used to e-

valuate the performance of the detection and tracking algo-

rithms, which follows the typical structure summarized in

the Introduction section, i.e., 1) face detection and tracking,

2) pulse extraction, and 3) heart rate calculation.

3.1. Face detection and tracking

We examine four face detection and tracking algorithms

in this paper: one face detection algorithm and three track-

ing algorithms. In order to ensure a fair comparison, the

first ROIs for all the algorithms are the same, i.e., the first

ROI of dlib algorithm.

3.1.1 Dlib

Dlib is a modern C++ toolkit containing machine learn-

ing algorithms and tools and can be used in a wide range

of domains including robotics, embedded devices, mobile

phones, and large high performance computing environ-

ments [17]. We use this library to detect facial landmark-

s. Given an input image, dlib detects 68 facial landmark-

s (Figure 1(a)), each represents a different position on the

face. We choose a rectangular ROI for pulse extraction,

with its upper-left point based on landmark No. 5 and 29

and bottom-down point based on landmark No. 13 (Figure

1(b)). We use dlib to detect ROI on every frame of a video

sequence. The processing speed is about 23 frames per sec-

ond (fps) (Windows system, python environment, Core i7-

8700 CPU, 32GB RAM, 640× 480 pixels).

3.1.2 KLT

Kanade-Lucas-Tomasi (KLT) [28] is a traditional objec-

t tracking algorithm. Given an ROI in the current frame,

KLT detects feature points within that area and then track-

s these points in the next frame. A transformation matrix

is estimated using the matched feature points between two

frames. This transformation is applied to the bounding box

to realize the translation, rotation, and scale. We use the

Matlab implementation and the processing speed is about

73 fps.

Figure 1. ROI detection based on 68 facial landmarks. (a) Sample

image from PURE dataset [30]. Green rectangle denotes the ROI

and yellow dots denote landmark points. (b) ROI (yellow rectan-

gle) determined based on landmark points No. 5, 29, and 13.

3.1.3 CSK

Circulant structure of tracking-by-detection with kernels

(CSK) [13] is another object tracking algorithm, which fol-

lows the tracking-by-detection paradigm [3, 11]. The core

idea of tracking-by-detection is to train a classifier online

with samples collected during tracking. In contrast to ex-

isting trackers that sample the subwindows sparsely, CSK

employs a dense sampling strategy that trains a classifier

with all subwindows of an image. By exploiting a circulan-

t structure of the subwindows, CSK derives fast and exact

solutions to the optimization problem, resulting in a more

efficient training. We use the code provided by the authors

with default parameters. The algorithm runs in our project

under Matlab environment at 92 fps.

3.1.4 Staple

Sum of Template And Pixel-wise LEarners (Staple) [4],

proposed by Bertinetto et al., is built based on correlation

filter and tracking-by-detection methods. The tracker com-

bines template and color-based image representations to

learn a model that is inherently robust to both color changes

and deformations. Specifically, as shown in Figure 2, Sta-

ple first computes the histogram of gradients (HOG) fea-

tures and color histogram feature of the given ROI, which

are then convolved with HOG template and color histogram

template, respectively, resulting in two response maps. The

final response map is obtained by merging these two re-

sponse maps. The position with maximum response in the

final response map is assigned to be the position of the new

ROI. Staple runs in our in our project under Matlab envi-

ronment at 36 fps.

3.2. Pulse extraction

The pulse extraction step converts visual data to the time

series that represents the extracted rPPG signal associated

with human heart beat. Visual data are first converted to

time series data called traces by spatial averaging. Given the

ROI of the t-th frame, spatial averaging computes the mean



Figure 2. Staple tracker combines template response and color his-

togram response to estimate the final ROI.

value of all the pixels in each color channel respectively,

resulting in a column vector ct ∈ R
3 (suppose the image

has three color channels). By concatenating all the vectors

of the frames, we obtained the traces denoted by a matrix

C ∈ R
3×L, where L denotes the window length.

The traces are assumed to be a combination of the pulse

signal, motion artifacts, and noise. The purpose of pulse

extract algorithms is to extract the pulse signal from the

traces. Numerous approaches have been proposed. We em-

ploy POS [34] method. First, the traces need to be tempo-

rally normalized by dividing traces by their temporal mean

in respective color channels.

Cn = N ·C (1)

where N ∈ R
3×3 is a diagonal matrix with i-th diagonal

being the reciprocal of mean value of the i-th row of C, i.e.,

Nii = 1/µ(Ci) (2)

A projection plane orthogonal to the skin-tone is used

to project the temporally normalized traces onto that plane

such that the skin-tone component in the skin-reflection

model is eliminated. The algorithm defines two orthogonal

directions on the plane orthogonal to the skin-tone, denoted

by a projection matrix P :

P =

(

0 1 −1
−2 1 1

)

(3)

The normalized traces are projected on these two direc-

tions by multiplying P with Cn:

S1 = CnG −CnB (4)

S2 = CnG +CnB − 2CnR (5)

The output is calculated by α-tuning:

p = S1 + αS2 (6)

where α = σ(S1)/σ(S2), and σ(·) denotes the standard

deviation.

Finally, the extracted pulse signal is constructed by con-

catenating the overlapping windowed signal together with

stride equal to half of the window length.

3.3. Heart rate calculation

Heart rate is calculated based on the estimated pulse sig-

nal. Heart rate is updated every 1 second with 10s window

length. The window starts 10 seconds prior to the current

time instant. Fast Fourier Transform is applied to convert

the frequency spectrum of the windowed pulse signal. The

frequency with maximum power is assigned to be the heart

rate, multiplied by 60 to convert the unit from Hertz (Hz) to

beats per minute (bpm).

4. Experimental setups

4.1. Datasets

Three datasets are used in the experiment, two publicly

available datasets (PURE and UBFC-RPPG) and one self-

collected dataset. The self-collected dataset has been used

in our previous researches and we call it Self-RPPG in this

paper.

PURE [30]: This dataset consists of 10 persons (8 male,

2 female) performing 6 different, controlled head motions

in front of a camera, resulting in a total number of 60 se-

quences of 1 minute each. During these scenarios, the im-

age sequences of the head, as well as reference pulse mea-

surements, were recorded. The videos were captured with a

digital camera at a frame rate of 30 Hz with a cropped res-

olution of 640 × 480 pixels and a 4.8 mm lens. Reference

data have been captured in parallel using a finger clip pulse

oximeter (CMS50E) that delivers pulse rate wave and SpO2

readings with a sampling rate of 60 Hz. The six different

setups were as follows:

• Steady. The subject was sitting still and looks directly

into the camera avoiding head motion.

• Talking. The subjects were asked to talk while avoid-

ing additional head motion.

• Slow Translation. These sequences comprise head

movements parallel to the camera plane. The average

speed was 7% of the face height per second, where the

average face height was 100 pixels.

• Fast Translation. This setup has the same setup as

slow translation, except twice the speed of the moving

target.

• Small Rotation. This setup comprises different targets

that were placed at 35 cm around the camera. The sub-

jects were told to look at these targets in a predefined

sequence. They were asked to move not only their eye-

s but orient their head. The head rotation angles are

about 20◦.

• Medium Rotation. These sequences had the same set-

up as for small rotation, but with the average head an-

gle of 35◦.



UBFC-RPPG [6]: The UBFC-RPPG dataset was cre-

ated using a custom C++ application for video acquisition

with a simple low cost webcam (Logitech C920 HD Pro) at

30fps with a resolution of 640x480 in uncompressed 8-bit

RGB format. A CMS50E transmissive pulse oximeter was

used to obtain the ground truth PPG data comprising of the

PPG waveform as well as the PPG heart rates. During the

recording, the subject sits in front of the camera (about 1m

away from the camera) with his/her face visible. All experi-

ments are conducted indoors with a varying amount of sun-

light and indoor illumination. The dataset contains a total

number of 42 videos of 1 min each. The subject sits steadily

in front of the video with the face almost motionless.

Self-RPPG: The self-collected dataset contains 83

videos, recorded with a regular webcam (Logitech C920),

30 fps, 640 480 pixels, 1-minute duration, and stored in un-

compressed AVI format. Ground-truth pulse waveforms are

either the contact fingertip PPG signal measured by a pulse

oximeter (for the stationary case) or the ECG signal mea-

sured by a self-made 2-electrode ECG measurement device

(for the motion case). 18 healthy subjects (14 males and 4

females, aged 21 to 35) were recruited. The dataset contains

two major categories:

• Steady. The subject was asked to look at the camera

and keep still while recording. The illumination con-

ditions include: sunlight, fluorescent light, and mixed

of both. The subject conditions include: normal con-

dition, after drinking alcohol, after exercise.

• Motion. The subjects were performing two different

movements including moving horizontally, exercising

on a biking machine.

Figure 3 shows some sample images of the three dataset-

s.

Figure 3. Sample images of the datasets. First row: PURE, second

row: UBFC-RPPG, last row: Self-RPPG.

4.2. Evaluation metrics

Three commonly used metrics are used to evaluate the

performance of the detection and tracking algorithms.

Signal-to-noise-ratio (SNR) is used to measure the

quality of the estimated pulse signal, which is first defined

by De Haan et al. [8]. SNR is calculated as follows:

SNR = 10 log
10

(

∑

5

f=0.8 U(f)S2(f)
∑

5

f=0.8(1− U(f))S2(f)

)

(7)

where S(f) denotes the power spectrum of the extracted

pulse waveform, f denotes the frequency in Hz, and U(f)
denotes a template separating signal and noise, which is de-

fined as:

Û(f) =

⎧

⎨

⎩

1, fr −
ω
2
≤ f ≤ fr +

ω
2

1, 2fr −
ω
2
≤ f ≤ 2fr +

ω
2

0, otherwise

(8)

where fr denotes the ground-truth heart rate calculated ac-

cording to either pulse oximeter or an Electrocardiogram

(ECG) measurement device, and ω denotes the spectral win-

dow length.

The definition of the template window in this paper is

slightly different from that in [8]:

U(f) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1, fr −
ω
2
≤ f ≤ fr +

ω
2

1, 2fr −
ω
2
≤ f ≤ 2fr +

ω
2

1, 3fr −
ω
2
≤ f ≤ 3fr +

ω
2

0, otherwise

(9)

In this definition, we include the second harmonic of the

dominant frequency as the valid signal. This is based on the

observation that the second harmonic is visible in most of

the power spectrums of the extracted pulse. It will be more

accurate if the second harmonic is involved in the numera-

tor.

The mean absolute error (MAE) and root mean squared

error (RMSE) are used to measure the error between the

estimated heart rate HR(t) and the ground-truth heart rate

HRr(t):

MAE =
1

N

N
∑

t=1

|HR(t)−HRr(t)| (10)

RMSE =

√

√

√

√

1

N

N
∑

t=1

(HR(t)−HRr(t))2 (11)

5. Results and discussion

In order to compare the performance of different detec-

tion and tracking algorithms, for each video, we run the four

compared face detection and tracking algorithms once at a

time with other processing steps being the same, calculate

the evaluation metrics, and average the results over all the

videos in one category. The results are reported in Tables 2,

3, and 4.

Tables 2 shows the results on PURE dataset, in which

the results of every category are reported and the last row



KLT Dlib CSK Staple
S

te
ad

y SNR 13.26 12.82 13.42 13.11

MAE 1.75 1.69 1.68 1.67

RMSE 2.52 2.18 2.16 2.16

T
al

k
in

g SNR 3.40 4.06 3.40 3.36

MAE 8.99 10.84 10.19 10.15

RMSE 13.46 15.10 14.53 13.77

S
lo

w

tr
an

sl
. SNR 10.58 11.12 10.97 9.53

MAE 1.71 1.63 1.60 1.64

RMSE 2.25 2.13 2.12 2.22

F
as

t

tr
an

sl
. SNR 9.27 10.54 9.61 8.27

MAE 2.31 1.79 1.81 1.93

RMSE 3.19 2.40 2.41 2.95

S
m

al
l

ro
ta

ti
o

n SNR 10.04 10.46 9.87 8.34

MAE 1.71 1.45 1.62 1.79

RMSE 3.09 1.91 2.19 2.53

M
ed

iu
m

ro
ta

ti
o

n SNR 8.11 8.72 7.39 7.05

MAE 3.41 2.47 3.35 2.09

RMSE 6.17 4.55 5.14 2.86

O
v
er

al
l SNR 9.21 9.71 9.21 8.36

MAE 3.22 3.18 3.26 3.09

RMSE 4.97 4.54 4.59 4.26

Table 2. Accuracy results on PURE dataset. SNR in dB, MAE in

bpm, RMSE in bpm.

KLT Dlib CSK Staple

SNR 4.50 3.19 3.91 4.02

MAE 2.45 3.15 3.44 3.24

RMSE 5.25 6.48 6.80 6.30

Table 3. Accuracy results on UBFC-RPPG dataset. SNR in dB,

MAE in bpm, RMSE in bpm.

KLT Dlib CSK Staple

S
te

ad
y SNR 10.06 8.60 10.56 9.83

MAE 0.87 1.01 0.79 0.88

RMSE 2.37 2.68 2.06 2.36

M
o

ti
o

n SNR 4.50 3.31 4.68 3.30

MAE 5.12 5.98 3.87 5.01

RMSE 7.71 9.73 6.38 8.40

Table 4. Accuracy results on Self-RPPG dataset. SNR in dB, MAE

in bpm, RMSE in bpm.

denotes the average results on the entire dataset. In PURE

dataset, only the Steady category is the stationary case, al-

l the other categories are the motion case. It can be seen

that, for the stationary case, KLT, CSK, and Staple achieve

comparative SNR scores, e.g., SNR is greater than 13 dB,

with CSK achieving the highest SNR. Dlib has the least S-

NR score, i.e., 12.82 dB. On the contrary, dlib achieves the

highest SNR scores on all the motion categories.

The results in Table 3 and Table 4 demonstrate that KLT

achieves the highest scores in SNR, MAE, and RMSE on

UBFC-RPPG dataset while CSK achieves the highest s-

cores in both steady and motion categories on Self-RPPG

dataset. In both datasets, KLT and CSK perform better than

other algorithms while dlib exhibits the worst performance.

The overall performance of each algorithm can be sum-

marized as follows. Dlib exhibits significant fluctuation-

s during tracking in both stationary case and motion case.

The position of the landmark points changes dramatically

even if the subject is keeping still. This problem leads to

a large amount of noise in the rPPG measurements. KLT

and CSK perform relatively better than other algorithm-

s. The object can be stably tracked in both stationary and

motion cases. But when the subject rotates his/her head,

part of the ROI will go out of the facial region. This is the

common problem of most bounding box based algorithms.

The performance of Staple is moderate, e.g., neither signif-

icant fluctuations nor the smooth tracking trajectory. The

biggest problems of Staple is that the position and scale of

the ROI are updated in a discontinuous way, e.g., the ROI

position will not change until the subject has a sufficiently

large translation, resulting in a jumping tracking trajectory.

It seems that it is difficult to decide which algorithm

performs the best. In fact, every algorithm has its merit-

s and demerits. By considering the relationship between

the tracking algorithm performance and the corresponding

measurement traces, we summarize the following three fac-

tors that affect the rPPG accuracy.

5.1. Stability

While tracking robustness refers to whether the detected

object can keep track of the target, tracking stability refers

to the smoothness of the tracking trajectory. This is of sig-

nificant importance to the rPPG problem. Since the trace is

obtained by spatial averaging, the stability of tracking tra-

jectory and the ROI size have a direct impact on the trace

waveform. We analyze the stability in stationary and mo-

tion cases, respectively.

5.1.1 Stability in stationary case

Figure 4 shows an example of the tracking process in the

stationary case, where the subject keeps almost still while

recording. The first four rows denote the trajectory of the

ROI, i.e., x, y coordinates of the upper-left point, width,

and height, respectively. The x and y coordinates represent

the position of the ROI while the width and height repre-



sent the scale. Ideally, both of the position and the scale of

the ROI should keep unchanged during the whole process.

However, it can be seen that dlib is jittering all the time,

both in position and scale. The direct result is that the trace

of dlib has a large amount of noise, which can be seen in

comparison with the traces of other trackers. KLT has less

fluctuations than dlib. CSK and Staple are the most stable

trackers, where the position and scale keep almost the same

during the whole process.

5.1.2 Stability in motion case

Figure 5 shows a motion example where the subject is

moving his head horizontally. Similar to the stationary

case, dlib exhibits the most significant fluctuations in both

ROI position and scale. Staple exhibits discontinuity in the

tracking trajectories. The ROI does not move until the target

has a large motion, which means that staple tracker cannot

reflect the target’s movement in time. The direct impact is

that the trace signal has similar discontinuities, which intro-

duces undesirable artifacts.

5.2. Content consistency

Almost all the detection and tracking algorithms output

the bounding box to denote the target’s position and size.

However, the bounding box cannot describe precisely the

actual shape of the target, i.e., background may be involved

and this problem may lead to inaccuracy in rPPG measure-

ment. On the contrary, the landmark point based method,

dlib, does not have this problem. Because the facial land-

mark points can adjust their positions according to the face

deformation and the ROI selection rule, the resulting ROI

covers the facial region all the time during tracking. There-

fore, content consistency can be guaranteed.

Figure 6 shows an example, in which the subject takes a

rotation of his head. The bounding box methods, e.g., KLT,

CSK, and Staple, rotate their ROIs accordingly, and thus,

the background is involved. On the contrary, the landmark

points method, e.g., dlib, fully covers the facial region al-

l the time. The traces given by different methods can be

compared in Figure 6 (b). When the ROI covers the facial

region, the trace intensity is under a certain level (denoted

by gray region). When the background region is involved,

the trace intensity goes up above the normal level because,

in this case, the background color is brighter than the facial

color. In such a case, the trace involves background noise

and thus, degenerates the performance of the rPPG pulse

extraction model.

5.3. Robustness

5.3.1 Robustness to deformation

Deformation occurs when the subject is talking or blink-

ing. The tracker may be subjected to the deformation, ex-

Figure 6. Performance comparison between bounding box based

methods and landmark point based methods. (a) Sample image

of one subject in PURE dataset with ROIs of four trackers. (b)

Traces computed from four trackers. Gray shaded regions denote

the normal level when the ROI fully covers the facial region (no

background region is involved).

hibiting instability. For example, when the subject is talk-

ing, the position of landmarks around the mouth change.

The ROI changes accordingly. Similarly, for the KLT track-

er, the tracked feature points are changing, and thus, the

ROI is no longer stable.

On the contrary, CSK and Staple are less sensitive to de-

formation, i.e., the ROI keeps stable while the subject is

talking. This is partially because of the use of correlation

filters, e.g., the global minimum will not be affected by lo-

cal variations. For example, Staple employs HOG and color

histogram models, which are both spatially invariant fea-

tures.

5.3.2 Robustness to fast translation

Translation is one of the most commonly occurred mo-

tion type in many real-life applications, e.g., the subject’s

head is moving left and right or forward and backward. The

tracking robustness to fast translation is one of the most im-

portant metrics for the design of a tracker. In rPPG, the

loss of target means that the traces contain no longer the

rPPG signal, or that the rPPG signal is contaminated by sig-

nificant background noise, which definitely undermines the

heart rate measurement accuracy. Figure 7 shows an ex-

ample of tracking failure, in which the CSK tracker cannot

fully overlap with the face region. The shaded region de-

notes the loss of target period, in which one can see that the

signal value is much higher than previous time period.

6. Conclusions

There exists a gap between the ROI detection and track-

ing algorithms and the rPPG measurement accuracy, i.e.,

an accurate detection and tracking algorithm in the conven-

tional definition does not necessarily guarantee an accurate

heart rate measurement result. This paper investigates this

gap by analyzing four visual object detection and tracking



Figure 4. Fluctuations in stationary case. Rows 1 to 4 represent the x, y coordinates of the upper-left point, width, and height of the ROI,

respectively. Row 5 represents the trace, in which only the green channel is shown.

Figure 5. Fluctuations in motion case. Rows 1 to 4 represent the x, y coordinates of the upper-left point, width, and height of the ROI,

respectively. Row 5 represents the trace, in which only the green channel is shown.

Figure 7. Example of tracking failure. (a) Sample image of one

subject in Self-RPPG dataset with ROIs of four trackers. (b)

Traces computed from four trackers. Yellow shaded region de-

notes the time when the tracker losses the target.

algorithms on three datasets in terms of SNR, MAE, and

RMSE. We observe three factors that affect the measure-

ment accuracy: 1) stability of the tracking trajectory, 2) con-

tent consistency, and 3) robustness to deformation and fast

translation. The first two factors are new problems when

detection and tracking algorithms are applied to rPPG while

the third factor is the classical problem in the field of visu-

al object detection and tracking. This study highlights the

need for developing novel detection and tracking algorithm-

s dedicated to rPPG. There is room for accuracy improve-

ment if the three factors are considered.
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