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Abstract

The retrieval of the 3D pose and shape of objects from

images is an ill-posed problem. A common way to object re-

construction is to match entities such as keypoints, edges, or

contours of a deformable 3D model, used as shape prior, to

their corresponding entities inferred from the image. How-

ever, such approaches are highly sensitive to model initial-

isation, imprecise keypoint localisations and/or illumina-

tion conditions. In this paper, we present a probabilistic

approach for shape-aware 3D vehicle reconstruction from

stereo images that leverages the outputs of a novel multi-

task CNN. Specifically, we train a CNN that outputs proba-

bility distributions for the vehicle’s orientation and for both,

vehicle keypoints and wireframe edges. Together with 3D

stereo information we integrate the predicted distributions

into a common probabilistic framework. We believe that the

CNN-based detection of wireframe edges reduces the sen-

sitivity to illumination conditions and object contrast and

that using the raw probability maps instead of inferring key-

point positions reduces the sensitivity to keypoint localisa-

tion errors. We show that our method achieves state-of-the-

art results, evaluating our method on the challenging KITTI

benchmark and on our own new ’Stereo-Vehicle’ dataset.

1. Introduction

The highly dynamic nature of street environments is one

of the biggest challenges for autonomous driving applica-

tions. The precise reconstruction of moving objects, espe-

cially of other cars, are fundamental to ensure safe naviga-

tion and to enable applications such as interactive motion

planning and collaborative positioning. To this end, cam-

eras provide a cost-effective solution to deliver perceptive

data of a vehicle’s surroundings. However, the projection

from 3D to 2D images leaves many ambiguities about 3D

objects, causing the retrieval of their pose and shape to be

ill-posed and difficult to solve. To confine the parameter

space, deformable models can be used as shape prior and are

aligned with the objects in the image to recover their pose

and shape. In this paper, we make use of such a deformable

Figure 1: Qualitative results of our method. Left: Heatmaps

for vehicle keypoints (top) and vehicle wireframes (bot-

tom) superimposed to the input image. Right: Input image

and backprojected 3D wireframe of a reconstructed vehicle

(top) and 3D view on the reconstructed scene (bottom).

vehicle model and present a method that fully reconstructs

vehicles in 3D given street level stereo image pairs, allow-

ing the derivation of precise 3D pose and shape parameters.

Earlier approaches used model edges and contours to align

them with image edges, usually derived from gradient infor-

mation [21, 31, 33]. However, these approaches are highly

sensitive to illumination, reflections, contrast, object color

and model initialisation, because these factors can cause er-

roneous edge-to-edge correspondences, thus prohibiting a

correct model alignment. Instead, recent approaches lever-

aged keypoint detections to be used for model alignment

[1, 9, 27, 30]. However, compared to edges, keypoints are

less stable in the way that already small localisation errors

are likely to cause large errors in 3D space. We start from

the idea that if it is possible to detect keypoints, it should

also be possible to detect model edges and contours without

the explicit dependency on good image gradients. Based on

initially detected vehicles, we make the following contri-

butions in this paper: (1) We propose a novel multi-task

convolutional neural network (CNN) that simultaneously

detects vehicle keypoints and vehicle wireframe edges (cf.

Fig. 1) and also outputs a probability distribution for the

vehicle’s orientation. For the orientation estimation, we ex-

pand the overlapping viewpoint class definition proposed



in [25] by defining a novel hierarchical class and classifier

structure. We define a novel loss for the detection of key-

points and wireframes, which we believe allows the usage

of a single encoder-decoder (”hourglass”) CNN and makes

the repeated hourglass architecture proposed in [28, 26] un-

necessary. (2) Instead of relying on gradient based edge

representations [7, 21, 33], which highly depend on illumi-

nation, contrast, and object color, we incorporate the wire-

frame predictions given by our CNN into our reconstruction

approach. Since we train our CNN to distinguish between

wireframe edges belonging to different sides of the vehicle,

we not only avoid the problems due to low contrast of vehi-

cle edges and silhouettes, but also achieve better prospects

for edge-to-edge correspondences. (3) For the purpose of

vehicle reconstruction, we build upon our previous proba-

bilistic model and optimisation procedure [7] and signifi-

cantly extend the model by adding state prior terms, lead-

ing to major improvements of the reconstruction results. To

avoid the error source of incorrect keypoint localisations, in

contrast to [1, 30, 26], we build our probabilistic model di-

rectly on the raw keypoint heatmaps obtained by our CNN.

(4) We propose a new dataset for vehicle reconstruction,

which exceeds the famous KITTI dataset [11] as it not only

delivers 2D and 3D reference bounding boxes, but precisely

fitted vehicle CAD models, which allow the evaluation of

shape reconstructions and vehicle categorisation or identifi-

cation.

2. Related Work

One of the biggest challenges in image based reconstruc-

tion and pose estimation of vehicles is the enormous vari-

ability of appearance, caused by the intra-class variability

of vehicles and by different viewpoints of the acquired im-

ages. One strategy to overcome these problems is to train

viewpoint and/or category specific classifiers [15, 19, 29]

or to learn viewpoint specific shape templates [31] to rea-

son about vehicle pose and/or shape. However, in these

approaches the viewpoint usually is discretised into a set

of viewpoint bins and thus only coarse viewpoint estimates

are delivered as output. 3D vehicle detection approaches

such as [4] and [25] deliver oriented bounding box esti-

mates in 3D using CNNs. However, describing objects by a

box only gives a very coarse representation of their shape.

Due to the ambiguous representation of 3D object informa-

tion in images, the usage of 3D models as shape prior can

be extremely beneficial for the task of object reconstruc-

tion. In this context, CAD vehicle models can be used di-

rectly to guide the vehicle reconstruction [13]. However,

finding the best suitable among the vast amount of exist-

ing CAD models becomes intractable quickly. Instead, de-

formable shape representations learned from a set of refer-

ence shapes, such as signed distance functions (SDF) [10]

or active shape models (ASM) [42] are more flexible rep-

resentations to cope with the intra-class variability of vehi-

cles. Using such prior models, a shape aware reconstruc-

tion is conducted, in which an instance of the deformed

and transformed shape model is fitted to the observations

to derive the target pose and shape parameters. Matching a

shape prior with image observations can be done via curve

alignment of backprojected model edges and image edges

[6, 21, 31, 33] or via alignment of the backprojected model

silhouette with an instance segmentation mask in the image

[8, 17, 32, 39]. However, matching image edges highly de-

pends on the illumination and contrast of the objects and

on a good model initialisation to be able to establish cor-

rect edge-to-edge correspondences. On the other hand, sil-

houette matching inherits pose and shape ambiguities and

neglects object details and structures. To counteract these

problems, we define a vehicle wireframe that contains edges

not only representing the silhouette but also boundaries be-

tween vehicle parts and learn a CNN to detect the wire-

frame, differentiating between edges belonging to different

sides of the vehicle (left, right, front, back). This enables an

illumination/contrast invariant, finer-grained and more ro-

bust establishment of correspondences for model fitting.

[6, 10, 40] propose methods for 3D vehicle reconstruc-

tion solely based on 3D points obtained from stereo images

or laserscanning, respectively. In contrast to images, 3D

points provide explicit 3D information, but when used as

the only data source they deliver a rather sparse and incom-

plete representation of the object and valuable image cues

are disregarded completely for model fitting.

Another strategy to shape-aware vehicle reconstruction

is to match semantic model keypoints with their corre-

sponding keypoints detected in the image. Traditionally,

handcrafted features are used in [2, 7, 22, 23, 42] for the

model to keypoint alignment, while recently CNNs are ap-

plied to detect keypoints [1, 3, 9, 27, 30]. Typically, to

infer the object pose and shape, the backprojection error

of model keypoints and detected keypoints is minimized

which makes these approaches prone to imprecise, incor-

rect and missing keypoint localisations. In contrast, we do

not infer pointwise keypoint locations but instead build our

model fitting approach on probabilistic keypoint heatmaps

generated by our CNN.

End-to-end approaches that take the image as input and

infer pose and shape of the target vehicle directly are pre-

sented in [20, 24]. These methods require a vast amount

of expensive training data, which is why often synthetically

generated data is used for learning [20, 24]. However, train-

ing CNNs on synthetic images usually leads to a drop of

performance when applying the CNN to real world images.

Besides, explicit scene and/or model knowledge is disre-

garded in [20, 24]. In contrast, we derive scene knowledge

from the data and incorporate it as prior information.



3. Shape aware vehicle reconstruction

3.1. Overview

The goal of our method is to recover the precise pose

(i.e. position and orientation) as well as the shape of vehi-

cles detected from street-level stereo images. For this pur-

pose, we fit a 3D vehicle model to the detected vehicles.

We learn a deformable model as shape prior and formulate a

probabilistic model to find the best fitting vehicle model by

making use of a new vehicle CNN, trained to predict vehi-

cle keypoints and wireframe edges, as well as the vehicle’s

viewpoint. A schematic overview of our method is shown in

Fig. 2. The input to our method are stereo image pairs, incl.

their interior and relative orientation parameters. To derive

3D information, we make use of the ELAS matcher [12] to

calculate a dense disparity map for every stereo pair and re-

construct 3D points X via triangulation for every pixel of

the reference image (the left stereo partner).

Input

Reconstruction

Stereo Image Pair

Disparity Map

Detection

Scene Layout
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Figure 2: Overview of our framework.

3.1.1 Notation

Given a set of detected vehicles vk ∈ V , our goal is to as-

sociate each vehicle with its state vector sk = (tk, θk, γk),
comprising its pose and shape parameters. After determin-

ing the ground plane Ω ∈ R
3, we describe the vehicle pose

by its 2D position tk on the ground plane and its heading θk,

i.e. the rotation angle about the normal vector of the ground

plane; γk is a vector of shape parameters determining the

shape of the 3D deformable ASM representing each vehicle

(cf. Sec. 3.1.4).

3.1.2 Scene layout

We use the stereo data to derive knowledge about the 3D

layout of the scene, represented by the 3D ground plane and

a probabilistic free-space grid map.

Ground plane Ω: We apply RANSAC to the stereo

point cloud X to find the ground plane Ω as plane of max-

imum support. All inliers of the final RANSAC consensus

set are stored as ground points XΩ ⊂ X. Requiring vehi-

cles always to be located on the ground plane, we are able

to fix three of the 6 DoF vehicle pose parameters (1 transla-

tional + 2 rotational parameters) and, thus, to constrain the

parameter space of the model fitting approach.

Probabilistic free-space grid map Φ: Based on the

ground plane points XΩ and all the points not belong-

ing to the ground plane, thus representing arbitrary objects

XObj = X \XΩ, it is possible to reason about free space,

i.e. non occupied areas, in the observed scene. To represent

the free space areas we create a probabilistic free space grid

map Φ. For this purpose, we create a grid in the ground

plane consisting of square cells with a side length lΦ. For

each grid cell Φg with g ∈ [1, G] we count the number

of ground points n
g
Ω and the number of object points n

g
Obj

whose vertical projection is within the respective cell. We

define the probability ρg of each cell to be free space as the

ratio of n
g
Ω and the sum of n

g
Ω and n

g
Obj . Grid cells without

projected points are marked as unknown.

3.1.3 Vehicle detection

To initially detect vehicles we apply the pretrained mask R-

CNN (mRCNN) [14] to the reference image. Besides its

good performance it has the advantage of not only deliver-

ing bounding boxes but also an instance segmentation mask

for every vehicle. To obtain a list of k ∈ [1,K] detected

vehicles vk = (Xk,
l Bk,

r Bk), we associate each detection

with the object points Xk reconstructed from the pixels be-

longing to the respective segmentation mask, as well as with

its left and right image bounding boxes lBk and rBk, the lat-

ter being derived from the dense stereo correspondences.

3.1.4 Shape prior

Similar to [42] we use a 3D ASM as vehicle shape prior.

The ASM is learned by applying principal component anal-

ysis (PCA) to a set of manually annotated keypoints K of

3D CAD vehicle models. A deformed vehicle ASM is de-

fined by the deformed vertex positions ν(γ), which can be

obtained by the linear combination

ν(γ) = m+
∑

j

γ(j) σj ej (1)

of the mean model m and the eigenvectors ej , weighted by

the square root of their corresponding eigenvalues σ2
j and

scaled by the object specific shape parameters γ(j). A fully

parametrised instance of a 3D vehicle ASM on the ground

plane, denoted by M(s), can be created according to the

state vector s by computing the deformed keypoints using

the shape vector γ and subsequently shifting and rotating

the whole model on the ground plane according to the trans-

lation vector t and the heading angle θ.



Geometrical representation: We represent the model

surface by defining a triangular mesh M∆ for the ASM

shape vertices K. Further, we use a subset of K to define

a wireframe MW of the vehicle model, consisting of two

types of edges: crease edges that describe the outline of the

vehicle and semantic edges, describing the boundaries be-

tween semantically different vehicle parts. Another subset

KA ∈ K are chosen as keypoints for which we learn an

image based detector described later (cf. Sec. 3.2). Fig. 3

shows the triangulations of several deformed models, their

wireframes and the keypoints KA.

Figure 3: ASM: Triangulated surface (black), wireframe

(red/blue: crease/semantic edges) and keypoints (green).

3.2. CNN structure

Our multi-task CNN consists of one common input

branch and two individual output branches, each of them

corresponding to one task, respectively. The overall archi-

tecture of the network can be seen in Fig. 5. The input

to the network are images showing a vehicle, cropped by

the bounding box. The network output consists of a proba-

bility distribution for the vehicle’s viewpoint, a probability

heatmap for each of a set of vehicle keypoints, and proba-

bility heatmaps for the vehicle wireframe edges.

Input branch: This branch contains a series of shared

convolutions and max pooling layers, thus acting as a shared

backbone feature extractor, adopting the architecture of the

VGG19 network [37].

Viewpoint branch: We design the viewpoint branch to

output a probability distribution Πϑ for the vehicle view-

point ϑ, which describes the aspect under which the vehi-

cle is seen. As depicted in Fig. 4a, the viewpoint is de-

fined as the angle between the image ray to the center of

the vehicle and the vehicle’s longitudinal axis (red arrow in

Fig 4a). Given the direction of the image ray ρ the vehicle

orientation can directly be computed from the viewpoint via

ϑ = 180◦ − θ − ρ. In order to derive a probability distri-

bution for the viewpoint of the vehicle, which can later be

used in our probabilistic formulation for model fitting we

set up a classification network rather than a regression net-

work. The classes correspond to discretised orientation bins

for the viewpoint estimation. The design of our viewpoint

branch follows two assumptions regarding the general be-

havior of a viewpoint bin classifier: First, we expect the

classification accuracy to decrease with an increasing num-

ber and therefore a finer definition of viewpoint bins. Sec-

ond, we expect classification errors to primarily occur for

vehicles with viewpoint angles close to the bin borders, i.e.

being distributed close to the diagonal of the confusion ma-

trix. Inspired by [41], to consider the first assumption, we

combine three hierarchical layers of classes for classifica-

tion, containing different numbers (4, 8 and 16) of view-

point classes. Thus, we believe to profit from the higher

classification accuracy for the coarse class definition and

the finer level of detail of the fine class definition. To con-

sider the second assumption, we let the viewpoint bins of

the individual layers overlap so that finer viewpoint classes

do not share borders with coarser classes. Our hierarchical

division of viewpoint classes can be seen in Fig. 4b.
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Figure 4: Definition of the viewpoint angle (a) and of the

hierarchical viewpoint classes in blue, green, and red (b).

However, in contrast to [41], we do not apply conditional

hierarchical classification, in which the output of the coarse

classification layers decides about the execution of indi-

vidual classifiers for the finer layers, because in that case,

the output of images that are routed to an incorrect fine

classifier cannot be corrected anymore. Instead, we split

the viewpoint branch into three independent softmax clas-

sification heads, one for each layer, and establish a skip-

connection between features extracted at coarser layers to

the feature extraction pipeline of the next finer layers (cf.

Fig. 5). In this way, the fine category classifiers can profit

from the information extracted by the coarse classifiers but

are less dependent on the input. The output of the classifica-

tion heads is fed into a probabilistic averaging layer. Thus,

our hierarchical class structure serves two purposes. On the

one hand, we profit from the more reliable output of the

coarse layers while still leveraging the more detailed output

of the finer layers. On the other hand, due to the overlapping

viewpoint bins, we mitigate the effect of misclassifications

occuring between neighboring viewpoint classes.

Keypoint/Wireframe branch: This branch corresponds

to a decoder network, upsampling the output of the input

branch to the original input resolution. Inspired by [28]

and [26], it is trained to produce one heatmap Hc
K for ev-

ery keypoint c ∈ [1, C] in KA. Unlike previous work, we
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Figure 5: Architecture of our mulit-task CNN. The input is a 3 channel image of size 224x224. The convolutional filters have

size 3x3, max pooling and upsampling use filter size 2x2 and stride 2. The number of filters is denoted by d in the figure.

adapt the network to also output heatmaps Hw
W for the ve-

hicle wireframe edges. To this end, we subdivide the wire-

frame edges into four mutually non-exclusive subsets, each

of which contains all edges belonging to the wireframe of

one of the four vehicle sides w ∈ {front, back, left, right}.

The values at each pixel position of the resulting heatmaps

correspond to a probability for the presence of the respec-

tive keypoint/wireframe edge at that position. Together with

the input branch, the keypoint/wireframe network follows a

symmetrical UNet-like [34] architecture including skip con-

nections between corresponding layers of the encoder and

decoder blocks. The head of this branch consists of C + 4
binary classifiers using a sigmoid activation function to pro-

duce the C keypoint and the four wireframe heatmaps.

Training: The input branch is initialized from the cor-

responding layers of the VGG19 network [37], pre-trained

on ImageNet [35] and frozen during training. The remain-

ing convolutional layers are initialised using a normal dis-

tribution. We train the viewpoint branch using categori-

cal cross-entropy loss at each classification head given the

groundtruth bin containing the groundtruth viewpoint of

the training vehicle images. We create training images for

the keypoint/wireframe branch using annotated image key-

points. By automatically connecting keypoints correspond-

ing to our wireframe definition we derive training data for

the wireframe outputs. The training images are generated

by placing 2D Gaussians at the corresponding keypoint po-

sitions, gaussian blurred edges along the reference wire-

frame, and zero everywhere else. The standard deviation

of the Gaussians varies according to the distance of the ve-

hicle to the camera and thus adapts to the size of the bound-

ing box. Training of the keypoint/wireframe branch is done

by comparing the predicted heatmaps to the groundtruth

heatmaps. In [28] and [26], a mean squared error (MSE)

loss is used for training, in which each pixel contributes

equally to the loss. In our use case of detecting keypoints

and edges, this leads to an unfavorably broad shape of the

loss function due to the extremely small proportion of key-

point/wireframe pixels w.r.t. non-keypoint/non-wireframe

pixels in the groundtruth. To overcome this problem, we

apply a new custom keypoint/wireframe loss LKW with

LKW = MSEtrue + MSEfalse + MSEpred. (2)

Here, MSEtrue, MSEfalse and MSEpred correspond to indi-

vidual MSE, each computed for a different subset of pix-

els. In MSEtrue only pixels with groundtruth values larger

than zero, whereas in MSEfalse only pixels with groundtruth

values equal to zero are considered. In this way, the

keypoint/wireframe and non-keypoint/non-wireframe pix-

els contribute to the loss with equal weight. Furthermore,

we add an additional regularizing term MSEpred to the loss

function In this term, only pixels whose prediction exceeds

a predefined threshold are considered. Thus, this term puts

emphasis on keypoint/wireframe detections and acts as ad-

ditional penalty of false positive outputs. The network is

trained using Keras [5], Adam optimizer for optimisation

[18], a batch-size of 50, and a learning rate of 10−4. To

improve training, we drop the learning rate by a factor of

10 after 5 validation accuracy plateaus, use Batch normali-

sation [16], and apply Dropout [38] to the fully-connected

layers with a rate of 0.5.

3.3. Probabilistic Model

Given the vehicle detections vk, we fit a vehicle model

M(sk) to each detection by finding the optimal state vari-

ables ŝk = (t̂k, θ̂k, γ̂k). Neglecting the index k (where it is

possible) to simplify our notation in the following sections,



ŝ can be derived by maximising the posterior

p(s|v) =
p(v|s) · p(s)

p(v)
→ max. (3)

Adapting the ideas from [7], we further factorize the likeli-

hood and the prior according to

p(s|v) ∝ p(X|s) · p(HK|s) · p(HW |s)
︸ ︷︷ ︸

Observation likelihood

· p(t) · p(θ)
︸ ︷︷ ︸

State prior

. (4)

We minimise the negative logarithm of the posterior of

Eq. 4. The individual likelihood and prior terms are

explained in the following paragraphs.

3D likelihood: Based on the distances of the 3D points

Xk to the surface M∆ of the model M(s) we calculate the

3D likelihood as

log p(Xk|s) = −
1

P

∑

x∈Xk

dσx
(x,M∆)

2σ2
x

. (5)

Here, P is the overall number of 3D points in Xk and σx

is the depth uncertainty of the individual 3D point x. We

apply the Huber norm to calculate dσx
(x,M∆), as it is

more robust against outliers. This likelihood fits the 3D

ASM to the 3D point cloud.

Keypoint likelihood: To calculate this term we backpro-

ject the visible model keypoints of KA to the stereo images,

resulting in c = [1, Cv] image points u
l/r
c for both, the left

(l) and right (r) stereo images, respectively. The keypoint

likelihood is calculated using the keypoint heatmaps HK by

log p(HK|s) = −
1

2Cv

∑

i∈{l,r}

Cv∑

c=1

log
(
1− iHc

K(u
i
c)
)

(6)

Here, Hc
K(uc) denotes the output of the heatmap for the

keypoint c at the location uc. This term fits the 3D ASM to

the predicted keypoints.

Wireframe likelihood: This term is based on a measure

of similarity between the backprojected edges of the model

wireframe MW(s) and the wireframe heatmaps HW result-

ing from our CNN. To this end, considering self-occlusion,

we backproject the visible parts of the wireframe subsets

w ∈ {front, back, left, right} to the left and right images,

resulting in binary wireframe images lIwW and rIwW with en-

tries of 1 at pixels that are crossed by a wireframe edge and

0 everywhere else. We blur the wireframe images using a

Gaussion filter to account for generalisation effects. The

size of the filter is defined according to the backprojection

uncertainty of the model keypoints given the generalisation

error of the ASM which is quantified to be 10 cm. The wire-

frame likelihood is calculated according to

log p(HW |s) = −
1

2

∑

i∈{l,r}

∑

w

log
(
1−BC(iIwW , iHw

W)
)

(7)

where we use the Bhattacharyya coefficient BC(·, ·) as

similarity measure between the wireframe images and

the wireframe heatmaps. This likelihood will be large

if the backprojected wireframes correspond well to the

wireframes predicted by the CNN.

Position prior: The position prior is derived from the

probabilistic free-space grid map Φ (cf. Sec 3.1.2). It is cal-

culated based on the amount of overlap between the mini-

mum enclosing 2D bounding box MB of the model M(s)
on the ground plane and the free-space grid map cells Φg

given their probability ρg of being free space:

log p(Φ|s) =
λΦ

AB

G∑

g=1

log(1− ρg) · o(MB,Φg). (8)

AB is the area of the model bounding box. The function

o(·, ·) calculates the overlap between the model bounding

box and a cell Φg . The factor λΦ = min(1,
lφ
σM

) is used

to weight this likelihood term based on the grid cell size

lΦ and the depth uncertainty σM of a stereo-reconstructed

point in the distance of the model M(s). This likelihood

penalises models that are partly or fully located in areas

which are observed as not being occupied by 3D objects.

Orientation prior: To calculate the orientation prior for

the model M(s) we use the probability distribution Πϑ for

the vehicle viewpoint inferred by our CNN. We compute the

viewpoint ϑM from the model orientation θ. The image ray

direction ρ is derived from the ray connecting the camera

projection center and the center of the vehicle model M(s).
The orientation prior is calculated according to

log p(θ) = logΠϑ(ϑM ) + log

(
1 + cos(ϑCNN − ϑM )

2

)

.

(9)

Πϑ(ϑM ) denotes the probability for the angle ϑM accord-

ing to the output of the viewpoint classification branch of

the CNN. As we assume incorrect viewpoint classifications

to appear especially between neighboring viewpoints, this

term alone is prone to cause small orientation biases. This

is why we additionally consider the cosine distance of the

most likely viewpoint ϑCNN predicted from the vehicle

CNN and the model viewpoint ϑM in this prior.

Inference To find the optimal pose and shape param-

eters for each detected vehicle we minimize the negative



logarithm of Eq. 4. As this function is non-convex and dis-

continuous we apply the sequential Monte Carlo sampling

approach described in [7] to approximate the parameter set

for which the energy function becomes minimal. Starting

from an initial state particle, we generate a number of parti-

cles in each iteration by jointly sampling the pose and shape

parameters from a uniform distribution centered at the pre-

ceding parameter values. In contrast to [7], the initial par-

ticle orientation is derived from the viewpoint estimated by

the CNN. For more details we refer the reader to [7].

4. Evaluation

4.1. Test data and test setup

We test and evaluate our proposed method on two

datasets, the KITTI 3D object detection benchmark [11] and

our own StereoVehicle benchmark. The official KITTI eval-

uation metrics are designed to assess the joint performance

of both, detection and pose estimation. As our approach

only focuses on the latter and because we want to obtain fur-

ther insights in the performance of our algorithm, we only

use the KITTI training set with known annotations to eval-

uate our approach using own evaluation metrics. It consists

of 7481 stereo iamges and provides the 3D object location

and the orientation for every vehicle. It distinguishes three

levels of difficulty (easy, moderate and hard), which mainly

depend on the level of object occlusion and truncation.

4.1.1 StereoVehicle dataset

For the acquisition of our dataset we equipped a vehicle

with a calibrated and synchronised stereo camera rig using

a baseline of 0.85 m and recorded in total more than one

hour of data during different day times in urban environ-

ments. Further details can be found in [36]. Compared to

the KITTI benchmark [11], our dataset has a larger image

size (1936x1216), wider field of view using a focal length

of 5 mm, a significantly larger baseline, and a higher frame

rate of 25 fps. To evaluate our approach we labeled 2289 ve-

hicles in 1000 image pairs. In contrast to the KITTI dataset,

which only delivers 2D and oriented 3D bounding boxes

as references, we manually fitted the most similar model

out of a large set of vehicle CAD models to the individ-

ual vehicles, and thus deliver the reference shape and the

reference vehicle type in addition to its 3D pose. We dis-

tinguish between easy vehicles, which are fully visible in

the images, and moderate vehicles, which are occluded or

truncated. We intend to make the data publicly available.

4.2. Parameter settings and training

We select the side length lΦ of the free-space grid cells

to be 25 cm. For the number of the eigenvalues and eigen-

vectors to be considered in the ASM we choose j ∈ [1, 2],

which we found to be a proper tradeoff between the com-

plexity of the model and the quality of the model approxi-

mation. For training our CNN we make use of the dataset

provided by the authors of [43], who labeled 36 differ-

ent vehicle keypoints in a subset of images of the KITTI

dataset. (Note that this subset is not used for evaluation.)

We crop these images by the provided reference bound-

ing boxes to use them to train our network. The view-

point classes needed for the viewpoint branch are derived

from the groundtruth viewpoint angles according to our

viewpoint class definition in Fig. 4. To train the key-

point/wireframe branch, we make use of the 36 labeled

landmarks and create the 2D reference heatmaps for the

keypoints and wireframe edges as described in Sec. 3.2. We

horizontally flip the training images to double the amount

of training data by adapting the viewpoint classes and key-

point/wireframe labels accordingly.

4.3. Vehicle reconstruction results

To evaluate the vehicle reconstruction, we compare the

resulting pose parameters from each fitted 3D vehicle model

and the reference data for location and orientation of the

vehicles. We report results for position estimates whose eu-

clidean distance from the reference position is smaller than

0.75 m. To evaluate the orientation, we show results in three

stages (θ5, θ10 and θ22.5), in which we consider an orienta-

tion to be correct if its difference from the reference is less

than 5◦, 10◦ and 22.5◦, respectively. Additionally, we cal-

culate the average errors εt and εθ for position and orienta-

tion from all vehicle reconstructions.

4.3.1 Results on the KITTI benchmark

The percentage of vehicles in the KITTI dataset detected by

the mRCNN is shown in the leftmost column of Tab. 1. Be-

sides, the resulting values for the described pose evaluation

metrics are shown in the second rightmost column, com-

pared to state-of-the-art results [7] reported in the rightmost

column. Furthermore, we report results depending on the

vehicle’s distance from the camera. Additionally, we show

the depth uncertainty σx of a stereo reconstructed 3D point

assuming an uncertainty of disparity of 1 px. Throughout

the three levels of difficulty, we achieve a total percent-

age between 77.5 and 80.6% of correct position estimates

(cf. Tab. 1). However, it can be noticed that while the

percentage of correct position estimates lies even between

96.3 and 97.1% for vehicles having a distance between 5

and 10 m, the amount decreases to 52.8%-56.7% for vehi-

cles further away from the camera than 20 m. Accordingly,

the average error of position estimates also increases dras-

tically and more than doubles from around 30 cm for vehi-

cles in a distance between 5 and 10 m to more than 76 cm

for vehicles being more distant than 20 m. We suspect the



increasing depth uncertainty of distant 3D points to be re-

sponsible for this effect. Compared to the position esti-

mates, the number of correct orientation estimates is higher

with θ22.5 = 98.9% and θ5 = 86.7% for the easy category

(getting worse for the more challenging levels). However,

the same effect of decreasing correct results for vehicles in

increasing distance is visible for the orientation estimates,

although less distinct compared to the position estimates.

We also assume this effect to be caused by the increasing

uncertainty with increasing distance to the camera. Com-

paring our results to [7], we obtain very similar values for

the position estimates. However, we significantly outper-

form the orientation estimation results of [7], especially for

the moderate and hard levels by up to 5.7% for the θ5 metric

and even up to 9.4% for the θ22.5 metric.

Vehicle distance

5-10m 10-15m 15-20m >20m total [7]

σx[cm] 6-25 25-58 58-103 >103

ea
sy

:
9
8
.6

%

t[%] 96.8 94.8 76.0 52.8 79.4 80.8

εt [m] 0.31 0.34 0.54 0.76 0.49 -

θ5[%] 91.6 90.4 86.8 78.7 86.7 84.8

θ10[%] 99.4 98.4 96.9 94.4 97.1 93.2

θ22.5[%] 99.7 99.6 98.8 97.6 98.9 94.8

εθ [◦] 2.75 2.87 4.32 5.94 4.02 -

m
o
d
er

at
e:

9
5
.9

% t[%] 97.1 93.4 76.6 56.7 80.6 80.6

εt [m] 0.30 0.37 0.55 0.76 0.50 -

θ5[%] 89.4 85.7 81.6 73.3 82.3 77.8

θ10[%] 96.6 94.9 91.8 88.8 92.9 86.4

θ22.5[%] 98.0 97.5 95.2 93.8 96.1 89.0

εθ [◦] 4.49 4.88 7.35 9.43 6.6 -

h
ar

d
:

8
5
.5

%

t[%] 96.3 89.7 72.8 53.7 77.5 75.9

εt [m] 0.31 0.42 0.63 0.85 0.56 -

θ5[%] 85.7 78.6 74.9 67.4 76.1 70.4

θ10[%] 93.0 88.3 85.1 81.9 86.7 78.4

θ22.5[%] 95.9 92.8 89.3 87.1 91.0 81.6

εθ [◦] 7.58 9.00 12.30 15.15 11.2 -

Table 1: Overall and distance dependent results of our vehi-

cle reconstruction approach on the KITTI dataset.

4.3.2 Results on the StereoVehicle dataset

The reconstruction results on our StereoVehicle dataset are

shown in Tab. 2. On the one hand, it is apparent that the

overall results for the position estimates are distinctly better

compared to the overall results on the KITTI dataset with

97.2% for the easy and 92.8% for the moderate level. Ac-

cordingly, the average position error achieved on our dataset

is lower compared to the KITTI dataset. A reason for this

might be the larger base length and consequently the lower

depth uncertainty. However, the orientation estimates and

average orientation errors are significantly worse compared

to results achieved for the KITTI data, especially for the

fine estimations reported in the θ5 metric. This effect can

be caused by the domain gap of our CNN which is trained

on KITTI data and therefore performs better on data from

the same domain. Also, it has to be noted that the defini-

tion of our moderate level covers the definitions of both, the

moderate and hard level of the KITTI benchmark.

t[%] εt [m] θ5[%] θ10[%] θ22.5[%] εθ [◦]

easy 97.2 0.28 74.4 90.4 95.4 10.4

moderate 92.8 0.35 70.1 85.8 90.8 16.8

Table 2: Results of our vehicle reconstruction approach on

our StereoVehicle dataset.

To obtain a closer look on the distribution of orienta-

tion estimation errors, we also show a cumulative histogram

for the orientation errors resulting from our own dataset in

Fig. 6. According to this, the majority of the incorrectly re-

covered orientations have an error between 170◦-180◦, i.e.

they exhibit the opposed viewing direction and thus strongly

influence the average orientation error. The reason for this

effect might be ambiguities caused by the symmetric shape

and appearance of vehicle front and back sides, which in

some cases cannot be resolved by our approach.

0%
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20%

30%

40%

50%

60%

70%

80%

90%

100%
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Figure 6: Cumulative histogram of absolute orientation er-

rors on our StereoVehicle dataset.

5. Conclusion

In this paper, we proposed a probabilistic approach for

vehicle reconstruction, jointly incorporating 3D data, scene

knowledge and predictions for vehicle orientation, key-

points and wireframes inferred by our proposed CNN. For

the prediction of vehicle orientation we presented a novel

hierarchical classification structure, allowing the derivation

of a probability distribution to be used as prior. The CNN

based detection of vehicle wireframe edges attenuates the

dependency on good gradients. These innovations lead to

state-of-the-art results on the KITTI object detection bench-

mark, as well as on our presented StereoVehicle dataset, pro-

viding precisely fitted vehicle models as reference.
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