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Abstract

This paper presents a novel obstacle avoidance system

for road robots equipped with RGB-D sensor that captures

scenes of its way forward. The purpose of the system is to

have road robots move around autonomously and constant-

ly without any collision even with small obstacles, which are

often missed by existing solutions. For each input RGB-D

image, the system uses a new two-stage semantic segmen-

tation network followed by the morphological processing to

generate the accurate semantic map containing road and

obstacles. Based on the map, the local path planning is

applied to avoid possible collision. Additionally, optical

flow supervision and motion blurring augmented training

scheme is applied to improve temporal consistency between

adjacent frames and overcome the disturbance caused by

camera shake. Various experiments are conducted to show

that the proposed architecture obtains high performance

both in indoor and outdoor scenarios.

1. Introduction

Obstacle avoidance is a fundamental component for in-

telligent mobile robots, the core of which is to have an en-

vironmental perception module that helps identify the pos-

sible hindrance that can block the way of the robots. Espe-

cially, for some scenarios, small obstacles should be care-

fully considered, e.g., autonomous driving, patrol robot and

blind guidance, as shown in Fig. 1. In autonomous driving,

while the car running at a high speed, such small obsta-

cle as a brick on road may cause the car to turn over. In

blind guidance, visually impaired people are fragile to such

small object even only 3cm higher on road. For the patrol

robot working as a community policing, some remnants s-

cattered on road should be detected either as obstacles to

avoid or spilled garbage to alert, such as garbage cans and

stone blocks.

Range-based and appearance-based methods are two ma-

jor approaches to perform the task of obstacle detection.
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Figure 1. Some cases with small obstacles in autonomous driving

(a), patrol robot (b) and blind guidance (c).

But the former share disadvantages, where it is difficult to

detect small obstacles and distinguish between diverse type-

s of road surfaces, making it hard to identify the sidewalk

pavement from adjacent grassy area, a combination com-

monly seen under urban circumstances.

The appearance-based methods [19, 10, 23, 17, 24], on

the other hand, are not subjected to the above problems.

Since they define obstacles as objects that differ in appear-

ance, which is more essential a character in our study, from

the road, while the former only define obstacles as objects

that rise at a certain height from the road. One of the main

procedures of appearance-based obstacle avoidance meth-

ods can be identified as semantic segmentation of accessi-

ble area and other objects such that the robots can make

decisions of obstacle avoidance and path planning.

For appearance-based sensors, we have both the monoc-

ular camera and the stereo camera. The former outputs

pure visual cues (i.e. RGB information), where it is diffi-

cult for semantic segmentation networks to accurate distin-

guish real obstacles and appearance changes such as differ-

ent road colors and road markings. The latter provides ad-

ditional depth channel to RGB images. Incorporating RGB

and depth information could potentially improve the perfor-

mance of semantic segmentation networks, which is sug-

gested by recent efforts [12, 9, 13].

Utilizing semantic segmentation to obstacle avoidance is

a new topic in recent years [15, 20, 8], but these methods are

applied to limited scene or not sensitive to small obstacles.

In this paper, we propose a novel small obstacle avoidance

system based on RGB-D semantic segmentation that can be

widely used in indoor and outdoor scenarios.



The main contributions of this work are as follows: 1).

An two-stage RGB-D encoder-decoder network is proposed

for obstacle segmentation, which segments the image to

get the road mask first and then gets more accurate ob-

stacle region even small obstacle region from the extracted

road area. 2) An optical flow supervision between adjacen-

t frames is proposed for the segmentation network to keep

the temporal consistency, which is critical for stable obsta-

cle detection when camera moves. 3) A motion blur based

data augmentation scheme is proposed to suppress segmen-

tation errors introduced by camera shake. 4) A small obsta-

cle avoidance system based on RGB-D semantic segmenta-

tion is proposed and evaluated based on collected practical

datasets both of indoor and outdoor scenarios.

2. Related Work

2.1. Obstacle Detection and Avoidance

The first autonomous mobile robot used the appearance-

based method for obstacle detection [19], named Shakey,

developed by Nilsson. It can detect obstacles by edge detec-

tion on the monochrome image. Following Nilsson’s step,

Horswill also applied edge detection method to his mobile

robot named Polly [10], which was operated in real-life en-

vironment. The edge detection method that Shakey and Pol-

ly used only performed well when the floor had little texture

and the environment was uniformly illuminated. It’s very

sensitive to floor color variation and lighting conditions.

Besides the edge information, some other information

have also been used for obstacle detection. Turk and Marra

made use of the color information [23] to detect obstacles

by subtracting consecutive frames of a video. Lorigo pro-

posed an algorithm using both color information and edge

information that worked on texture floor [17]. Lorigo as-

sumed there is no obstacle right in front of the robot and

used this area as reference area to find obstacle. Ulrich im-

proved Lorigo’s algorithm with a candidate queue and a ref-

erence queue [24]. However, before the mobile robot can

move autonomously, they need to steer it first for several

meters to form a correct reference area. And if the road out-

side the reference area differs from the reference area due

to unexpected shadow or reflections, it will be incorrectly

classified as an obstacle as well.

Recently, some other appearance based obstacle avoid-

ance schemes have been proposed. Ghosh and Wei pro-

posed stereo vision based methods to detect obstacles [7,

26]. In these methods, the disparity map was used to an-

alyze surroundings and determine obstacles. However, the

disparity map computed by stereo images is not robust e-

nough in complex environments especially in the presence

of small obstacles. Yang proposed a blind guiding system

based on both RGB and depth images [27]. In this method,

the RGB image was used to get semantic map of the envi-

ronment, and then combined with depth image to percept

the terrain. However, this method focuses on the segmenta-

tion of transitable areas including pedestrians and vehicles,

while it is incapable of detecting small obstacles. For small

obstacles, [20, 8] explored the obstacle detection issue fo-

cusing on autonomous driving scenarios. In these method-

s, pre-defined obstacle categories that are common in driv-

ing scenarios were placed on road to initialize the obstacle

dataset first,and then RGB and depth information were both

used to train the obstacle segmentation models. However,

the method supports only some normal obstacles predefined

on traffic road while not extensible for arbitrary obstacles on

road.

2.2. Semantic Segmentation

Recently, there have been some advances on deep neu-

ral networks based semantic segmentation. The task of se-

mantic segmentation is to label each pixel of an image with

a semantic class. FCN [16], the pioneer work in the ex-

ploration of CNN-based semantic segmentation methods,

adapts classifiers for dense prediction by replacing the last

fully-connected layer with convolution layers. SegNet [1]

is an classical encoder-decoder architecture and reuses the

pooling indices from the encoder to decrease parameters.

DeepLab [2, 3, 4] proposes atrous spatial pyramid pooling

(ASPP) for exploiting multi-scale information and then aug-

ments the ASPP module with image-level feature to capture

longer range information. PSPNet [29] performs spatial

pooling at several grid scales and demonstrates excellen-

t performance. ICNet [28] achieves great balance between

efficiency and accuracy by using a hierarchical structure to

save time on high-resolution feature maps.

As regards RGB-D semantic segmentation, some stud-

Figure 2. The flow chart of proposed system.



Figure 3. The proposed two-stage RGB-D semantic segmentation network architecture.

ies have tried to utilizing the depth information to achieve

better segmentation accuracy [9, 13, 18, 25]. Hazirbas [9]

presented a fusion-based CNN architecture which is con-

sisted of two encoder branches for RGB and depth channel.

The features of two branches are fused on different layer-

s. Based on the fusion-based encoder-decoder architecture,

Jiang [13] applied pyramid supervision training scheme and

got a good result.

Most of existing semantic segmentation schemes do not

consider the condition of practical applications. For ex-

ample, the camera often shakes during robot moving and

thus captures the image sequence with shaking and/or blurs,

which may lead to wrong segmentation results. And in ac-

tual application, pixel values and segmentation results of

adjacent frames often vary greatly even though the camer-

a and target don’t move at all. This is determined by the

hardware characteristics of imaging sensor and nonlineari-

ty of deep neural networks. What’s more, the original im-

age contains abundant semantic information, making it hard

to give specific definition of road and obstacle directly for

one-stage segmentation models. In this paper, we adapt the

RGB-D fusion-based structure, and introduce optical flow

supervision and motion blurring training scheme to improve

temporal consistency between adjacent frames. Moreover,

a two-stage semantic segmentation architecture is proposed

to get accurate semantic result for road and obstacle.

3. Approach

As illustrated in Fig. 2, the proposed obstacle detection

and avoidance system contains several steps: RGB-D based

two-stage semantic segmentation, morphological process-

ing, local destination setting and path planning. The two-

stage semantic segmentation transforms the input RGB-D

image to a raw binary image, which is then smoothed in

morphological processing. As a result, the module gener-

ates a calibrated binary image where every pixel is labelled

as either road or obstacle. Then the binary image is passed

to the obstacle avoidance module to determine a destination

and a walkable path. The whole process works repeatedly

during robot’s moving.

3.1. Two-Stage RGB-D Semantic Segmentation

The architecture of proposed two-stage RGB-D seman-

tic segmentation is shown in Fig. 3. For the first stage, the

RGB-D encoder part of the network is similar with previous

work of RedNet [13], which has two convolutional branch-

es. Both of the RGB and depth branches adopt ResNet ar-

chitecture that with global average pooling layer and fully-

convolutional layer removed. Different scale of features are

extracted for RGB and depth channel respectively. For each

convolutional operation, batch normalization is performed

before ReLU function. Feature maps from two branches

are fused at each scale. The fusion operation is denoted as

fRGB ⊕ fD, where fRGB denotes feature maps of the RGB

branch and fD denotes feature maps of the depth branch, ⊕
denotes direct element-wise summation. Two consecutive

video frames Ip and Ic are input to the encoder at the same

time, where Ip and Ic denotes the pre-frame and the current

frame. The RGB channel of Ip and Ic are fed to a deep flow

network to estimate their optical flow field Fc→p in the first

stage.

Semantic information and their spatial location relation-

ship is encoded in the feature maps. Consecutive video

frames have highly similarity, so we can propagate feature

maps of the pre-frame back to current frame through their

flow field [30]. And the propagated feature maps should be

also highly similar with feature maps generated by original

current frame. In this work, we choose the FlowNet [6] in-

ception architecture which is modified in [30] to meet the

tradeoff between accuracy and speed. Because the feature

maps have different spatial resolution, the flow field is bi-

linearly resized to the same resolution of the feature maps

for propagation. So, given a position x on a pre-frame fea-



Figure 4. Decoder architecture of the first stage.

ture map fp, the propagated value can be represented as:

fc(x) = Sc→p(x)
∑

i

B(i, x+ Fc→p(x))fp(i) (1)

where B denotes the bilinear interpolation kernel, Sc→p de-

notes the pixel-wise scale function introduced in [30].

For the decoder, different with the original RedNet, the

inputs of skip connection are replaced by the propagated

feature maps to keep temporal consistency of segmentation

results between adjacent frames. As illustrated in Fig. 4,

each scale of feature map, except the last layer of encoder

of the Ip branch, is propagated to current frame and fused to

the transpose convolution layer of Ic. The fused method is

also element-wise summation. Then the fused feature map-

s are fed into convolution layers with 1 × 1 kernel size and

stride one to generate score maps, i.e. output1, output2, out-

put3, and output4. These four side outputs together with the

final output are fed into a softmax layer to get their classi-

fication score of semantic classes. Loss function for each

output is formulated by calculating cross entropy loss of the

classification score map.

Loss(W1) = −
1

N

∑

i

log

(

exp(sgi(i;W1))
∑

k exp(sk(i;W1))

)

(2)

where W1 denotes the network parameters of stage one, i
is the pixel location, and N denotes the spatial resolution

of corresponding output, s denotes the score map, and gi is

the ground truth of class number on location i. The overall

loss of the stage one network is calculated by adding the

five losses together. For the ground truth has full resolution,

it’s downsampled to adapt the resolution of side outputs.

After semantic segmentation of stage one, we can extract

outer contour of road area by pixel labels. Then the contour

i.e. ROI is mapped to the original RGB-D image. Pixels out

of the contour are set to zeros to eliminate the influence of

these object semantic information out of the contour during

training phase. It should be noted that non-road pixels with-

in the contour are remain unchanged. The processed ROI of

RGB-D image is then fed to the second stage of semantic

segmentation. We define this ROI as:

Maskseg→RGB−D(i) =

{

1, if i ∈ ROI
0, otherwise

(3)

In the second stage, there are three categories of seman-

tic concept: road, obstacle on the road and others. Objects

within road contours are all mapped to obstacle class during

training. The last output is:

Obstacleseg = W2(Ic ⊗Maskseg→RGB−D) (4)

where W2 denotes network parameters of stage two,

Obstacleseg(i) ∈ C, C = {road, obstacle, others}.

The network architecture adopts original RedNet. Con-

sidering the tradeoff of speed and accuracy, we use ResNet-

34 as the feature extractor in stage two and ResNet-50 in

stage one. These two networks are trained individually. Af-

ter the two stages of semantic segmentation, the predicted

class map is converted to a binary image by labelling all

road pixels as 1 and non-road (obstacle and others) pixel-

s as 0. It should be noted that, the semantic segmentation

results will be presented by their binarized version in the

following section, i.e. black and white images.

3.2. Motion Blurring for Data Augmentation

In actual application, as the robotic platform walks on

the road or camera rotates, information coming from differ-

ent sub-areas of the scene will move on the detector which

will cause image blur. This phenomenon is more serious

when the lighting condition is not good enough. In order

to suppress segmentation errors introduced by motion blur,

random motion blurring scheme is employed in this work

for data augmentation. The motion blurring is commonly

modeled as in [11]:

g(x) = (y ⊗ psf)(x) (5)

where y (x) denotes the original image and g (x) denotes

the blurred image. psf means point spread function, and ⊗
denotes convolution operation. For the exposure time of the

proposed system is relatively short, we simplify the motion

as uniform linear motion. Then psf can be represented as

psf(x, y) =

{

1

L
, if x = y tan θ,

√

x2 + y2 ≤ L
2

0 , otherwise
(6)

where L and θ denote scale and angle of motion.



Figure 5. The real clear image (a) and blurred images (b-d) and

generated blur images (e-h).

The motion blurring strategy is only implemented during

training phase to make training data closer to actual imaging

conditions. This data augmentation strategy is beneficial

to obtain accurate semantic information when motion blur

exists. Fig. 5 shows the comparison of real blurred images

and generated images with random motion blur.

3.3. Morphological Processing

We implemented morphological processing to deal with

the potential imperfections in the raw binary image. Sup-

pose that the size of binary image is w×h and all the struc-

turing elements are square. First, the closing of the binary

image by a structuring element with size a1 × a1 is per-

formed. Then, our system performs an erosion with a2×a2
structuring element followed by a dilation with a3 × a3
structuring element. ai is calculated by the following for-

mula:

ai = f(ki ·min(w, h)) i = 1, 2, 3 (7)

where

f(x) = 2 ·
⌊x

2
+ 1

⌋

− 1 (8)

The function f(x) finds the closest odd integer to x. As-

signing an odd value to ai makes it easier to define the ori-

gin as the center of the structuring element. The selection of

k1 depends on the largest size of obstacle we can tolerate.

In our implementation, k1 = 1/80 . A smaller k1 allows the

module to detect smaller obstacles but results in the increase

of misdetection rate. A larger k1 filters more misdetections

and tiny obstacles out, but those not-so-small obstacles that

may cause collision will also be neglected by mistake.

The motivation for performing the following erosion and

dilation is to group adjacent obstacles together so that they

could be regarded as a single one. There are two reasons

for this: 1) Computational complexity is reduced because

the number of obstacles decreases; 2) The risk of collision

caused by narrow gaps between obstacles is minimized.

The selection of k2 depends on the maximum distance

of obstacles that the method should group, and the value

of k3 is set smaller than k2 for expanding obstacles in the

binary image in consideration of the robot’s size. In our

experiments, the combination of k2 = 1/48 and k3 = 1/64
shows the best performance.

3.4. Obstacle Avoidance

The obstacle detection module provides the system with

a smooth binary obstacle image, which is then passed to the

obstacle avoidance module to determine a destination and

plan a collision-free path from the current position to the

destination.

3.4.1 Local Destination Setting

To avoid obstacles in the present field of view, the local des-

tination is determined firstly. The setting of a destination

tries to meet the following requirements: 1) The destination

must be a road pixel; 2) The road on the same horizontal line

with the destination should be wide enough for the robot to

pass; 3) The destination should be as far as possible within

the visual range of the robot to indicate the trend of road.

Based on these requirements, we proposed a progressive

scanning method. The binary obstacle image is scanned

from bottom to top. For each row, the system finds all dis-

joint road intervals, which are marked as their endpoints’

column indices. Suppose that the module is now scanning

the i-th row and there are ni disjoint road intervals marked

as (li1, ri1), (li2, ri2), , (li,ni
, ri,ni

). It’s satisfied that in the

i-th row, all pixels included in these intervals are labeled as

road. Conversely, all pixels excluded in these intervals are

labeled as obstacle.

We define di as the road breadth of the i-th row, which is

calculated by:

di = max
1≤j≤ni

|rij − lij | (9)

For the second requirement, we introduce a threshold

value T = α · w, where α is a coefficient determining the

required width of road and w is the width of the binary ob-

stacle image. In our implementation, α = 1/24.

With the value of di and T , we can determine gr, the

row index of the destination. Recall that h is the height of

binary obstacle image and its row index increases from top

to bottom, then gr is calculated as follows:

gr = min{r|di ≥ T, ∀i ∈ [r, h]} (10)

With gr, the column index of the destination gc is calcu-

lated by:

gc = (lgr,m + rgr,m)/2 (11)

where
m = argmax

i

|rgr,i − lgr,i| (12)

Finally, the pixel at row gr and column gc is determined

as the destination, which will be used for path planning in

the next section. Fig. 6 gives some examples on destination

settings. Furthermore, our destination setting algorithm is

suitable for parallel computing thus implemented on GPU

for real-time application.



Figure 6. Path planning based on binary image. (a) Morphological

processed image. (b) Destination setting (colored pink). (c) Path

planning. (d) Mapping to original image.

3.4.2 Local Path Planning

With the local destination determined in the previous sec-

tion, the obstacle avoidance module is now prepared to plan

a path using Artificial Potential Field (APF) method [14].

APF, first used by Khatib, is an algorithm that can best

realize our target of planning collision-free route for robot-

s in real-time. It can construct an artificial potential field,

where obstacles have repulsive potential fields repelling the

robot, while the designated destination has attractive poten-

tial field pulling the robot. Consequently, our robot is under

the resultant force and steered towards the destination.

Suppose that there are n obstacles in the binary image

named o1, o2,..., on. The distance and angle between oi
and the robot are marked as di and θi. The distance and

angle between the destination and the robot are marked as

dg and θg . And we introduce µr and µa as the repulsive and

attractive scaling factors respectively. Then the repulsive

force vector Fr and attractive force vector Fa on the robot

is calculated as follows:

Fr = µr

∑

i

1

d2i
· (sin θi, cos θi) (13)

Fa = µa

1

d2g
· (sin θg, cos θg) (14)

Therefore, the resultant force F on the robot equals to:

F = Fa − Fr (15)

In each step, the algorithm calculates the resultant force

F that affects the robot’s forward direction, then steers the

robot to the next position. This procedure will be repeated

until the robot reaches its destination. If the path planning

module cannot find a collision-free path to the destination,

the robot will rotate itself by 15 degrees and reset a desti-

nation then try to plan a path to the new destination. Some

results of path planning procedure are shown in Fig. 6.

4. Evaluation

In this section, we evaluate the proposed method both on

SUN RGB-D dataset and Cityscapes dataset for indoor and

outdoor scenarios respectively. Besides, we also evaluation

the performance of obstacle avoidance on a new established

small obstacle dataset.

SUN RGB-D [22] dataset consists of 10335 indoor

RGB-D images with pixel-wise semantic annotations of 37

object classes. It has a default trainval-test split which is

composed of 5285 images for training and validation and

5050 images for testing.

Cityscapes [5] is a large-scale dataset for urban scene se-

mantic understanding. It contains footages of street scenes

collected from 50 different cities, at a frame rate of 17 fps.

The train, validation, and test sets contain 2975, 500, and

1525 footages, respectively. Each footage has 30 frames,

where the 20th frame is annotated by 30 semantic classes

with pixel-level ground-truth labels.

The new small obstacle dataset is captured in indoor and

outdoor scenarios respectively with Orbbec Astra and ZED

with a height of about 1.2m. The spatial resolutions of

RGB-D are both 640 × 480. The captured data are pixel-

wise labeled as road, obstacle, and others. Besides, for

each image, walking routes are labeled by five people. The

reasonable ground truth of path plan is obtained by their

mean. Samples for indoor and outdoor scenarios are 2200

and 2000. The obstacles we choose are arbitrary objects

with random color or shape and with the size ranging from

5cm× 5cm× 5cm to 50cm× 50cm× 50cm that may hin-

der walking of robots, such as trash can, carton, brick, and

other small objects easily falls on the road.

4.1. Training Scheme

The key to obstacle avoidance based on semantic seg-

mentation is precise segmentation result of road area. For

the two public dataset, there is no concept of obstacle,

so their original classes are mapped to a new list in both

training and inference of stage one. For the SUN RGB-D

dataset, the principles of mapping are similar to the struc-

ture class of NYUDv2 dataset [21], floor, wall, window,

and ceiling are reserved as scene classes. A few classes

that are adjacent to the scene classes and have similar depth

with the former are merged, such as floor-mat and floor, or

blinds and window. Other classes are divided to furniture

and objects. Furniture are large objects that cannot be eas-

ily moved, objects are small objects that can be easily car-

ried. For the Cityscapes dataset, the mapping principles are

implemented as the original large categories, i.e. flat, con-

struction, object, and so on. The new small obstacle dataset

is only used during inference.

According to our statistics, most of blur kernel sizes are

within scope of 5 pixels. In training, each sample is added

by random linear blurring before fed to the model, with a

kernel size of 3, 5, or 7 pixels and a blur direction from 0

to ±180 degree. The original larger images are cropped to

640×480 randomly for the proposed network both in train-



Table 1. Semantic segmentation performance of indoor scenario

Model mIoU1 mIoU2 ODR NOFP

SegNet 58.1 – 68.4 9.6

FuseNet 70.2 – 75.7 7.7

RedNet 74.5 – 84.1 4.5

Ours 75.7 98.2 95.2 2.7

Ours(+blur) 76.2 98.5 95.8 2.3

Ours(+blur+flow) 76.9 99.2 96.3 2.2

Table 2. Semantic segmentation performance of outdoor scenario

Model mIoU1 mIoU2 ODR NOFP

PSPNet 87.8 – 71.4 8.2

DeepLabv3+ 89.3 – 77.9 6.7

Ours 91.1 96.4 92.7 5.0

Ours(+blur) 91.5 96.6 92.9 4.7

Ours(+blur+flow) 92.1 97.2 93.8 4.2

ing and inference. ResNet-50 and ResNet-34 pre-trained on

ImageNet object classification dataset are used as the en-

coder for the two stages. Training for the two stages are

performed individually. Images of SUN RGB-D dataset are

translated to calculate optical flow with original images in

training.

The proposed two-stage semantic segmentation architec-

ture is implemented on the Pytorch deep learning frame-

work. Stochastic gradient descent (SGD) is applied for both

of the networks. The initial learning rate is set to 0.002 for

stage one, and 0.0002 for stage two. Both the learning rates

are decayed by a factor of 0.8 in every 50 epochs. The net-

works are trained on 4 Nvidia Tesla P100 GPUs with a batch

size of 10 until the losses do not further decrease.

4.2. Evaluation Methodology

The evaluation consists of two parts: obstacle segmenta-

tion and obstacle avoidance. The obstacle segmentation is

performed on the default testing set of SUN RGB-D dataset

(indoor scenario) and validation set of Cityscapes dataset

(outdoor scenario) for the mapped categories of stage one,

and on the small obstacle dataset for road/obstacle. The ob-

stacle avoidance is performed on the small obstacle dataset.

We evaluate semantic segmentation accuracy on pixel-level,

and instance-level for obstacles of stage two. We adop-

t mean intersection-over-union (mIoU) scorce as the criteria

of pixel level. mIoU1 and mIoU2 denote the performance

of stage one and stage two respectively. The instance-level

accuracy is measured by obstacle detection rate (ODR) and

non-obstacle false positives (NOFP). If more than 50% pix-

els of a predicted obstacle instance are overlapped with the

ground truth, it’s a success prediction. If there’s no pixel

of a predicted instance is overlapped with obstacle ground

truth, it’s a false prediction. ODR is defined as:

ODR = SPIobs/TIobs (16)

Figure 7. Obstacle segmentation results of different models. (a)

The input image. (b) Ground truth of semantic segmentation. (c)

Result of Segnet. (d) Result of RedNet. (e) Result of ours.

Figure 8. Outdoor obstacle segmentation results of different mod-

els. (a) The input image. (b) Ground truth of semantic segmenta-

tion. (c) Result of PSPNet. (d) Result of DeepLabv3+. (e) Result

of ours.

where SPIobs is the quantity of success predictions, TIobs
the total obstacle instances. NOFP if defined as:

NOFP = FPIobs/TF (17)

where FPIobs is the quantity of false prediction instances,

and TF the total test frames. The obstacle avoidance quality

is measured by Hausdorff distance of planned path with the

ground truth path.

4.3. Evaluation of Obstacle Segmentation

Table 1 and 2 shows the performance comparison of our

indoor and outdoor models with some state-of-art semantic

segmentation based on RGB and RGB-D data. The pro-

posed method outperforms other semantic segmentation ar-

chitectures both in indoor and outdoor scenarios. After the

augmentation of random motion blurring, the mIoU elevates

1.2% and 0.4% in two scenarios respectively. Furthermore,

accuracy of instance-level is also improved. Due to the in-



Figure 9. Segmentation performance of our method on consecutive

frames. (a) The input image. (b) and (c) are segmentation result

without and with temporal consistency supervision. (d) and (e) are

the obstacle detection result of (b) and (c).

Table 3. Path planning accuracy

Model Indoor Outdoor

Stereo Method [7] ∼0.6m –

Ours 0.15m 0.27m

troduce of optical flow supervision, the performance of ob-

stacle segmentation is better and stable.

Some obstacle segmentation results are shown in Fig. 7

and 8. As can be seen, obstacles and road areas are both seg-

mented more accurate compared with other architectures,

which is crucial to the following obstacle detection and

avoidance. Moreover, the proposed method can detect very

small obstacles successfully, while other methods fail to.

Fig. 9 presents the segmentation performance of our method

on consecutive frames with and without optical flow super-

vision. As can be seen, with the supervision optical flow,

the segmentation results are relatively stable, in other word-

s, the temporal consistency is kept.

4.4. Evaluation of Obstacle Avoidance

The obstacle segmentation results are morphological

processed to make path planning. Table 3 presents the path

planning performance evaluated by Hausdorff distance. The

paths made by the proposed method is very close to the

ground truth and surpass stereo based method. Fig. 10

shows examples of our obstacle avoidance results. The first

column shows the original input color images, the second

the binary images calculated by the deep segmentation net-

work, the third the binary images after morphological pro-

cessing, and the last the result of our system with road area

contoured by green line, obstacles marked by red bounding,

destination marked by pink circle and path marked by sever-

Figure 10. Obstacle avoidance results for indoor and outdoor sce-

narios. (a) image (b) segmentation (c) morphological processing

(d) path planning

al blue circles. Five thick blue circles, closest to the bottom

of the images, indicate five steps calculated in one calcula-

tion, while the rest are for demonstration. Above evaluation

results indicate the proposed method can effectively detect

obstacles and make reasonable path planning for robots in

various complicated scenarios.

5. Conclusion

In this study, we proposed a new architecture to automat-

ically create walking routes with RGB-D images for road

robots based on deep semantic segmentation neural net-

works. Two-stage segmentation with motion blurring aug-

mentation and optical flow supervision is presented to ac-

quire more accurate and stable obstacle segmentation, mor-

phological processing is applied to refine the obstacle seg-

mentation, and based on the accurate obstacle map, the lo-

cal path planning is done to produce the collision-free path.

Experimental results show that the proposed method work-

s well under various scenarios whether indoor or outdoor,

even with small obstacles or capture blurs. It is the two-

stage segmentation that improves small obstacle detection

accuracy, and the blurring based data augmentation and op-

tical flow supervision that improves the stability.



References

[1] V. Badrinarayanan, A. Kendall, and R. Cipolla. Segnet: A

deep convolutional encoder-decoder architecture for image

segmentation. IEEE transactions on pattern analysis and

machine intelligence, 39(12):2481–2495, 2017.

[2] L. C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and

A. L. Yuille. Deeplab: Semantic image segmentation with

deep convolutional nets, atrous convolution, and fully con-

nected crfs. IEEE transactions on pattern analysis and ma-

chine intelligence, 40(4):834–848, 2018.

[3] L. C. Chen, G. Papandreou, F. Schroff, and H. Adam. Re-

thinking atrous convolution for semantic image segmenta-

tion. In arXiv preprint arXiv:1706.05587, 2017.

[4] L. C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam.

Encoder-decoder with atrous separable convolution for se-

mantic image segmentation. In European Conference on

Computer Vision (ECCV), pages 801–818, 2018.

[5] M. Cordts et al. The cityscapes dataset for semantic ur-

ban scene understanding. In IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pages 3213–3223,

2016.

[6] A. Dosovitskiy et al. Flownet: Learning optical flow with

convolutional networks. In IEEE International Conference

on Computer Vision (ICCV), pages 2758–2766, 2015.

[7] S. Ghosh and J. Biswas. Joint perception and planning for

efficient obstacle avoidance using stereo vision. In IEEE/RSJ

International Conference on Intelligent Robots and Systems

(IROS), pages 1026–1031, 2017.

[8] K. Gupta, S. A. Javed, V. Gandhi, and K. M. Krishna. Mer-

genet: A deep net architecture for small obstacle discovery.

In IEEE International Conference on Robotics and Automa-

tion (ICRA), pages 5856–5862, 2018.

[9] C. Hazirbas, L. Ma, C. Domokos, and D. Cremers. Fusenet:

Incorporating depth into semantic segmentation via fusion-

based cnn architecture. In Asian Conference on Computer

Vision (ACCV), pages 213–228, 2016.

[10] I. Horswill. Visual collision avoidance by segmentation.

In IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), pages 87–99, 1995.

[11] J. Jia. Single image motion deblurring using transparency. In

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), pages 1–8, 2007.

[12] J. Jiang, Z. Zhang, Y. Huang, and L. Zheng. Incorporat-

ing depth into both cnn and crf for indoor semantic seg-

mentation. In IEEE International Conference on Software

Engineering and Service Science (ICSESS), pages 525–530,

2017.

[13] J. Jiang, L. Zheng, F. Luo, and Z. Zhang. Rednet: Residual

encoder-decoder network for indoor rgb-d semantic segmen-

tation. In arXiv preprint arXiv:1806.01054, 2018.

[14] O. Khatib. Real-time obstacle avoidance for manipulators

and mobile robots. In Autonomous Robot Vehicles, pages

396–404. 1986.

[15] M. Kristan, V. S. Kenk, S. Kovačič, and J. Perš. Fast image-
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