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Abstract

We propose LU-Net—for LiDAR U-Net, a new method

for the semantic segmentation of a 3D LiDAR point cloud.

Instead of applying some global 3D segmentation method

such as PointNet, we propose an end-to-end architecture for

LiDAR point cloud semantic segmentation that efficiently

solves the problem as an image processing problem. We

first extract high-level 3D features for each point given its

3D neighbors. Then, these features are projected into a 2D

multichannel range-image by considering the topology of

the sensor. Thanks to these learned features and this pro-

jection, we can finally perform the segmentation using a

simple U-Net segmentation network, which performs very

well while being very efficient. In this way, we can exploit

both the 3D nature of the data and the specificity of the Li-

DAR sensor. This approach outperforms the state-of-the-art

by a large margin on the KITTI dataset, as our experiments

show. Moreover, this approach operates at 24fps on a single

GPU. This is above the acquisition rate of common LiDAR

sensors which makes it suitable for real-time applications.

1. Introduction

The recent interest for autonomous systems has moti-

vated many computer vision works over the past years.

The importance of accurate perception models is a cru-

cial step towards system automation, especially for mo-

bile robots and autonomous driving. Modern systems are

equipped with both optical cameras and 3D sensors, mostly

LiDAR sensors. These sensors are now essential compo-

nents of perception systems as they enable direct space mea-

surements, providing an accurate 3D representation of the

scene. However, for most automation-related tasks, raw Li-

DAR point clouds require further processing in order to be
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Figure 1. The top two images show the segmentation of LiDAR

data obtained with our method, and the groundtruth segmentation,

seen in the sensor topology. The bottom two images show the

same segmentations from a different point of view.

used. In particular, point clouds with accurate semantic seg-

mentation provide a higher level of representation of the

scene that can be used in various applications such as ob-

stacle avoiding, road inventory, or object manipulation.

This paper focuses on the semantic segmentation of 3D

LiDAR point clouds. Given a point cloud acquired with

a LiDAR sensor, we aim at estimating a label for each

point that belongs to objects of interest in urban environ-

ments (such as cars, pedestrians and cyclists). The tradi-



tional pipelines used to tackle this problem consider ground

removal, clustering of remaining structures, and classifica-

tion based on handcrafted features extracted on each clus-

ters [8, 6]. The segmentation can be improved with varia-

tional models [12]. These methods are often hard to tune as

handcrafted features usually require tuning many parame-

ters, which is likely to be data dependent and therefore hard

to use in a general scenario. Finally, although the use of reg-

ularization can lead to visual and qualitative improvements,

it often leads to a large increase of the computational time.

Recently, deep-learning approaches have been proposed

to overcome the difficulty of tuning handcrafted features.

This has become possible with the arrival of large 3D an-

notated datasets such as the KITTI 3D object detection

dataset [7]. Many methods have been proposed to segment

the point cloud by directly operating in 3D [17] or on a

voxel-based representation of the point cloud [23]. How-

ever, this type of methods either needs very high computa-

tional power, or are not able to process the amount of points

acquired in a single rotation of a sensor. Even more re-

cently, faster approaches have been proposed [20, 19]. They

rely on a 2D representation of the point cloud, called range-

image [1], which can be used as the input of a convolu-

tional neural network. Thus, the processing time as well as

the required computational power can be kept low, as these

range-images consist in low resolution, multichannel im-

ages. Unfortunately, the choice of input channels, as well

as the difficulty of processing geo-spatial information using

only 2D convolutions have limited the results of such ap-

proaches, which have not yet achieved good enough scores

for practical use, especially on small objects classes such as

cyclists or pedestrians.

In this paper, we propose LU-Net—for LiDAR U-Net—

an end-to-end model for the semantic segmentation of 3D

LiDAR point clouds. LU-Net benefits from a high-level 3D

feature extraction module that can embed 3D local features

in 2D range-images, which can later be efficiently used in a

U-Net segmentation network. We demonstrate that, beside

being a simple and efficient method, LU-Net largely out-

performs state-of-the-art range-image methods, as shown in

Figure 1.

The rest of the paper is organized as follows: We first

discuss previous works on point cloud semantic segmen-

tation, including methods designed for processing LiDAR

data. We then detail our approach, and evaluate it on the

KITTI dataset against state-of-the-art methods and discuss

the results.

2. Related Work

In this section, we discuss previous works on image se-

mantic segmentation as well as 3D point cloud semantic

segmentation below.

2.1. Semantic Segmentation for Images

Semantic segmentation of images has been the subject

of many works in the past years. Recently, deep learn-

ing methods have largely outperformed previous ones. The

method presented in [16] was the first to propose an accu-

rate end-to-end network for semantic segmentation. This

method is based on an encoder in which each scale is used

to compute the final segmentation. Only a few month later,

the U-Net architecture [18] was proposed for the seman-

tic segmentation of medical images. This method is an

encoder-decoder able to provide highly precise segmenta-

tion. These two methods have largely influenced recent

works such as DeeplabV3+ [5] that uses dilated convolu-

tional layers and spatial pyramid pooling modules in an

encoder-decoder structure to improve the quality of the pre-

diction. Other approaches explore multi-scale architectures

to produce and fuse segmentations performed at different

scales [14, 22]. Most of these methods are able to produce

very accurate results, on various types of images (medical,

outdoor, indoor). The survey [3] of CNNs methods for se-

mantic segmentation provides a deep analysis of some re-

cent techniques. This work demonstrates that a combination

of various components would most likely improve segmen-

tation results on wider classes of objects.

2.2. Semantic Segmentation of Point Clouds

3D-based methods. As mentioned above, the first ap-

proaches for point cloud semantic segmentation were done

using heavy pipelines, composed of many successive steps

such as: ground removal, point cloud clustering, feature

extraction as presented in [8, 6]. However, as mentioned

above, these methods often require many parameters and

they are therefore hard to tune. In [11], a deep-learning

approach is used to extract features from the point cloud.

Then, the segmentation is done using a variational regu-

larization. Another approach presented in [17] proposes

to directly input the raw 3D LiDAR point cloud to a net-

work composed of a succession of fully-connected layers to

classify or segment the point cloud. However, due to the

heavy structure of this architecture, it is only suitable for

small point clouds. Moreover, processing 3D data often in-

creases the computational time due to the dimension of the

data (number of points, number of voxels), and the absence

of spatial correlation. To overcome these limitations, the

methods presented in [13] and [23] propose to represent the

point cloud as a voxel-grid which can be used as the input of

a 3D CNN. These methods achieve satisfying results for 3D

detection. However, semantic segmentation would require

a voxel-grid of very high resolution, which would increase

the computational cost as well as the memory usage.



Figure 2. Proposed pipeline for 3D LiDAR point cloud semantic segmentation. First, the topology of the sensor is used to estimate the

8-connected neighborhood of each point. Then, each point and its neighbors are fed to the high-level 3D feature extraction module, which

outputs a multichannel 2D range-image. The range-image is finally used as the input of a U-Net segmentation network.

Range-image based methods. Recently, SqueezeSeg, a

novel approach for the semantic segmentation of a LiDAR

point cloud represented as a spherical range-image [1],

was proposed. This representation allows to perform the

segmentation by using simple 2D convolutions, which low-

ers the computational cost while keeping good accuracy.

The architecture is derived from the SqueezeNet image

segmentation method [10]. The intermediate layers are ”fire

layers”, i.e. layers made of one squeeze module and one

expansion module. Later on, the same authors improved

this method in [21] by adding a context aggregation module

and by considering focal loss and batch normalization to

improve the quality of the segmentation. A similar range-

image approach was proposed in [19], where a Atrous

Spatial Pyramid Pooling [4] and squeeze reweighting

layer [9] are added. Finally, in [2], the authors offer to input

a range-image directly to the U-Net architecture described

in [18]. This method achieves results that are comparable

to the state of the art of range-image methods with a

much simpler and more intuitive architecture. All these

range-image methods succeed in real-time computation.

However, their results often lack of accuracy which limits

their usage in real scenarios.

In the next section, we propose LU-Net: an end-to-

end model for the accurate semantic segmentation of point

clouds represented as range-images. We will show that it

outperforms all other range-image methods by a large mar-

gin on the KITTI dataset, while offering a robust methodol-

ogy for bridging between 3D LiDAR point cloud processing

and 2D image processing.

3. Methodology

In this section, we present our end-to-end model for the

semantic segmentation of LiDAR point clouds inspired by

the U-Net architecture [18]. An overview of the proposed

method is available in Figure 2.

3.1. Network input

As mentioned above, processing raw LiDAR point

clouds is computationally expensive. Indeed, these 3D

point clouds are stored as unorganized lists of (x, y, z)
Cartesian coordinates. Therefore processing such data of-

ten involves preprocessing steps to bring spatial structure

to the data. To that end, alternative representations, such

as voxel grids or 2D pinhole projections in 2D images, are

sometimes used, as discussed in the Related Work section.

However, high resolution is often needed in order to rep-

resent enough details, which involves heavy memory costs.

Modern LiDAR sensors often acquire 3D points, following

a strict sensor topology, from which we can build a dense

2D image [1], the so-called range-image. The range-image

offers a lightweight, structured and dense representation of

the point cloud.

3.2. Range-images

Whenever the raw LiDAR data (with beam number) is

not available, the point cloud has to be processed to ex-

tract the corresponding range-image. As 3D LiDAR sensors

acquire 3D points with a sampling pattern of a few num-

ber of scan lines and quasi uniform angular steps between

samples, the acquisition follows a grid pattern that can be

used to create a 2D image. Indeed, each point is defined by

two angles and a depth, (θ, φ, d) respectively, with steps of

(∆θ,∆φ) between two consecutive positions. Each point pi
of the LiDAR point cloud P can be mapped to the coordi-

nates (x, y) with x = ⌊ θ
∆θ

⌋, y = ⌊ φ
∆φ

⌋ of a 2D range-image

u of resolution H × W = Card(P ), where each channel

represents a modality of the measured point. A range-image

is presented on Figure 3.

In perfect conditions, the resulting image is completely

dense, without any missing data. However, due to the nature

of the acquisition, some measurements are considered in-

valid by the sensor and they lead to empty pixels (no-data).

This happens when the laser beam is highly deviated (e.g.

when going through a transparent material) or when it does

not create any echo (e.g. when the beam points in the sky

direction). We propose to identify such pixels using a bi-

nary mask m equal to 0 for empty pixels and to 1 otherwise.

The analysis of multi-echo LiDAR scans is subject to future

work.



3.3. High-level 3D feature extraction module

In [19], [20] and [21], the authors use a 5-channel range-

image as input of their network. These 5 channels are made

of the 3D coordinates (x, y, z), the reflectance (r) and the

spherical depth (d). However, the analysis presented in [2]

showed that feeding a 2-channel range-image with only the

reflectance and depth information to a U-Net architecture

achieves comparable results to the state of the art.

In all these previous works, the choice of the number of

channels of the range-image appears to be empirical. For

each application, a complete study or a large set of experi-

ments must be conducted to choose the best within all the

possible combinations of channels. This is tedious and time

consuming. To bypass such an expensive study, we pro-

pose in this paper a feature extraction module that is able

to directly learn meaningful features adapted to the target

application—here, semantic segmentation.

Moreover, processing geo-spatial information using 2D

convolutional layers can cause issues in terms of data nor-

malization as LiDAR sensors sampling typically decreases

when acquiring farther points.

Inspired by the Local Point Embedder presented in [11],

(a)

(b)
Figure 3. Turning a point cloud into a range-image. (a) A point

cloud from the KITTI database [7], (b) the same point cloud as a a

range-image. Note that the dark area in (b) corresponds to pulses

with no returns. Colors correspond to groundtruth annotation, for

better understanding.

Figure 4. Illustration of the notation of the input of the feature

extraction module. pi is the point, N (pi) is the set of neighbors of

pi.

Figure 5. Architecture of the 3D feature extraction module. The

output is an 1×N feature vector for each LiDAR point.

we propose a high-level 3D feature extraction module that

is able to learn N meaningful high-level 3D features for

each point and to output a range-image with N channels.

Contrary to [11], our module exploits the range-image to

directly estimate the neighbors of each points instead of us-

ing a pre-processing step. Moreover, our module outputs a

range-image, instead of a point cloud, which can be used as

input to a CNN.

Given a point pi = (x, y, z), and ri its associated re-

flectance, we define N (pi) the set of neighboring points of

pi in the range-image (e.g. the points that correspond to

the 8-connected neighborhood of pi in the range-image).

This set is illustrated Figure 4. We also define N̄ (pi) =
{q−pi | q ∈ N (pi)} the set of neighbors in coordinates rel-

ative to pi. Note that if either pi or q is an empty pixel, then

q − pi = (0, 0, 0).

Similarly to [11], the set of neighbors N̄ (pi) is first pro-

cessed by a multi-layer perceptron (MLP), which consists of

a succession of linear, ReLU and batch normalization lay-

ers. The resulting set is then maxpooled to a point feature

set, which is concatenated with pi and ri. The resulting vec-

tor is processed through another MLP that outputs a vector

of N 3D features for each pi. This module is illustrated in

Figure 5.

As linear layers can be done using 1 × 1 convolutional

layers, the whole P point cloud can be processed at once.

In this case, the output of the 3D feature extraction module

is a Card(P ) × N matrix, which can then be reshaped to a

H ×W ×N range-image.

3.4. Semantic segmentation

Architecture. The U-Net architecture [18] is an encoder-

decoder. As illustrated in Figure 6, the first half consists in

the repeated application of two 3× 3 convolutions followed

by a rectified linear unit (ReLU) and a 2 × 2 max-pooling

layer that downsamples the input by a factor 2. Each time

a downsampling is done, the number of features is doubled

to compensate for the loss of resolution. The second half of

the network consists of upsampling blocks where the input

is upsampled using 2 × 2 up-convolutions. Then, concate-

nation is done between the upsampled feature map and the



Figure 6. LU-Net architecture with the output of the 3D feature ex-

traction module as the input (top) and the output segmented range-

image (bottom).

corresponding feature map of the first half. This allows the

network to capture global details while keeping fine details.

After that, two 3 × 3 convolutions are applied followed by

a ReLU. This block is repeated until the output of the net-

work matches the dimension of the input. Finally, the last

layer consists in a 1x1 convolution that outputs as many fea-

tures as the wanted number of possible labels i.e. K 1-hot

encoded.

Loss function. The loss function of our model is defined

as a variation of the focal loss presented in [15]. Indeed,

our model is trained on a dataset in which the number of

example for each class is largely unbalanced. Using the fo-

cal loss approach helps improving the average score by few

percents, as discussed later in Section 4. First, we define the

pixel-wise softmax for each label k:

pk(x) =
exp(ak(x))

K∑
k′=0

exp(ak′(x))

where ak(x) is the activation for feature k at the pixel po-

sition x. After that, we define l(x) the groundtruth label of

pixel x. We then compute the weighted focal loss as fol-

lows:

E =
∑

x∈Ω

−1{m(x)>0}w(x)(1− pl(x)(x))
γ log(pl(x)(x))

where Ω is the domain of definition of u, m(x) > 0 are the

valid pixels, γ = 2 is the focusing parameter and w(x) is

a weighting function introduced to give more importance to

pixels that are close to a separation between two labels, as

defined in [18].

Training We train the network with the Adam stochastic

gradient optimizer and a learning rate set to 0.001. We also

use batch normalization with a momentum of 0.99 to ensure

good convergence of the model. Finally, the batch size is set

to 4 and the training is stopped after 10 epochs.

4. Experiments

We trained and evaluated LU-Net using the same ex-

perimental setup as the one presented in SqueezeSeg [20]

as they provide range-images with segmentation labels ex-

ported from the 3D object detection challenge of the KITTI

dataset [7]. They also provide the training / validation split

that they used for their experiments, which contains 8057
samples for training and 2791 for validation and which can

be used for a fair comparison between each result of each

method.

We have manually tuned the number of layers N , i.e. the

number of 3D features learned for each points. On all our

experiments, best semantic segmentation results were ob-

tained by setting N = 3. This small amount of channels is

enough to highlight the structure of the objects that are lat-

ter used in the U-Net in charge of the segmentation task. All

results reported in this section are with this value. Neverthe-

less, if using the high-level 3D feature extraction module for

other applications, one should consider adapting this value.

4.1. Comparison with the state of the art

We compare the proposed method to 4 range-image

based methods of the state of the art: PointSeg [19],

SqueezeSeg [20], SqueezeSegV2 [21], and RIU-Net [2].

RIU-Net is a previous version of LU-Net we developed and

was solely based on the raw reflectance and depth features

instead of the 3D features learned in the end-to-end network

of LU-Net. Similarly to [20] and [21], the comparison is

done based on the Intersection-over-Union score:

IoUl =
|ρl

⋂
Gl|

|ρl
⋃
Gl|

where ρl and Gl denote the predicted and groundtruth sets

of points that belongs to label l respectively.

The performance comparisons between LU-Net and

state-of-the-art methods are displayed Table 1. The first ob-

servation is that the proposed model outperforms existing



methods in terms of average IoU by over 10%. In partic-

ular, the proposed model achieves better results on each of

the classes compared to PointSeg, SqueezeSeg and RIU-

Net. Our method also largely outperforms SqueezeSegV2

for both pedestrians and cyclists.

Our method is very similar to RIU-Net as both methods

use a U-Net architecture with a range-image as input. While

RIU-Net uses 2 channels—the reflectance and depth—LU-

Net automatically extracts a N-dimensional high-level fea-

tures per point thanks to the 3D feature extraction module.

Table 1 demonstrates that using an additional network to

automatically learn high-level features from the 3D point

cloud largely improves the results, especially on classes that

are less represented in the dataset.

Figure 7 presents visual results for SqueezeSegV2 and

LU-Net. We here observe that visually, the results for cars

are comparable. Nevertheless, by looking closer at the re-

sults, we observe that SqueezeSegV2 is more subject to

false positives (Figure 7, orange rectangle). Moreover, our

method provides a better segmentation of the cars in the

back of the scene, compared to SqueezeSegV2 (Figure 7,

purple rectangle).

4.2. Ablation study

Table 2 presents intermediate scores in order to highlight

the contribution of some model components.

First, we analyse the influence of relative coordinates

N̄ as input to the 3D feature extraction module (Figure 5).

We trained and tested the model using absolute coordinates

N . We name this version LU-Net w/o relative. As Table 2

shows, relative candidates provide better results than neigh-

bors in absolute coordinates. We believe that by reading

relative coordinates as input, the network learns high-level

features characterizing the local 3D geometry of the point

cloud, independently of its absolute position in the 3D en-

vironment. These absolute positions are re-introduced once

this geometry is learned, i.e. before the second multi-layer

Table 1. Comparison (IoUs, %) of LU-Net with the state of the art

for the semantic segmentation of the KITTI dataset.

C
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s

P
ed
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C
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A
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ra
ge

SqueezeSeg [20] 64.6 21.8 25.1 37.2

PointSeg [19] 67.4 19.2 32.7 39.8

RIU-Net [2] 62.5 22.5 36.8 40.6

SqueezeSegv2 [21] 73.2 27.8 33.6 44.9

LU-Net 72.7 46.9 46.5 55.4

Ground truth

SqueezeSegV2 [21]

LU-Net

Zooms in the following order

Groundtruth, SqueezeSegV2, LU-Net

Figure 7. Visual comparison of the proposed model against

SqueezeSegV2 [21] and the ground truth. Results are shown on

the range-image where depth values are encoded with a grayscale

map. Both SqueezeSegV2 and LU-Net globally achieve very sat-

isfying results. Nervertheless, LU-Net is less subject to false pos-

itives than SqueezeSegV2, as can be seen in the orange areas and

corresponding zooms. It also better segments farther objects such

as the cars on the back of the scene in the purple rectangle, which

reduces the amount of false-negatives, which are crucial for au-

tonomous driving applications.

Groundtruth

LU-Net w/o relative

LU-Net w/o FL

LU-Net
Figure 8. Visual results of the ablation study. The use of neighbors

in absolute coordinates results in incomplete segmentations of the

objects compared to neighbors in relative coordinates. Moreover,

the use of the focal loss (FL) helps the network to better distinguish

classes that have similar aspects, here, cyclists and pedestrians.

perceptron of the 3D feature extraction module.



Table 2. Ablation study for the semantic segmentation of the

KITTI dataset. Results in terms of (IoUs, %) for LU-Net w/o rel-

ative: which uses absolute coordinates N instead of relative N̄ as

input to the feature extraction module; LU-Net w/o FL : proposed

model without focal-loss; LU-Net: proposed model with relative

coordinates and focal-loss.

C
ar

s

P
ed

es
tr

ia
ns

C
yc

li
st

s

A
ve

ra
ge

LU-Net w/o relative 62.8 39.6 37.5 46.6

LU-Net w/o FL 73.8 42.7 32.9 49.8

LU-Net 72.7 46.9 46.5 55.4

For fair comparison, we also experimented using abso-

lute coordinates N and adding a supplementary convolu-

tional layer as the first layer. Indeed, we could expect this

additional layer to characterize the transformation from ab-

solute and local coordinates. Nevertheless, this architec-

ture brought numerical instability while not managing to

learn such transform, as it ended up with an average IoU

of 30.6%.

Next, we analyse the influence of the focal-loss. As seen

in Table 2, the use of focal-loss largely improves the scores

on both cyclists and pedestrians. This is related to the im-

balance between each class in the dataset, where there are

10 times more car examples than cyclists or pedestrians.

4.3. Additional results

Apart from being convincing in terms of IoUs, the results

produced by our method are also very convincing visually,

as it is demonstrated Figure 1 and 9. Our segmentations are

very close to those of the groundtruth. In Figure 9d), one

of the pedestrians was not detected. When looking closely

at the depth values in the range-image, this pedestrian is

in fact hardly visible. It is also the case in the reflectance

image. This is also related to the resolution of the sensor as

only few points fall on the pedestrian, and could probably

be solved by adding an external modality such as an optical

image.

In Figure 9e), a car in the foreground is missing from the

groundtruth, this causes the IoU to drop from 89.7% when

ignoring this region of the image, down to 36.4%. Thus,

removing examples with wrong or missing annotations in

the dataset could lead to better results on LU-Net as well as

on other methods. However, due to the amount of examples

in the dataset, having a perfect annotation is practically

very difficult.

Finally, LU-Net is able to operate at 24 frames per sec-

ond on a single GPU. This is a lower frequency compared to

other systems, yet still above the frame rate of the LiDAR

sensor (10fps for the Velodyne HDL-64e). Moreover, our

system uses only a few more parameters than RIU-Net for

a significant improvement in terms of IoU scores.

5. Conclusion

In this paper, we have presented LU-Net, an end-to-

end model for the semantic segmentation of 3D LiDAR

point clouds. Our method efficiently creates a multi-channel

range-image using a learned 3D feature module. This

range-image later serves as the input of a U-Net architec-

ture. We show that this methodology efficiently bridges

between 3D point cloud processing and image processing.

The resulting method is simple, but yet provides very high

quality results far beyond existing state-of-the-art methods.

The current method relies on the focal loss function. We

plan to study possible spatial regularization schemes within

this loss function. Finally, fusion of LiDAR and optical data

would probably enable reaching a higher level of accuracy.
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