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Abstract

This paper addresses the problem of scale estimation in

monocular SLAM by estimating absolute distances between

camera centers of consecutive image frames. These esti-

mates would improve the overall performance of classical

(not deep) SLAM systems and allow metric feature loca-

tions to be recovered from a single monocular camera. We

propose several network architectures that lead to an im-

provement of scale estimation accuracy over the state of the

art. In addition, we exploit a possibility to train the neural

network only with synthetic data derived from a computer

graphics simulator. Our key insight is that, using only syn-

thetic training inputs, we can achieve similar scale estima-

tion accuracy as that obtained from real data. This fact indi-

cates that fully annotated simulated data is a viable alterna-

tive to existing deep-learning-based SLAM systems trained

on real (unlabeled) data. Our experiments with unsuper-

vised domain adaptation also show that the difference in vi-

sual appearance between simulated and real data does not

affect scale estimation results. Our method operates with

low-resolution images (0.03 MP), which makes it practical

for real-time SLAM applications with a monocular camera.

1. Introduction

Monocular visual SLAM allows the translation and ro-

tation of a moving camera and a sparse map representation

to be determined, but only up to scale. This paper targets

the problem of absolute scale estimation using sequences

of images captured by a monocular camera. We consider

the most general formulation of this problem but make no

assumptions about the observed scene and its objects.

Estimation of scale is important for several reasons.

First, it helps recover metric feature locations, which is

valuable for numerous real-world applications. Other appli-

cations that do not require absolute scale also benefit from

its estimation because negative effects caused by scale drift

are reduced. For example, scale drift makes it more diffi-

cult to detect loops, and selecting key frames might not take

into account actual camera displacements. In addition, scale

drift does not allow scale correction by optimizing just one

global scale parameter.

Additional sensors might be used to overcome the scale

estimation problem, including IMU, GPS, LiDAR, stereo

or depth cameras. However, they raise the cost, complex-

ity, power consumption and weight of the entire system and

thus reduce the number of possible applications. Therefore,

the ability to estimate scale using but a single camera would

be very beneficial.

The success of deep learning has opened new options for

SLAM systems. For example, single image depth predic-

tion makes it possible to retrieve absolute depth maps from

color images. This might solve the scale estimation problem

as well and improves SLAM systems in general [31, 33].

However, this approach solves a much more complex prob-

lem, requires a lot of training data and therefore might be

considered too computationally expensive for a given scale

estimation problem. End-to-end deep learning approaches

for SLAM were also recently introduced [32, 22]. In this

case, absolute scale might be estimated as well if relative

camera poses with absolute scale are used for training. For

the time being, complete end-to-end SLAM approaches re-

quire a modern GPU unit, which limits applications of these

methods.

In this paper, we focus only on estimating the scale,

which might then be integrated into classical SLAM sys-

tems. Comparison of classical and deep learning-based

SLAM systems or solving the full six-degrees-of-freedom

(DOF) pose estimation problem is beyond the scope of this

work.

An elegant and lightweight approach for scale estimation

using CNNs is described in [10]. The absolute distance (or

speed) between two consecutive images is estimated inde-

pendently for each pair. This helps reduce the scale drift ef-



fect significantly. The approach is very general (no explicit

assumptions are made about the observed scene or objects

inside it), is applicable to monocular SLAM and can be eas-

ily integrated into existing SLAM systems. This paper con-

siders the method established in [10] as a baseline.

Our detailed analysis of results [10] on the KITTI

dataset [12] highlighted several issues. First, we observed

considerable systematic errors as the camera turned, see

Figure 4, which might be attributed to a strong domination

of pure forward camera movements in the training set. An-

other issue is related to the sensor configuration. Specif-

ically, a camera placed at an offset to the vehicle’s center

of rotation constrains the possible combinations of rotation

and translation values. For example, a front camera would

never experience a pure rotation around the camera center

because the global rotational center of a conventional vehi-

cle is located on the rear wheel axis [26]. This means that

actual camera rotation will always be combined with a cer-

tain translational movement. Adapting to new sensor con-

figurations will require new data collection efforts. The last

issue pertains to absolute scale estimation accuracy. There

are often significant changes in the estimated distances be-

tween consecutive image pairs, even when the speed is rel-

atively constant. Based on these arguments, the following

goals of this paper can be formulated as follows:

1. Improve the state-of-the-art accuracy of absolute scale

estimation

2. Improve estimates for camera turning movements

3. Improve robustness against variations of the sensor

configuration and environmental conditions.

Our solution to the first and the second problems is to

modify the neural network architecture with respect to the

baseline approach [10] by increasing complexity of the net-

work and adding a recurrent neural layer. These network

modifications lead to significant reduction of the training

loss to the very low values. This fact makes unnecessary

further investigation of the network architecture, so we do

not focus on this topic in the paper. The third issue is solved

by using autonomous driving simulators, with which we can

easily model any type of sensor configuration and generate a

large amount of training data with wide variations of light-

ing and weather conditions. Recent works in similar do-

mains (depth prediction [3] or optical flow generation [6])

show promising results when synthetic data is used. Al-

though our simulated training environment differs signifi-

cantly from the KITTI dataset [12] (for example, there are

no parked cars), the trained network is still able to gener-

alize to new and unseen environments. We will show that

training on synthetic data yields comparable results to mod-

els trained on real data. In addition, we evaluate the influ-

ence of image photorealism for the problem at hand.

The paper is organized as follows. Section 2 presents

an overview of existing methods, and Section 3 describes

proposed network architectures, datasets and domain adap-

tation strategies. Section 4 presents evaluation results and

compares different methods. Concluding remarks and dis-

cussion are available in Section 5.

2. Related work

This section describes previous work on the scale esti-

mation problem for monocular SLAM. Our discussion cov-

ers the following approaches: (i) using explicit knowledge

about the scene, (ii) using explicit soft assumptions about

the scene, (iii) general, assumption-free approaches.

The first approach explicitly uses information about the

scene, e.g. a 3D model with absolute scale. The scale of

image-based reconstruction is estimated using correspon-

dences between images and the 3D model. A known 3D

model is a very strong assumption, which strongly limits

the applicability of these approaches. These methods were

introduced more than 30 years ago [25] and are mentioned

primarily for completeness.

The second approach uses soft assumptions about the

observed scene. This might be a known height of the

camera above the ground plane [15, 14, 13, 35] or in-

formation about absolute sizes of objects presented in a

scene [9, 21, 27, 29, 4]. In the first case, a position of the

ground plane is estimated from space 3D points of the re-

constructed scene, and the distance between camera center

and this plane is constrained. In the second case, a pre-

trained object detector for a defined set of object classes

(e.g. cars) is employed to incorporate general knowledge of

object sizes into the optimization problem.

The main disadvantage of both these approaches are the

assumptions themselves. For instance, the constraint on the

camera height is applicable only for cameras mounted on

vehicles and assumes this height is known beforehand and

is constant during image recording. Analogously, relying

on having certain classes of objects in a scene fails when

none of these objects are present. Moreover, observed ob-

jects might be only partially visible, which makes their size

estimates inaccurate. Objects might also have intra-class

variations in size (e.g. different types of cars), which addi-

tionally decreases the accuracy of the scale estimates. In

order to mitigate those issues, different flexible schemes us-

ing object detection have been introduced. For example,

[9] introduces so-called object bundle adjustment, which

optimises 3D landmark positions associated with objects

of known size. The work in [30] fuses single detections

from a generic object detector within a Bayesian frame-

work. Using the nonholonomic constraints of wheeled ve-

hicles (e.g. cars, bikes or differential drive robots) was pro-

posed in [26] to estimate the absolute scale from a sin-

gle vehicle-mounted camera. This approach uses no as-



sumptions about the scene, but it works only for cameras

mounted on wheeled vehicles and only when the vehicle is

turning. This limitation makes it difficult to recover abso-

lute scale for long, linear trajectories.

The last type of methods is more generic and does not

use explicit assumptions about the scene. The most com-

mon idea is to recover scale using absolute depth maps

constructed from single images using deep-learning meth-

ods [19, 18]. These approaches are similar to 3D recon-

struction using RGB-D sensors, which directly output met-

ric depth maps. The scale is recovered natively by inte-

grating the absolute depth maps into the 3D reconstruc-

tion. Recent progress in depth prediction from single im-

ages [8, 11, 3] has made it possible to apply these methods

to monocular scenes [31].

Another approach, introduced by Frost et al. [10], trains

the network to predict the absolute distance between cam-

era centers from a pair of images with significant visual

overlap. This approach is fairly generic because no ex-

plicit assumptions about the scene are made. Intuitively

this approach learns how similar image regions are shifted

between two frames. Given intrinsic camera parameters,

these shifts would be proportional to the camera displace-

ment. The distance predictions are directly included in the

bundle adjustment, which improves scale accuracy signifi-

cantly. The method is applied to images with a relatively

low resolution of 240 × 120 pixels and can be executed in

real time. Frost et al. [10] also present benefits of integrat-

ing the scale estimator into a full monocular SLAM system.

From our point of view this integration is straightforward

and we are focusing only on improving the scale estimator

itself and leaving the integration for future work.

End-to-end SLAM approaches such as [32, 22] pro-

vide an alternative to the classical feature-based SLAM ap-

proach. These methods also provide full camera poses in

absolute scale. We consider these approaches to be over-

complicated (in terms of the number of parameters) for

dealing with the scale estimation problem alone. For ex-

ample, the DeepVO method [32] introduces a fully con-

nected layer with 122M trainable parameters and thus sig-

nificantly increases computational complexity with strong

implications to real-time applications.

The idea to use synthetic data for scale estimation raises

the following question: How important is the visual simi-

larity between simulated and real environments? To answer

this question, one could apply domain adaptation methods,

which help improve the visual realism of synthetic data and

train the scale estimator with more realistic synthetic data.

Numerous unsupervised image domain adaptation methods

have been introduced recently (e.g. [36, 17]) and show im-

pressive results with regard to changing the visual similarity

between different image domains (e.g. synthetic and real).

The scale estimation problem takes as input a pair of images

and implicitly operates on image changes so the role of pho-

torealism itself is unclear. To evaluate this influence, we test

two modern domain adaptation methods ([1, 34]), which are

trained in an end-to-end fashion including the target prob-

lem (in our case: scale estimation). This approach allows us

to optimize the visual image appearance and scale estima-

tion within the same network. Theoretically, this allows us

to apply only those image transformations that are relevant

for the target problem instead of targeting visually appeal-

ing image photorealism for humans. Our implementation of

both domain adaptation methods is similar to that proposed

in the original papers, see [1, 34] for technical details.

3. Proposed method

We will first introduce the synthetic data collection

pipeline, then propose network architectures and finally de-

scribe the domain adaptation methods we used.

3.1. Synthetic data collection

Figure 1. Example of real images from KITTI [12] (top row) and

CARLA simulator [7] (bottom three rows) with different daytime

and weather conditions.

Using real data (such as the KITTI dataset [12]) for train-

ing imposes certain limitations: the variation of weather,

illumination and time of day might be limited, diversity of

scene appearance (e.g. urban, rural) requires significant data

collection efforts. In addition, sensor configuration and ve-

hicle movement type determine the variability of observed

data in the parameter space. A change of the camera posi-

tion in the vehicle could lead to the significant systematic

errors because certain combinations of rotation and transla-

tion are not presented in the training set. One way to over-

come these issues is the use of synthetic data collected from

autonomous driving simulators like [7, 28, 24]. A simulator

allows to attach one or multiple cameras at specific loca-

tions on the vehicle, vary weather, time and lighting con-



Figure 2. Baseline CNN architecture used in all experiments of this paper.

ditions, and define custom camera intrinsic parameters. An

autopilot mode enables automatic driving in the scene com-

bined with training data collection. In our case the collected

training data includes color images and ground truth cam-

era trajectories. The synthetic data collection pipeline and a

network training procedure form one complete framework

which is executed fully automatically. Basically this solves

the problem of sensor configuration and, as we show later,

allows to reach scale estimation accuracy comparable to ac-

curacy produced by the model trained on real data.

3.2. Network architectures

To start, we selected the method from [10] as a base-

line implementation. The key idea is to concatenate a pair

of RGB images into one 6-channel image, pass it through

three convolutional layers with max-pooling (window size

2x2, stride 2), followed by two fully connected layers. As

mentioned above, our goal is to improve the absolute dis-

tance estimation accuracy, so our first step is to increase

the complexity of the network. We added two more con-

volutional layers, which improves the accuracy remarkably,

see Figure 2 for details. In contrast to [11], we use expo-

nential linear units (ELUs) [5] as activation functions in-

stead of tanh(·) because it leads to a faster convergence of

the training. Dropout layers are used between all convolu-

tional and fully connected layers. A detailed configuration

of the network is presented in Table 1. We use the Adam

optimizer [20] and the mean squared error as our loss func-

tion. For simplicity, the following sections refer to this as a

“CNN” architecture.

Layer
Kernel

Size
Padding

Number of

Filters

conv 1 11x11 5 32

conv 2 9x9 4 64

conv 3 7x7 3 128

conv 4 5x5 2 256

conv 5 3x3 1 512

Table 1. Configuration of CNN layers.

As described in Section 1, there are often significant

changes in the estimated distances between consecutive im-

age pairs. This is not surprising because distances are esti-

Figure 3. Proposed bidirectional LSTM architecture. The CNN

block corresponds to the green block of Figure 2.

mated independently for all image pairs, which means that

vehicle dymanics are ignored. Instead of adding explicit

constraints to possible vehicle movements, we propose that

the actual dynamics be learned from data. For this purpose,

we use a recurrent neural network (RNN), in particular a

many-to-one LSTM [16]. This allows the network to learn

how previously observed image pairs influence the current

distance estimate. The key concept of our architecture is

inspired by [5], which uses an LSTM for action recogni-

tion in videos. A similar approach was also used in [32] to

predict full 6DOF camera pose. In contrast to the previous

approaches, we also evaluate a bidirectional LSTM version,

see Figure 3). In this case, we propagate information from

N past and N future frames. Our algorithm outputs dis-

tance estimates with a small delay, but this limitation is not

critical because this step can be done in parallel with other

SLAM steps such as feature detection and descriptor com-

putation. In addition, a convolutional part of the network

(the green block) is executed only once per image pair, so

we need to evaluate only relatively lightweight LSTM lay-

ers. Given the low resolution of images in our experiments

(280×120 pixels) this delay has a minor impact on compu-

tational performance. For comparison, we also evaluated a

similar unidirectional LSTM version. We will refer to this

as an “LSTM” architecture.

Our changes of the baseline architecture [10] lead to the



convergence of the training loss to the values comparable

to the accuracy of training data itself. So we conclude

that complexity of the network is enough for the considered

problem.

We use the same image normalization procedure as

in [10], which helps make the trained model invariant to dif-

ferent intrinsic camera parameters. For both synthetic and

real data, we use the following image augmentation steps:

• Random image contrast and brightness adjustment

• Random image horizontal flip

• Constrained random image rotation and translation

• Using all consecutive or non-consecutive image pairs

as long as the distance between camera poses is not

greater than Dmax

• Duplication of image pairs recorded while vehicle is

turning.

3.3. Domain adaptation

Images collected from autonomous driving simulators

have quite a different appearance compared with real data,

see Figure 1. However, for the task at hand, the network

takes a pair of images and, in principle, basically has to look

at the geometric scene changes between the images. This

raises the question of whether the difference in appearance

has a significant impact on the quality of the distance esti-

mation. To answer this question, we reimplemented and ap-

plied two state-of-the-art frameworks for unsupervised do-

main adaptation [1, 34]. Both approaches show promising

results for semantic segmentation and single-image depth

prediction. We trained these frameworks using a full train-

ing set of synthetic data with ground-truth camera locations

and unlabeled images from the real training sequences. We

tested these approaches out-of-the-box without fine-tuning

them, which is beyond the scope of this paper.

4. Experiments

4.1. Experiment overview

This section is organized as follows. First we describe

real and synthetic datasets as well as training details for all

proposed network architectures. Then, in order to evaluate

the proposed methodology, we run the following series of

experiments:

• Comparison of absolute scale accuracy of the base-

line [10] with our proposed CNN and LSTM architec-

tures trained on real or/and synthetic data

• Evaluation of LSTM length

• Evaluation of synthetic data diversity

• Evaluation of domain adaptation.

These results are followed by a detailed analysis of errors

and their distribution for our best model.

4.2. Training details

We observed that a large part of the image is cropped

when the original intrinsic camera parameters are used [10].

To use the full image, we take a focal length 250 px and a

principal point (140, 60) for the target camera within the

image normalization procedure. This change enlarges im-

age resolution slightly from (240, 120) to (280, 120).
Contrast, brightness, rotation and translation are ran-

domized with the same parameters for both images within

a pair. Images are augmented and models are trained and

evaluated using TensorFlow [2], version 1.12. Random im-

age rotation is applied with an angle in the range ±10◦, and

random image translation is applied with a shift in the range

±10% of image size. We choose Dmax = 1.7m to constrain

the distance between nonconsecutive frames within a single

training image pair, accounting for the maximum distance

between frames in the testing set with an additional margin

of 20cm.

We follow the strategy of [10] and use the KITTI out-

door dataset [12] to train and evaluate our approach using

real data. Specifically, we use image sequences 01, 03, 04,

05, 06, 07, 09 and 10 for training and sequences 00, 02

and 08 for testing. Ground-truth distances between camera

centers are estimated separately for the left and right-hand

cameras while taking into account the different camera off-

sets. For the KITTI dataset [12], the total number of input

real training image pairs before random augmentation is ap-

proximately 100 K. During evaluation, we use a total of ap-

proximately 26 K consecutive testing image pairs both the

left and right-hand cameras.

We chose the CARLA simulator [7] to generate synthetic

training data out of convenience as it facilitates an autopilot

mode. Other simulators ([28, 24] might be applicable in-

stead or in addition to achieve an ever larger variability of

the data. The CARLA simulator allows the time of day and

weather conditions to be changed—in particular, we can

add puddles and vary rain intensity—and provides six dif-

ferent maps. These maps have different visual appearances

and road networks. To collect data, we randomly initialize

the vehicle’s position and the weather conditions. We save

all images and their respective camera poses while driving

for a short distance (e.g. 100 meters) in autopilot mode, then

resume driving with a new vehicle position and weather set-

tings. For performance reasons, we change maps only after

100 K image pairs have been collected. We model both the

left and right RGB camera using the same extrinsic parame-

ters, i.e., the same offsets to the vehicle’s center of rotation,

as those provided for the KITTI dataset. The full synthetic

training set includes 800 K image pairs from all six virtual

maps available in the CARLA simulator [7].

For the CNN architecture, the learning rate of the Adam

Optimizer [20] is set to 0.0001 and decreased by a factor of

2 after every 10 K iterations. We add a dropout layer with a



Seq #00 Seq #02 Seq #08

# Method Training Data µ σ µ σ µ σ

1 Fixed height [14] KITTI only 0.072 0.252 −0.012 0.160 0.154 0.349
2 Frost et al. [10], CNN alone KITTI only −0.014 0.177 −0.018 0.203 −0.004 0.165

3 Frost et al. (our impl., 240x120) KITTI only −0.009 0.177 0.013 0.180 −0.061 0.152
4 Frost et al. (our impl., 280x120) KITTI only −0.015 0.175 −0.010 0.178 −0.057 0.149

5 CNN KITTI only 0.009 0.107 0.023 0.113 −0.017 0.092
6 CNN CARLA only −0.017 0.111 0.023 0.105 −0.029 0.121
7 CNN CARLA and KITTI 0.036 0.079 0.029 0.084 0.013 0.081

8 CNN, LSTM (B, 19) KITTI only 0.019 0.069 0.033 0.083 −0.017 0.064

9 CNN, LSTM (B, 19) CARLA only −0.004 0.102 −0.003 0.132 −0.049 0.128
10 CNN, LSTM (B, 19) CARLA and KITTI 0.039 0.076 0.030 0.084 0.002 0.084

Table 2. Comparison of absolute scale estimation results for the baseline method [10] and proposed architectures. Means and standard

deviations of the difference between ground truth and predicted values are provided separately for each testing sequence. LSTM (B, 19)

stands for bidirectional LSTM with a sequence length 19. Models are trained on the KITTI dataset (KITTI only), synthetic data from the

CARLA simulator [7] (CARLA only) or both datasets CARLA and KITTI. All values are in meters.

probability rate of 15%. The batch size is 75 and number of

iterations is 100 K.

For the network with an LSTM part, we use slightly dif-

ferent parameters: initial learning rate is 0.00002 with a de-

cay factor of 2 after every 2500 iterations. The batch size is

set to 16. The augmentation scheme is as described above.

The convolutional part of the network is initialized from the

model trained without LSTM layers, which allows for lim-

iting the total number of training iterations to 15 K.

4.3. Evaluation of scale estimators

Table 2 contains the main results of this paper, including

a comparison with previous results. For each method we

compute standard deviations σ of the difference between

ground truth and predicted values. For most of the experi-

ments means are close to zero which indicates an absence

of systematic errors. We do not use more advanced metrics

(like Absolute Trajectory Error (ATE)) because we estimate

only distances between consecutive pairs and not full cam-

era poses.

The first two results come from the literature. We use

slightly different settings for dropout and image augmenta-

tion than those used in [10], so we evaluate the influence of

these changes by reimplementing that architecture. As re-

ported within the 3rd row of Table 2, our results are slightly

better. The change of intrinsic parameters has a minor effect

on the evaluation results (see rows 3 and 4), which indicates

that high accuracy may be reached even with a smaller field

of view.

Result 5 corresponds to our findings regarding the pro-

posed CNN network trained using only the KITTI data, for

which we observe a significant improvement of σ compared

to the results of [10]. Row 6 of Table 2 presents results of

the proposed CNN network trained only on synthetic data.

An important conclusion comes from comparing the num-

bers provided in rows 5 and 6, which are quite similar. This

proves the ability of the model trained on synthetic data to

generalize on a completely unseen set of real images. We

also trained the model using a combined dataset from KITTI

and CARLA images (row 7). Clearly, these results out-

perform those trained using a single input modality, which

means KITTI and CARLA datasets are complementary.

Our best results are obtained using a bidirectional LSTM

with a length of 19, see row 8 in Table 2. This confirms the

importance of taking vehicle dynamics into account. How-

ever, in the case of CARLA-generated images, our LSTM

does not improve accuracy, see rows 9–10. We interpret

these results as a special property of synthetic trajectories:

they are very smooth and regular, while real trajectories are

more noisy and less linear. This gives rise to the assump-

tion that our virtual vehicle dynamics do not generalize well

to the real dynamics. Updating the autopilot mode of the

CARLA simulator [7] might help solving this problem.

Method Training data µ σ

CNN CARLA only −0.009 0.109
CNN, LSTM (B, 19) CARLA only 0.006 0.118

Table 3. Evaluation of the models trained exclusively on CARLA

data on all available KITTI sequences ( 20K image pairs). All σ

values are in meters.

In addition we evaluated models trained exclusively on

synthetic CARLA data on all KITTI sequences as none of

them is used for training. Results are presented in the Ta-

ble 3 and show that the trained models are able to generalize

very well to the full corpus of KITTI data.



Figure 4. Trajectories colored by the absolute distance estimation errors (KITTI sequences 00, 02, 08). Left: State-of-the-art results of [10]

(reimplementation). Right: Best results of this paper. Color bar units are meters.

4.4. Evaluation of LSTM length

KITTI Seq #00, #02, #08

LSTM

Version

LSTM

Length
µ σ

U 5 0.003 0.087
U 11 0.002 0.085
U 19 0.001 0.088

B 5 0.019 0.084
B 11 0.005 0.077
B 19 0.012 0.076

Table 4. Evaluation of different sequence lengths within the uni-

directional (U) vs bidirectional (B) LSTM arhitectures. Training

and evaluation are performed on the KITTI dataset. All σ values

are in meters.

Evaluation of different lengths of LSTM sequences and

comparison of unidirectional and bidirectional LSTM ver-

sions are shown in Table 4. This experiment shows that the

length of sequences plays a minor role, both for unidirec-

tional LSTM (U) and bidirectional LSTM (B).

4.5. Evaluation of synthetic data diversity

Table 5 presents evaluation results illustrating the impor-

tance of diversity in the synthetic training data. The num-

bers show a clear improvement as soon as a virtual scene (or

map) with appearances very different from those of the pre-

viously considered maps is added to the training set. Town

1 and 2 are quite similar to each other, so adding the data

from town 2 does not yield a noticeable improvement. Town

3 contains roads with multiple lanes and thus helps to re-

duce σ values by about 1 cm. Town 6 contains two high-

ways and improves results even further. All maps available

in CARLA are not very large, and the amount of effort in-

volved in adding more maps is small compared to the cost

of launching a campaign to collect real data. This is the

benefit of using synthetic data for training.

KITTI Seq #00, #02, #08

Training CARLA Maps µ σ

1 0.004 0.139
1 and 2 −0.025 0.137
1, 2 and 3 −0.008 0.128
1, 2, 3 and 4 −0.012 0.129
1, 2, 3, 4 and 5 −0.011 0.129
1, 2, 3, 4, 5 and 6 −0.007 0.115

Table 5. Scale estimation results for the CNN architecture trained

using synthetic data with different numbers of virtual maps. Eval-

uation is performed on the testing part of the KITTI dataset. All σ

values are in meters.

4.6. Results of domain adaptation

This subsection addresses the question regarding how

photorealism of synthetic data influences absolute scale es-

timation. Table 6 contains results of distance estimations for

three use cases: (i) no domain adaptation, (ii) domain adap-

tation using approaches T2Net [34] and (iii) CyCADA [1].

Our experiments indicate almost no improvement or even

minor degradation of the results if domain adaptation is

applied. The difficulties may be related to the problem

of changing both input images in a similar way. It seems

challenging to constrain the generator of an adversarial net-

work such that realism is equally improved on multiple im-

ages, whilst those features important for the task remain

preserved. Hence, our insights are aligned with the con-

clusions drawn in [23], i.e., that photorealism of synthetic



data is less important than diversity.

KITTI Seq #00, #02, #08

Method µ σ

No domain adaptation −0.007 0.115

T2Net [34] −0.011 0.117
CyCADA [1] 0.011 0.120

Table 6. Results of domain adaptation for the CNN architecture.

The training set consists of a fully annotated synthetic part and

unlabeled training images from KITTI. Evaluations are performed

on the testing part of the KITTI dataset. All σ values are in meters.

4.7. Error analysis

Figure 5. Comparison of recovered distances (blue) and ground

truth (red) per frame for the part of the KITTI sequence 00 from

the (a) CNN alone; (b) LSTM (B), length 19. Training data:

KITTI only. X-axis: frame index.

An overview of all testing trajectories for the baseline

method [10] and our best model (LSTM, length 19) is pre-

sented in Figure 4. The overview gives a clear understand-

ing of our improvements: (a) absolute scale estimations are

more accurate (b) random noise is reduced, and (c) large

errors during vehicle turns are nearly eliminated.

Figure 5 compares the proposed LSTM architecture with

the proposed CNN architecture. Clearly, the LSTM results

are smoother, which confirms the value of adding LSTM

layers. However, vehicle rotations remain the most difficult

challenge for the proposed method.

Figure 6 shows the cumulated error distribution for all

testing sequences. From the histogram, we observe a minor

tendency of overestimating the “true” distances.

Figure 7 provides example images where relatively large

errors are still observed (LSTM (B), length 19). The areas

with large amounts of vegetation are the most difficult ones.

Figure 6. Histogram of distance estimation errors for LSTM (B,

length 19) on all testing KITTI sequences. Training data: KITTI

only.

Figure 7. Images with largest errors for LSTM (B, length 19).

Training data: KITTI only.

5. Conclusion

This paper addresses the problem of scale estimation in

monocular SLAM by estimating the distance between cam-

era centers of consecutive image frames. These estimates

would improve the overall performance of classical (not

deep) SLAM systems and cast the entire 3D reconstruction

from a monocular camera in metric values. The proposed

solution estimates scale for each pair independently (or with

soft-constrained LSTM network), which makes it insensi-

tive to long-term drift effects. Our work introduced sev-

eral network architectures, which lead to an improvement

of scale estimation accuracy over the state of the art. With

respect to the baseline method, our results show significant

improvements of the estimates for camera rotations. In ad-

dition, we exploit the possibility to train the neural network

only with synthetic data derived from a computer graphics

simulator. Our experiments indicate that, using only syn-

thetic training inputs, we can achieve similar scale estima-

tion accuracy as that obtained from real data. This provides

a practical solution to the sensor reconfiguration problem.

Our experiments with unsupervised domain adaptation also

demonstrate that differences in visual appearance (photore-

alism) between simulated and real data does not affect scale

estimation results. The proposed methods operate with low-

resolution images (0.03 MP), which makes them practical

for real-time SLAM applications with a monocular camera.
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