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Abstract

An environment representation (ER) is a substantial part
of every autonomous system. It introduces a common inter-
Jace between perception and other system components, such
as decision making, and allows downstream algorithms to
deal with abstract data without knowledge of the used sen-
sor. In this work, we propose and evaluate a novel archi-
tecture that generates an egocentric, grid-based, predictive,
and semantically-interpretable ER, which we call seman-
tic grid. We show that our approach supports the spatio-
temporal fusion of multiple camera sequences and short-
term prediction in such an ER. Our design utilizes a strong
semantic segmentation network together with depth and
egomotion estimates to first extract semantic information
from multiple camera streams and then transform these sep-
arately into egocentric temporally-aligned bird’s-eye view
grids. A deep encoder-decoder network is trained to fuse a
stack of these grids into a unified semantic grid and to pre-
dict the dynamics of its surrounding. We evaluate this repre-
sentation on real-world sequences of Cityscapes and show
that our architecture can make accurate predictions in com-
plex sensor fusion scenarios and significantly outperforms
a model-driven baseline in a category-based evaluation.

1. Introduction

In recent years, deep learning methods have been inves-
tigated to control autonomous systems, such as self-driving
cars or robots. An important property of such systems is
their capability to perceive complex situations using mul-
tiple sensors and to act accordingly in a fast and reliable
way. To enable intelligent decision making, a common en-
vironment representation (ER) as interface between differ-
ent sensors and the downstream control has to be provided.

Such an ER should have certain properties. First, it
should unify different sensor representations to support sen-
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Figure 1. (best viewed in color) Semantic grid prediction: Our
framework is based on semantic segmentations in image space (top
left), which are transformed into the proposed bird’s eye view se-
mantic grid representation (top right). We feed our architecture
with a sequence of input frames (bottom left and bottom center)
to predict the subsequent frame (bottom right), which is compared
with the target frame (top right). In the shown example, a bus (dark
blue) is entering the grid at the top (bottom row). Our architecture
is able to predict its movement further into the grid even though
the vehicle became just visible in frame 2. For details on the loss
mask and prediction artifacts, see Section 5.

sor fusion. In that way, downstream algorithms can work
with this abstract representation without knowledge of the
used sensors. Second, the ER should be interpretable to
modularize the system and enhance human accessibility.
So, the system can be debugged and understood more easily,
improving its reliability. Third, the representation should be
adaptable to the dynamically changing environment (e.g.
not restricted to the predefined number of objects in the
scene). And fourth, it should be predictive to compen-
sate for system-inherent latencies caused by sensor mea-



surements or signal processing, which is particularly im-
portant in the context of recent computationally expensive
computer vision algorithms.

Due to these reasons, we present and evaluate a proof of
concept for generating an egocentric, interpretable, predic-
tive, and grid-based representation of the changing environ-
ment, most importantly including the spatio-temporal fu-
sion of semantic information of multiple cameras and short-
term prediction. We call this ER semantic grid. It is a bird’s
eye view 2D projection of semantic features of the environ-
ment (see Fig. 1 top row).

Our concrete architecture for producing semantic grids
can be disentangled into two major parts (see I and Il in Fig.
2): First, semantic information is extracted from each cam-
era signal using deep neural networks for semantic segmen-
tation (see S in Fig. 2). The semantic information is then
spatially transformed into a top-down, bird’s eye view se-
mantic grid, using depth information provided by the stereo
camera (see P in Fig 2). Grids from different cameras and
past time frames are temporally aligned to a certain future
time 7 using the agent’s egomotion (see 7 in Fig. 2). Note
that independently moving objects are not taken into ac-
count, as there is no motion model of other objects than
the agent itself, yet.

Second, these spatio-temporally aligned representations
are combined into a single grid using a deep encoder-
decoder (ED) neural network. This network contains all
trainable parameters of our architecture and has the non-
trivial task to fuse the grids from different cameras and past
times, making assumptions about the environment, as well
as predicting the motion of potentially multiple dynamic ob-
jects. Such a prediction is shown in Fig. 1. Even though
in this work we focus on multi-camera fusion, our archi-
tecture can be extended to other modalities such as LIDAR
given an appropriate algorithm for extracting spatial seman-
tic features from the sensor.

We have evaluated our architecture with respect to dif-
ferent semantic categories on the camera-based Cityscapes
dataset of real-world driving scenarios. Our approach sig-
nificantly outperforms solely model-driven baselines for
single camera and multi-camera prediction, considering
missing egomotion information, different sequence length,
and varying prediction horizons. To the best of our knowl-
edge, we are the first to investigate joint short-term predic-
tion and multi-camera fusion on semantic grids using deep
convolutional neural network. Our approach enables au-
tonomous systems to perceive the environment with mul-
tiple cameras and helps to mitigate the problem of long run-
times of recent computer vision algorithms.

2. Related Work

Due to the recent discovery of certain cells dedicated to
spatial referencing in brains [1], grid-based representations
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Figure 2. (best viewed in color) Schematic overview of our se-
mantic grid fusion and prediction architecture. The framework
is fed with image sequences m(¢;) of different cameras from
past times ¢;. These are semantically segmented (S), projected
(P) into a agent-centric top-down view 2D point cloud ~(¢;) and
transformed (7) to the same time 7 resulting in spatio-temporally
aligned grids g(¢; — 7). The encoder-decoder deep neural net-
work (ED) fuses these grids and predicts environment dynamics.
The two-step description in Section 3 is indicated as I and II on
the right. Note that the point cloud ~(¢;) is represented as grid for
visualization purpose.

seem biologically plausible. One well known example of
interpretable grid-based ER are single- and multi-sensor oc-
cupancy grids [2, 3], which have also gained interest in re-
cent deep learning studies [4, 5, 6]). Due to the lack of
suitable feature extractors before the raise of deep learning,
these grids normally only consisted of one semantic feature
encoding the occupancy property. However, recently se-
mantic grid representations have become a subject of inter-
est. For instance, [7, 8, 9] deal with the generation of single-
camera, non-predictive semantic grids, while [10] utilizes
them for decision-making in autonomous driving as seman-
tic grids are easier to simulate than raw sensor data. Other
approaches [11, 12] generate sparse bird’s eye view repre-



sentations of the environment by detecting objects in image
space and transforming them to the top-down view.

We want to differentiate and hence disentangle two dif-
ferent but both desired predictive properties of autonomous
agents. First, the agent should be able to reason about fu-
ture events, e.g., for planning, and in this sense should be
able to form mid- or long term predictions. For instance,
[10, 13, 14] perform explicit long-term vehicle trajectory
prediction using RNNs. From this, we differentiate a sec-
ond form of prediction, intrinsic to perception. Sensors and
their down-stream signal processing (e.g. semantic segmen-
tation) induce a temporal delay between the actual present
state of the world and the agent’s belief about this state.
Our aim is to design an environment representation that can
compensate these short-term system-inherent latencies and
synchronize data from different time horizons.

For short-term prediction of camera data, there are ap-
proaches predicting extracted image features such as ob-
ject bounding boxes [15], semantic segmentation [16], or
instance segmentation [17]. However, all of these work
are in the sensor-dependent image space, which unneces-
sarily complicates the task considering downstream sensor
fusion. In contrast, [4, 18, 19, 20] and [21] employ an end-
to-end trainable recurrent architecture to directly predict an
unoccluded occupancy grid from laser data, capable to track
multiple objects. We distinguish ourselves by investigating
the capacity of our architecture in the context of sensor fu-
sion and further, by using camera data instead of laser data,
enabling semantically richer representations. Moreover, we
combine semantic predictions with a moving sensor instead
of analyzing both scenarios separately.

3. Method

In this section, we describe our architecture that gener-
ates semantic grids from semantic segmentations of camera
images (see Fig. 2). A semantic grid is a g ¢ RWoxHaxt,
with W¢, Hg, F' € Ndenoting the grid’s width, height, and
number of semantic features (e.g. different object classes)
respectively. Each grid cell represents a certain area in
space and hence the spatial coordinate is determined by the
cell’s indices. The semantic grid is egocentric in the sense
that the agent is constantly located at the same grid cell.

Generating synchronized semantic grids (Fig. 2, I):
Given a RGB image m € RWixHix3 3 depth map d €
RWixIl1 where Wi, Hr € N denote the pixel resolution,
and the agent’s egomotion, consisting of the translational

99 and the angular velocity %, we first use a semantic seg-

r(iltentation network S to generate semantic information in
image space s = S(m) € [0, 1|Wr>*HixF,

Second, this sensor-dependent representation (in image
space) is transformed into a spatially aligned (w.r.t. the
agent) continuous 2D point cloud y € RWr>*Hix(2+F)

using the depth map d to project the semantic information

from pixel space to the floor plane of the camera coordinate
system at recording time ¢;:

Y(ti) = P(s(ts), d(t:)) (D

For that purpose, cach segmentation pixel s,, ¢ R
with w € {1,...,W;) and v € {1,...,H;} is trans-
formed to a 2D point with semantic information v, =
(Vs V2o YE )T € R? x RY in the agent coordinate system
A. This transformation is achieved using the intrinsic cam-
era matrix K and the extrinsic parameters Rc_, 4 and to_ 4
describing the camera pose C' with respect to the agent (see
[22] for details on those matrices):

ryiv 1 u
Y, | = Resa,tcoa) K duw- v ] . (2
Yo 1

Using these agent-centric 3D coordinates, the semantic fea-
tures s are projected onto the ground floor. For simplicity,
we define P as well as the following operators on a single
point while they are applied to the whole point cloud:

P(Suvv duv) = (’quv-, 7131)7 Suv)T~ 3)

Third, the semantic grids are spatially aligned based on the
agent’s current orientation o/ = > i1 dor g5y (tj—tj-1).
the integrated angular component of the egomotion, and the
point cloud is discretized to the grid representation:

g(t:) = D(Ti(y(t:), af?)), (4)
cosa —sino 0 v

Ti(Yuv, @) := |sina  cosa N [ B )
0 Idp 751}

Thereby, rotations of the agent do not cause rotation of the
entire grid, but only result in a change of the agent’s in-
ternal orientation aﬁj} and a rotation of potential new data,
reducing quantization errors. The discretization D assigns
the 2D points 7, to grid cells gx;. If two points are allo-
cated to the same grid cell, they are prioritized preferring
small and dynamic classes. In that way, we ensure that no
important information is occluded by another class. If no
point is assigned to a grid cell, it is classified as “unknown”
(black) to model the lack of sensor data in that area.

And fourth, the integrated translational component of
egomotion thft’* = Z?;; %(tj) - (tj41 — t;) is used for
the parameter-free temporal extrapolation (grid translation)
into the future time 7:

9(ti = 7) = Tal9(t:), 47,), (6)

T2(9k1,9) = Gr—q=.i—q=» (7

assuming that ¢ is represented in pixel coordinates. If
k+qg* > Wgorl—+q® > Hg, g is assigned the class
“unknown” (black).
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Figure 3. (best viewed in color) Encoder-decoder CNN (ED). The ED combines synchronized semantic grids into one prediction including
dynamic object transformation, temporal filtering, and multi-camera fusion.

Predictive fusion architecture (Fig. 2, II): Let
{m(t1),...,m(t,)} denote an input sequence of length n
of past images at times ¢1,...,%, obtained from a single
sensor, then {g(t; — 7),...,g(t, — 7)} are accordingly
synchronized to the same future time 7 using the parameter-
free (and hence not trained) transformations P and 7 =
T2 0D o Ty. These, now synchronized single-sensor seman-
tic grids, are stacked and fed into an encoder-decoder deep
neural network (ED) (see Fig. 2 stack). Its task is to fuse
the grids from multiple sensors and different original time
steps and to incorporate object motion. The ED network
yields the predicted semantic grid §(7) at time 7. In case
T — t,, covers the system-inherent latency, §(7) represents
the agents belief about the actual present situation. The ED
is trained using self-supervised learning. It is provided with
grid input sequences {g(t1 — 7),...,g(t, — 7)} for mul-
tiple sensors, while withholding the grid g(7), measured at
the time 7 > t,,, as ground truth.

Loss function: For training we use the categorical cross-
entropy loss function. The area M that the sensors have al-
ready seen in past frames, but where no ground truth infor-
mation is available for the target frame, should be ignored
during the loss computation. For this purpose, we compute
a masked loss

Linasked = f(g(T)’ (1 - ]\I) ' Q(T) + M- g(T))= ®)

where g(7) and §(7) are the ground truth and predicted
semantic grids, respectively, f is some distance measure
(e.g. categorical cross entropy), and M is the mask of
the covered area without ground truth information M =
Meovered — Miarger- Here, Miger denotes the area with ground
truth information Miyeee = known(g(7)) and Mcoyerea the
area the sensors have seen during the entire synchronized
sequence (including the target frame ¢(7)), Meovered

n
known(g(7)+ > g(t; — 7)). The function "known” deter-

=1
mines the area within a grid where the classification is not
the class “unknown”. In the area determined through M,
the network is not penalized for any predictions.

In that way, we want to encourage the network to remem-
ber areas, which are occluded in the target frame but were
already observed in the past (e.g. the waiting car in Fig. 7b
that is newly occluded by another car in the target frame;
M visualized in white color), instead of predicting the class
“unknown” (black).

4. Experiment Setup

Dataset: For our experiments, we use the Cityscapes
dataset of driving scenarios [23], which provides real-world
RGB image sequences (30 frames, 17 Hz) including the pre-
processed disparity of the stereo camera, the egomotion of
the vehicle, as well as training data for semantic segmen-
tation. In that way, Cityscapes allows the generation of se-
mantic grids with various and diverse classes. For evalua-
tion, we use the intersection over union (IoU) [24]

As some classes are comparatively rare due to their small
2D projection during the semantic grid generation for train-
ing, we have combined large vehicles (bus, truck, and train)
as well as small static objects (poles, traffic signs, and traffic
lights), which have a similar semantic meaning and behave
similarly in the semantic grid representation. Therefore, the
color coding for the classes in a semantic grid does not ex-
actly match with the Cityscapes colors.

To evaluate the performance of the semantic grid predic-
tion with respect to multi-camera fusion, we split the cam-
era frames into separate image sections. While the Split 1
scenario just divides the images into a lower and an upper
part, the Split 2 scenario additionally has a left and right
black margin, as well as a blind area between the lower
and upper image section (see Fig. 4). These splits are es-
pecially challenging due to the vertical split direction, as
there are ambiguities when merging the resulting semantic
grids. Moreover, the image is split close below the horizon,
which is the most crucial part of the image. In that way, we
want to underline the capabilities of the ED to solve ambi-
guities, track objects between both cameras, and conclude
information about blind spots.



Figure 4. (best viewed in color) Sensor Split 2 for simulating mul-
tiple sensors. The semantic segmentation of the camera image (top
left) is cropped to simulate two separate sensors (top center and
right). In the lower row the associated egocentric semantic grids
are visualized. The white dashed lines mark the blind spot.

Semantic Grid Generation: We generate the semantic
segmentation of the Cityscapes sequences using the state-
of-the-art DeepLabv3 segmentation network [25], which
achieves 80.31 IoU on Cityscapes. The semantic labels are
transformed to the semantic grid using the ego motion of the
vehicle and the disparity of the stereo camera (see Section
3). For the semantic grid, we choose a size of 128 x 128
pixels, which is the equivalent of 100 x 100 meters.

Dataset of Grid Sequences: For training and evalua-
tion of our semantic grid prediction framework, the frames
0,0+58,0+2s,...,0+(n—1)s, where o is the sequence off-
set and s the step size, arc used as input frames, while frame
o + n - s represents the target frame. For our experiments,
we use the step size s = 5, which corresponds to approx-
imately 300 ms, matching typical processing times of se-
mantic segmentation networks. The training sequences are
overlappingly sampled (o is chosen arbitrarily), in order to
provide as much training samples as possible for the predic-
tion task. As in Cityscapes only every 30" frame has a man-
ually labeled ground truth, we use the semantic segmenta-
tion maps predicted by the network as our ground truth. In
contrast to the training sequences, the validation sequences
are disjoint and their ground truth frames are aligned for our
experiments. In case of n = 2, we work with 59500 train-
ing sequences and 500 validation sequences. All results are
reported on the validation set.

Encoder-Decoder CNN: We use an encoder-decoder
convolutional network (ED) similar to U-Net [26] (see Fig.
3). The encoder with depth d contains d downsampling
blocks. Each of them reduces the spatial resolution by half
and doubles the initial number of features f. The decoder
consists of d — 1 upsampling blocks and a final softmax
layer. Between corresponding down- and upsampling block
there are skip connections to enable dense predictions [24].

5. Experiments

In this section, the behavior of the proposed framework
is studied. For this purpose, we have designed several ex-
periments, each analyzing certain aspects of our architec-

ture. For all experiments, the results were analyzed accord-
ing to categories that contain similarly behaving semantic
classes: static (unknown, building, road, sidewalk, vege-
tation), vehicles (car, bus, truck, train), small static (pole,
traffic light, traffic sign) and small dynamic (person, bicy-
cle). Note that bus, truck, and train as well as pole, traffic
light, and traffic sign were already combined into one class
in the dataset. The class-wise mean intersection over union
(IoU) for each of those categories is plotted in Fig. 5. The
experiment labels (DC, NT, SF.,...) are associated with the
following paragraphs.

DC Default config: We compared our framework utilizing
a single sensor (ED-DC) with a simple baseline (BL-
DC), which transforms the last sensor frame into the
target time.

NT No explicit translation: We trained the ED to estimate
and apply the translational ego motion ¢ without ad-
ditional external sensor input or the explicit translation
step T2 (ED-NT).

SF Sensor fusion: We analyze the performance of the
framework to fuse grids from multiple simulated cam-
eras (ED-SplX).

SL Sequence length: We varied the sequence length to
study its relation with the prediction performance (ED-
SLX).

PH Prediction horizon: We evaluated how far the network
is able to predict into the future (ED-PHX).

Baselines: To assess the performance of the proposed
semantic grid prediction, we designed several baselines that
leave out the ED. The simplest baseline BL-NT just repli-
cates the last input grid as prediction §(7) = g¢(t,,), while
the baseline BL-DC transforms the last input frame us-
ing the vehicle’s egomotion into the time of the prediction
9(7) = T2(9(tn), qf ). To have baselines that consider the
difficulties of the sensor split (Sp), we also designed BL-
Spl and BL-Sp2, which overlay the semantic grid of the
lower sensor with the grid of the upper sensor.

Default config (DC): We compared our framework uti-
lizing a single sensor (ED-DC) with the baseline (BL-DC).
As default ED configuration, we have used n = 2, d = 3,
and f = 64, as this configuration provides a good trade-
off between performance and runtime. In Fig. 5a and 5c
column DC, it can be seen that ED-DC significantly out-
performs its baseline BL-DC for large static objects and ve-
hicles. On the one hand, the higher performance for large
static objects demonstrates the ED’s ability to combine the
information of the input frames and predict an improved
combined grid, which also may contain information about
newly occluded areas (see white area of target frame in
Fig. 7b). On the other hand, the high performance for ve-
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Figure 6. (best viewed in color) Example prediction sequence using ED-DC. (a) shows the sequence of semantic segmentations while (b)
presents the associated semantic grids. The framework is fed with frame 1 and 2. The prediction is compared with the target frame. The
maximum softmax activation of the prediction is visualized on the right. In this example, a car (dark blue) is moving to the right. Black
areas represent unknown parts of the grid and the white color in the target frame visualizes the loss mask M. Note that the left car in the

target frame cannot be predicted as it was not visible in frame 1 and 2.

hicles indicates that the ED is able to predict the motion of
dynamic objects and use it for the prediction (see Fig. 6b).

Even though classes covering a small area are suppos-
edly quite challenging for ED architectures, our frame-
work is able to outperform the baseline for small dynamic
(Fig. 5d) and small static (Fig. 5b) objects (compare ED-DC
with BL-DC). However, the absolute IoU is relatively low

for both ED-DC and BL-DC. During qualitative analysis of
the data, we found that the effect may be due to tempo-
ral noise caused by the alignment of RGB and depth image
as well as the grid discretization. Small objects sometimes
vanish and appear again making it difficult to predict them.
This effect can be mitigated by excluding segmentation bor-
ders and regions with a minimum depth difference as well
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Figure 7. (best viewed in color) Series of sequences and their associated predictions. (a) The left car (dark blue) is approaching while the
right one drives away (ED-DC). (b) The ED is able to remember the waiting car, which is occluded in the white area of the target frame
(ED-DC) (c) A bicycle (maroon) is moving to the right (ED-Sp2). In contrast to the other examples, it uses the Split 2 dataset. Frame 1 and
frame 2 are visualized as combination of both sensors. Moreover, the curvature of the left sidewalk towards the blind spot is recognized

and correctly completed. Also, the CNN concludes that there is sidewalk around the pole on the right side.

as by increasing the resolution of the semantic grid.

To underline the abilities of the ED as well as the
straightforward human-interpretability of the semantic grid,
Fig. 1, 6, and 7 visualize selected predictions from the vali-
dation dataset. In Fig. 6, a car (dark blue) is moving perpen-
dicular to the camera. The ED is provided with frame 1 and
frame 2. It can be seen that it translates the car according
to its velocity to the right, which is quite accurate compared
with the target frame. On the right side of Fig. 6b, the max-
imum softmax activation of the ED is visualized. It can be
interpreted as certainty of the CNN’s predictions. While
the network is certain (red) about already seen static objects
such as roads (purple), the maximum softmax activation in-
dicates its uncertainty (green) in the area behind the car and
at the borders between classes. The ED is even able to dif-
ferentiate between instances of the same class and trans-
late them according to their different velocities. This can be
seen in Fig. 7a, in which the left car (dark blue) is approach-
ing while the right one is driving away. Moreover, the ED
can correctly predict areas that would have been occluded
in the target frame while they were visible in the frames be-
fore (see waiting car in Fig 7b and compare with white area
M in target frame). While the network is able to predict
correct classes in most of M, it often fails at the bottom of
the grid (see Fig. 1) as there is never ground truth informa-
tion available during the training process. For a deployable
system, we would remove this region from M.

No explicit translation (NT): To study the ED’s abil-
ity to estimate the translational egomotion and the motion
of dynamic objects simultaneously and superimpose both,
we disabled the explicit translation 75 of our framework.
However, the ED is still provided with the orientationally
aligned semantic grids g(¢;). The framework with disabled
translation (ED-NT) reaches the performance of the frame-
work with explicit transformation (ED-DC) for large static
areas and vehicles (see Fig. 5a and 5c column DC and NT).
Hence, the network is able to solve both tasks in general.
However, it struggles with small objects (see Fig. 5b and
5d), probably, as a more precise estimate of the egomotion
is needed to predict them correctly due to their small size.

Sensor fusion (SF): In this experiment, the ability of the
framework to fuse grids from multiple simulated cameras
is evaluated. When using the Split 1 dataset, the frame-
work (ED-Spl) achieves as good results as without a cam-
era split (ED-DC), as can be seen in Fig. 5 in the corre-
sponding columns. This shows, that the ED is able to fuse
multiple sensors and solve ambiguities. However, a CNN
trained on Split 2 (ED-Sp2) performs worse than the other
configurations so far, as there is information missing in the
input data due to the margins left and right of the sensor
and the blind area between both sensors (see Fig. 4 and 7c).
This fact can also clearly be seen in the baseline of Split 2
(see Fig. 5 BL-Sp2). Even though the missing information
decreases the absolute performance, the ED is still able to



maintain the difference to its associated baseline compared
to other models (see BL-DC/ED-DC and BL-Sp2/ED-Sp2
in Fig. 5). For static objects, the CNN is even able to in-
crease the difference as it is able to make assumptions about
the environment. For instance, ED-Sp2 concludes that there
is sidewalk around the pole on the right side of the grid in
Fig. 7c even though it has never seen the sidewalk before.
Note that during training, the semantic grid generated of the
whole camera image, instead of the limited image sections
for the virtual cameras, was provided as target frame.

Sequence length (SL): To analyze the influence of the
sequence length, we varied n. It can be seen in Fig. 5 col-
umn SL that one additional input frame (ED-SL3) improves
the performance of all categories in comparison with ED-
SL2 as it probably allows better denoising and speed esti-
mation. However, a longer sequence length also decreases
the number of sequences that can be sampled from the train-
ing set, leading to a drop in performance for ED-SL4/5.

Prediction horizon (PH): In the last experiment, we
have analyzed, how far our framework is able to predict
into the future. We have maintained the same step size of
about 300 ms between the input frames and evaluated target
frames one, two, and three steps after the last input frame
(ED-PHX). As expected, the performance of the ED drops
with increasing prediction horizon (see Fig. 5 column PH).
Still, the CNN is able to outperform its associated baselines
(BL-PHX) for large and medium objects. However, using
a long prediction horizon, the ED struggles with small ob-
jects, which is probably caused by the increased sensitivity
towards spatial mismatches.

6. Discussion

Grid-based representations are potentially beneficial in
applications where very fast reaction times are required and
where the duration to compute and update the ER should be
independent of the number of objects. However, one limita-
tion of grid-based representations is their linear scalability
with respect to the number of semantic features. This is es-
pecially true for objects carrying a high variety of semantic
information, such as road signs. However, the grid could
provide an attention mechanism to identify relevant areas
for further processing (e.g. road sign recognition).

In contrast to other representations, which are not inter-
pretably modularized, our approach provides direct inter-
faces to verify and test the trained encoder-decoder fusion
architecture. Normally, for camera or laser input signals,
it is hard to synthesize new, especially critical, scenarios.
Whereas for our approach, it is comparably casy to gen-
erate such sequences of semantic input and respective out-
put grid representations. Further, the interpretable interface
functions as a human-readable monitor which can for ex-
ample be used for debugging or determining corner cases.

Even though we have concentrated on semantic features

in this work, the semantic grid can be extended to sup-
port a variety of other information. As the semantic grid
already provides an abstract, scale-invariant, and low res-
olution representation of the dynamically changing envi-
ronment, down-stream algorithms can easily extract further
information such as correspondence information or object
tracks. If more detailed information is necessary, additional
semantic maps encoding local features provided by prepro-
cessing steps can be added to the semantic grid (e.g. local
velocities, pedestrian pose, instance segmentation, or un-
certainty). It is also possible to train the model to predict
semantic grids of multiple time horizons simultaneously to
cover short-, mid-, and long-term predictions. Other in-
teresting subjects for future work include: multi-scale or
dynamic-resolution grid representations, multi-modal sen-
sor inputs (e.g., LiDAR or radar), sensor signals with dif-
ferent dynamics (e.g., frame rates, offsets), and alternative
ED architectures for fusion.

In this work, we omitted the estimation of the actual
system-inherent latency. The latency depends on the used
hardware and other choices, such as the architecture to ex-
tract the semantic information from sensors or the chosen
encoder-decoder architecture. Possible solutions are esti-
mating the delay on the final real-world system and using
this estimate for the temporal synchronization of the grid
representation before fusion or integrating an additional
adaptive component that estimates the current latency.

The presented architecture should be thought of as part
of a larger system. For example, the provided environment
representation could be combined with a recurrent represen-
tation to store a mid-term ER, a SLAM approach for global
mapping, or with a decision making module. In this con-
text, the semantic grid can act as interpretable interface,
which can be used for debugging or determining corner
cases. Moreover, this interface simplifies synthesizing ar-
tificial training data for new, especially critical, scenarios in
comparison to the simulation of raw sensor signals.

7. Conclusion

We presented and evaluated a concept for generating an
environment representation supporting multi-camera fusion
on autonomous systems. We designed the proposed archi-
tecture as grid-based to be independent of the number of
objects, egocentric to support sensor fusion, interpretable
to modularize the system and enhance human accessibility,
and finally predictive to compensate for system-inherent la-
tencies. The architecture was evaluated on the real-world
Cityscapes dataset. We demonstrated its superiority to sev-
cral model-based basclines, its capability to model indepen-
dent motion of multiple objects, and to fuse ambiguous and
incomplete sensor signals. We think that the proposed ar-
chitecture and design ideas can further be used as a flexible
part of a larger framework to control autonomous systems.
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