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Abstract

Adversarial training has been recently employed for re-

alizing structured semantic segmentation, in which the aim

is to preserve higher-level scene structural consistencies in

dense predictions. However, as we show, value-based dis-

crimination between the predictions from the segmentation

network and ground-truth annotations can hinder the train-

ing process from learning to improve structural qualities as

well as disabling the network from properly expressing un-

certainties.

In this paper, we rethink adversarial training for seman-

tic segmentation and propose to reformulate the fake/real

discrimination framework with a correct/incorrect training

objective. More specifically, we replace the discriminator

with a “gambler” network that learns to spot and distribute

its budget in areas where the predictions are clearly wrong,

while the segmenter network tries to leave no clear clues

for the gambler where to bet. Empirical evaluation on two

road-scene semantic segmentation tasks shows that not only

does the proposed method re-enable expressing uncertain-

ties, it also improves pixel-wise and structure-based met-

rics.

1. Introduction

In the past years, deep neural networks have obtained

substantial success in various visual recognition tasks in-

cluding semantic segmentation [12, 15]. Despite the suc-

cess of the frequently used (fully) convolutional neural net-

works [31] on semantic segmentation, they lack a built-in

mechanism to enforce global structural qualities. For in-

stance, if the task is to detect a single longest line among

several linear structures in the image, then a CNN is prob-

ably not able to properly handle such global consistency

and will likely give responses on other candidate structures.

This stems from the fact that even though close-by pixels

share a fair amount of receptive field, there is no designated

mechanism to explicitly condition the prediction at a spe-

cific location on the predictions made at other related (close-

by or far) locations, when training with a pixel-level loss.

To better preserve structural quality in semantic segmenta-

tion, several methods incorporate graphical models such as

conditional random fields (CRF) [26, 49, 42], or use spe-

cific topology targeted engineered loss terms [1, 38]. More

recently, adversarial training [16] schemes are being ex-

plored [32, 21, 13], where a discriminator network learns to

distinguish the distributions of the network-provided dense

predictions (fake) and ground-truth labels (real), which di-

rectly encourages better inter-pixel consistencies in a learn-

able fashion. However, as we will show, the visual clues

that the discriminator uses to distinguish the fake and real

distributions are not always high-level geometrical proper-

ties. For instance, a discriminator might be able to leverage

the prediction values to contrast the fuzzy fake predictions

with the crisp zero/one real prediction values to achieve an

almost perfect discrimination accuracy.

Such value-based discrimination results in two undesir-

able consequences: 1) The segmentation network (“seg-

menter”) is forced to push its predictions toward zeros and

ones and pretend to be confident to mimic such a low-level

property of real annotations. This prevents the network

from expressing uncertainties. 2) In practice, the softmax

probability vectors can not get to exact zeros/ones that re-

quires infinitely large logits. This leaves a permanent possi-

bility for the discriminator to scrutinize the small - but still

remaining- value gap between the two distributions, mak-

ing it needless to learn the more complicated geometrical



Figure 1: From left to right: sample image from Cityscapes [6], corresponding ground-truth image, predictions from U-

Net trained with cross-entropy loss, betting map from the gambler network, predictions from the gambling adversarial nets.

Notice e.g. spotted and resolved artefact in predictions from the cross-entropy trained U-Net in bottom right and right side

of the road. Best visible zoomed-in on a screen. Black area on the labels and predictions represents the void-class, that is

excluded in the evaluation [6]

.

discrepancies. This hinders such adversarial training proce-

dures from reaching their full potential in learning the scene

structure.

The value-based discrimination inherently stems from

the fake/real discrimination scheme employed in adversar-

ial structured semantic segmentation. Therefore, we aim

to study a surrogate adversarial training scheme that still

models the higher level prediction consistencies, but is not

trained to directly contrast the real and fake distributions.

In particular, we replace the discriminator with a “gambler”

network, that given the predictions of the segmenter and a

limited budget, learns to spot and invest in areas where the

predictions of the network are likely wrong. Put another

way, we reformulate the fake/real discrimination problem

into a correct/incorrect distinction task. This prevents the

segmenter network from faking certainty, since a wrong

confident prediction caught by the gambler, highly penal-

izes the segmenter. See Figures 1 and 2 for an overview.

Following are the main contributions of the paper:

• We propose gambling adversarial networks as a novel

adversarial training scheme for structured semantic

segmentation.

• We show that the proposed method resolves the usual

adversarial semantic segmentation training issue with

faking confidence.

• We demonstrate that this reformulation in the adversar-

ial training improves the semantic segmentation qual-

ity over the baselines, both in pixel-wise and struc-

tural metrics on two semantic segmentation datasets,

namely the Cityscapes [6] and Camvid [2] datasets.

2. Related work

Structure-preserving semantic segmentation. Several

methods have been proposed that use specific loss terms

which are targeted at preserving topologies [1, 38, 33] or use

graphical models [23, 26, 5, 49, 41, 35, 28, 27, 22, 42] such

as CRFs that model unary, pairwise and/or higher-order po-

tentials, either as a post-processing at the inference time or

as integrated training refinement steps. Hand-engineering

differentiable targeted loss terms for every desirable struc-

tural property is not always feasible in practice. On the

other hand, using graphical models either confines the con-

sistency improvements to model low-level features in a lo-

cal context or imposes high computational costs.

Adversarial semantic segmentation. Adversarial training

schemes have been extensively employed in the literature

to impose structural consistencies for semantic segmenta-

tion [21, 32, 18, 8, 19, 25, 34, 46, 29, 40, 37]. Luc et

al. [32] incorporate a discriminator network trained to dis-

tinguish the real labels and network-produced predictions.

Involving the segmenter in a minimax game with the dis-

criminator motivates the network to bridge the gap between

the two distributions and consequently having higher-level

consistencies in predicted labels.

More recently, it has been shown that the training dy-

namics of paired image-to-image translation in general [44,

43] and adversarial semantic segmentation specifically [13,

20, 45, 47], can be improved using paired real/fake embed-

ding losses.

Our method is similar to the aforementioned adversarial

formulations in the sense that it also employs a critic net-

work that perceives the whole prediction map, consequently

enabling it to model inter-pixel dependencies, and is simi-

larly involved in a minimax game with the segmentation

network. Similar to the embedding loss adversarial train-

ing, we also leverage the pairing between predictions and

ground-truth in our adversarial training, with the difference

that we incorporate the ground-truth not as an input but as

a supervision for our gambler network. More generally, our

method differs in the defined minimax game formulation;

the gambler is trained to learn to spot the likely incorrect

predictions, while the segmenter is trained to leave as lit-

tle (structural) clues as possible for the gambler to make an

easily profitable investment.

Luc et al. [32] also discuss the value-based discrimi-
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Figure 2: An overview of gambling adversarial networks. The solid black arrows indicate the forward pass. The red dashed

arrows represent the two gradient flows of the weighted cross-entropy loss. Gradient flow A provides pixel-level feedback

independent of other pixel predictions. Gradient flow B, going through the gambler network, enables feedback reflecting the

inter-pixel and structural consistency.

nation issue, which they attempt to alleviate by feeding

the discriminator with a Cartesian product of the predic-

tion maps and the input image channels. However, their

followed strategy resulted in no improvements as reported.

This can be attributed to remaining value-based evidence

based on values distribution granularity. For instance, a very

tiny response to a first-layer edge detector, in this case, can

already signify a fake data sample.

Hard-sample mining. Our method is also closely re-

lated to the literature on class-imbalance/hard-sample min-

ing. Class-imbalance is another inherent difficulty that

needs to be properly tackled when dealing with prob-

lems/datasets with imbalanced semantic classes, as is of-

ten the case in semantic segmentation. Synthetic minority

over-sampling technique (SMOTE) [4] and Mean/median-

frequency balancing [10] are common simple strategies that

over-sample or scale the loss terms corresponding to the

under-represented classes. More recently, focal loss [30]

and loss max-pooling [3] improve over the aforementioned

by distinguishing between rarity and difficulty; not all sam-

ples from a frequent class are easy and not all samples be-

longing to infrequent classes are difficult. Therefore, focal

loss and loss max-pooling address the more generic prob-

lem of hard-sample mining. However, the main issue with

both is their inherent limitation dealing with label noise

and/or ambiguities in the underlying semantics. We can

view our gambling adversarial networks as an adversarially

learned version of focal loss; the gambler learns to bet on

(i.e. up-weight) the samples that it perceives as more diffi-

cult and/or more likely to be wrong in predictions from the

segmenter. Such a learned approach can alleviate the label

noise problem, as a learned network over noisy labels may

be able to generalize beyond the noise level in the train-

ing dataset [36, 14] or at least soften the erroneous strong

weight-increase for noisy samples. Furthermore, focal loss

is derived in a pixel-wise manner and therefore cannot pro-

vide structural feedback to the segmentation network.

3. Method

In this section, the proposed method, gambling adversar-

ial networks, is described. First, we present the usual adver-

sarial training formulation for structured semantic segmen-

tation and discuss the potential issues with it. Thereafter, we

describe gambling adversarial networks and its reformula-

tion of the former.

3.1. Conventional adversarial training

In the usual adversarial training formulation, the dis-

criminator learns to discriminate the ground-truth (real)

from the predictions provided by the network (fake). By in-

volving the segmenter in a minimax game, it is challenged

to improve its predictions to provide realistic-looking pre-

dictions to fool the discriminator [32]. In semantic segmen-

tation, such an adversarial training framework is often em-

ployed with the aim to improve the higher-level structural

qualities, such as connectivity, inter-pixel (local and non-

local) consistencies and smoothness. The minimax game is

set-up by forming the following loss terms for the discrimi-

nator and segmenter:

Ld(x, y; θs, θd) = Lbce(d(x, s(x; θs); θd), 0)

+ Lbce(d(x, y; θd), 1), (1)

where x and y are the input image and the corresponding

label-map, s(x; θs) is the segmenter’s mapping of the in-

put image x to a dense segmentation map parameterized

by θs, d(x, y; θd) represents the discriminator operating on

segmentations y, conditioned on input image x and the bi-

nary cross-entropy is defined as Lbce(ŷ, y) = −(y log ŷ +
(1 − y) log(1 − ŷ)), where ŷ and y are the prediction and

label respectively.

Typically, the loss function for the segmenter is a combi-

nation of low-level (pixel-wise) and high-level (adversarial)

loss terms [21, 32]:



Ls(x, y; θs, θd) = Lce(s(x; θs), y)

+ λLbce(d(x, s(x; θs); θd), 1), (2)

where λ is the importance weighting of the adversarial

loss, being the recommended non-saturating reformulation

of the original minimax loss term to prevent vanishing gra-

dients [16, 11]. The pixel-level cross-entropy loss Lce op-

timizes all the pixels independently of each other by mini-

mizing Lce(ŷ, y) = − 1

wh

∑w,h
i,j

∑c
k yi,j,k log ŷi,j,k, where

w and h are the width and the height of image x and c is the

number of classes in the dataset.

Recently, the usual adversarial training for structured se-

mantic segmentation was suggested to be modified [13, 45,

43] by replacing the binary cross-entropy loss as the adver-

sarial loss term for the segmenter, with a fake/real paired

embedding difference loss, where the embeddings are ex-

tracted from the adversarially trained discriminator. To be

more specific, the adversarial loss term in Equation (2) is

replaced by the following embedding loss:

Lemb(x, ŷ, y; θd) =
∥

∥de(x, ŷ; θd)− de(x, y; θd)
∥

∥

2
, (3)

where the function de(x, y; θ) represents the extracted fea-

tures from a particular layer in the discriminator. As shown

in the EL-GAN method, this could significantly stabilize

training [13].

Ideally, the discriminator’s decisions are purely based on

the structural differences between the real and the fake pre-

dictions. However, in semantic segmentation, it is often

possible for the discriminator to perfectly distinguish the la-

bels from the predictions based on the values. The output of

the segmenter is a softmax vector per pixel, which assigns a

probability to every class that ranges between zero and one.

In contrast, the values in the ground-truth are either zeros

or ones due to the one-hot encoding. Such value-based dis-

crepancy can yield unsatisfactory gradient feedback, since

the segmenter might be forced to mimic the one-hot encod-

ing of the ground-truth instead of the global structures. Ad-

ditionally, the value-based discrimination is a never-ending

problem since realizing exact ones and zeros requires in-

finite large logits, however, in practise, the segmenter al-

ways leaves a small value-based gap that can be exploited

by the discriminator. Another undesired outcome is the loss

of ability to express uncertainties, since all the predictions

will converge towards a one-hot representation to bridge the

value-based gap between the one-hot labels and probabilis-

tic predictions.

3.2. Gambling Adversarial Networks

To prevent the adversarial network from utilizing the

value-based discrepancy, we propose gambling adversar-

ial networks, which focuses solely on improving the struc-

tural inconsistencies. Instead of the usual real/fake adver-

sarial training task, we propose to modify the task to learn

to distinguish incorrect predictions given the whole predic-

tion map. Different from a discriminator, the critic net-

work (gambler) does not observe the ground-truth labels,

but solely the RGB-image in combination with the predic-

tion of the segmentation network (segmenter). Given a lim-

ited investment budget, the gambler predicts an image-sized

betting map, where high bets indicate pixels that are likely

incorrectly classified, given the contextual prediction clues

around it. Since the gambler receives the entire prediction,

structurally ill-formed predictions, such as non-smoothness,

disconnectivities and shape-anomalies are clear visual clues

for profitable investments for the gambler. An overview of

gambling adversarial networks is provided in Figure 2.

Similar to conventional adversarial training, the gam-

bler and segmenter play a minimax game; The gambler

maximizes the expected weighted pixel-wise cross-entropy

where the weights are determined by its betting map, while

the segmenter attempts to improve its predictions such that

the gambler does not have clues where to bet:

Lg(x, y; θs, θg) =

−
1

wh

w,h
∑

i,j

g(x, s(x; θs); θg)i,jLce(s(x; θs)i,j , yi,j),
(4)

where g(x, s(x; θs); θg)i,j is the amount of budget the gam-

bler invests on position (i, j).

The segmenter network minimizes the opposite:

Ls(x, y; θs, θg) = Lce(s(x; θs), y)− Lg(x, y; θs, θg).
(5)

Similar to conventional adversarial training, the segmenta-

tion network optimizes a combination of loss terms: a per-

pixel cross-entropy loss and an inter-pixel adversarial loss.

It should be noted that the gambler can easily maximize this

loss by betting infinite amounts on all the pixels. Therefore,

it is necessary to limit the budget the gambler can spend.

We accommodate this by turning the betting map into a

smoothed probability distribution:

g(x, ŷ; θg)i,j =
gσ(x, ŷ; θg)i,j + β

∑w,h
k,l gσ(x, ŷ; θg)k,l + β

, (6)

where β is a smoothing factor and gσ(x, ŷ; θg)i,j represents

the sigmoid output of the gambler network for pixel with

the indices i, j. Smoothing the betting map regularizes the

model to spread its bets over multiple pixels instead of fo-

cusing on a single location.

The adversarial loss causes two different gradient

streams for the segmentation network, as shown in Figure

2, where the solid black and dashed red arrows indicate the

forward pass and backward gradient flows respectively. In



the backward pass, the gradient flow A pointing directly to-

wards the prediction provides pixel-wise feedback indepen-

dent of the other pixel predictions. Meanwhile, the gradient

flow B, going through the gambler network, provides feed-

back reflecting inter-pixel and structural consistencies.

4. Experimental results

In this section, we discuss the datasets and metrics for the

evaluation of gambling adversarial networks. Thereafter,

we describe the different network architectures for the seg-

menter and gambler networks and provide details for train-

ing. Finally, we report the results of our experiments.

4.1. Experimental setup

Datasets. We conduct experiments on two different urban

road-scene semantic segmentation datasets, but hypothesize

that the method is generic and can be applied to any seg-

mentation dataset.

Cityscapes. The Cityscapes [6] dataset contains 2975

training images, 500 validation images and 1525 test im-

ages with a resolution of 2048 × 1024 consisting of 19 dif-

ferent classes, such as cars, persons and road signs. For pre-

processing of the data, we down-scale the images to 1024

× 512, perform random flipping and take random crops of

512 × 512 for training. Furthermore, we perform intensity

jittering on the RGB-images.

Camvid. The urban scene Camvid [2] dataset consists

of 429 training images, 101 validation images and 171 test

images with a resolution of 960 × 720. We apply the same

data augmentations as described above, except that we do

not perform any down-scaling.

Metrics. In addition to the mean intersection over union

(IoU), we also quantify the structural consistency of the

segmentation maps. Firstly, we compute the BF-score [7],

which measures whether the contours of objects in the pre-

dictions match with the contours of the ground-truth. A

point on the contour line is a match if the distance between

the ground-truth and prediction lies within a toleration dis-

tance τ , which we set to 0.75 % of the image diagonal as

suggested in [7]. Furthermore, we utilize a modified Haus-

dorff distance to quantitatively measure the structural cor-

rectness [9]. We slightly modify the original Hausdorff dis-

tance, to prevent it from being overwhelmed by outliers:

dH(X,Y ) =
1

2

∑

{

1

|X|

∑

x∈X

inf
y∈Y

d(x, y),

1

|Y |

∑

y∈Y

inf
x∈X

d(x, y)

}

,

(7)

where X and Y are the contours of the predictions and la-

bels from a particular class and d(x, y) is the Euclidean dis-

tance. We average the score over all the classes that are

present in the prediction and the ground-truth.

Network architectures. For comparison, we experiment

with two well-known baseline segmentation network archi-

tectures. Firstly, a U-Net [39] based architecture as im-

plemented in Pix2Pix [21], which is an encoder-decoder

structure with skip connections. The encoder consists

of nine down-sampling blocks containing a convolutional

layer with batch normalization and ReLu. The decoder

blocks are the same, except that the convolutions are re-

placed by transposed convolutions. Furthermore, we con-

duct experiments with PSPNet [48], which utilizes a pyra-

mid pooling module to capture more contextual informa-

tion. Similar to [48], we utilize an ImageNet pre-trained

ResNet-101 [17] as backbone.

For the gambler network, we utilize the same networks

as the segmentation network. When training with the U-

Net based architecture, the gambler network is identical ex-

cept that it contains only six down-sampling blocks. For the

PSPNet, the architecture of the gambler and segmenter are

identical. For the baseline adversarial methods, we utilize

the PatchGAN discriminator from Pix2Pix [21].

Training. For training the models, we utilize the Adam

optimizer [24] with a linearly decaying learning rate over

time. Similar to the conventional adversarial training, the

gambler and segmenter are trained in an alternating fashion

where the gambler is frozen when updating the segmenter

and vice versa. Furthermore, we learned that as opposed

to conventional adversarial training, our network does not

required separate pre-training and in general, we observe

that the training is less sensitive to hyperparameters. Details

of the hyperparameters can be found in the supplementary

material.

4.2. Results

Confidence expression. As discussed before, value-

based discrimination encourages the segmentation network

to mimic the one-hot vectors of the ground-truth, resulting

in loss of ability to express uncertainty. We hypothesize that

reformulating the fake/real discrimination in the adversarial

training to a correct/incorrect distinction scheme will miti-

gate the issue. To verify this, the mean and standard devi-

ation of the maximum class-likelihood value in every soft-

max vector for each pixel is tracked on the validation set

over different training epochs and the results are depicted

in Figure 3. We conducted this experiment with the U-Net

based architecture on Cityscapes, but we observed the same

phenomena with the other segmentation network and on the

other dataset. One can observe that for both the standard

adversarial training and EL-GAN that discriminate the real

from the fake predictions, the predictions are converging



Figure 3: Mean maximum class-likelihoods (mean confi-

dence) over time on the Cityscapes [6] validation set. Solid

central curves and the surrounding shaded area represent the

mean and standard deviation respectively.

Method Mean max

Cross-entropy 90.7± 2.3 %

Cross-entropy + adversarial 98.4± 0.5 %

EL-GAN 98.9± 0.2 %

Gambling nets 91.4± 2.4 %

Table 1: Mean maximum value in every softmax vector on

the Cityscapes [7] validation set averaged over the last 10

epochs.

towards one, with barely any standard deviation. For the

gambling adversarial networks, the uncertainty of the pre-

dictions is well-preserved. In Table 1, the average mean

maximum over the last 10 epochs is shown, which confirms

that the gambling adversarial networks maintain the abil-

ity to express the uncertainty similar to the cross-entropy

model, while the existing adversarial methods attempt to

converge to a one-hot vector.

U-Net based segmenter. First, we compare the base-

lines with the gambling adversarial networks on the

Cityscapes [6] validation set with the U-Net based archi-

tecture. The results in Table 2 show the gambling adversar-

ial networks perform better on the pixel-wise metric (IoU),

but also on the structural metrics. In Table 3, the IoU per

class is provided for the same experiments. The gambling

adversarial networks perform better on most of the classes.

Moreover, performance particularly improves on the classes

with finer structures, such as traffic light and person. In Ta-

ble 4, we report the BF-score per class, where the gambling

adversarial networks outperform the other methods on al-

most all classes. Moreover, similar to the IoU, we observe

the most significant improvements on the more fine-grained

Method Mean IoU BF-score Hausdorff

CE 52.7 49.0 36.8

Focal loss [30] 56.2 55.3 30.2

CE + adv [32] 56.3 57.3 31.3

EL-GAN [13] 55.4 54.2 31.6

Gambling nets 57.9 58.5 27.6

Table 2: Results on Cityscapes [6] with U-Net based archi-

tecture [21] as segmentation network.

classes, such as rider and pole.

In Figure 4, one qualitative sample is depicted, in the

supplementary material more samples are provided. The

adversarial methods resolve some of the artifacts, such as

the odd pattern in the car on the left. Moreover, the bound-

aries of the pedestrians on the sidewalk become more pre-

cise. We also provide an example betting map predicted by

the gambler, given the predictions from the baseline model

trained with cross-entropy in combination with the RGB-

image. Note that the gambler bets on the badly shaped

building in the prediction and responds to the artifacts in

the car.

PSPNet segmenter. We conduct experiments with

the PSPNet [48] segmenter on the Camvid [2] and

Cityscapes [6] datasets. In Table 5, the results are shown

on the Cityscapes validation set. Again, the gambling

adversarial networks perform better than the existing

methods, on both of the structure-based metrics as well as

the mean IoU. In Figure 5, a qualitative sample is shown,

more can be found in the supplementary material. The

gambling adversarial networks provides more details to

the traffic lights. Also, the structure of the sidewalk shows

significant improvements over the predictions from the

model trained with standard segmentation loss.

The quantitative results on the Camvid [2] test set are

shown in Table 6. The gambling adversarial networks

achieve the highest score on the structure-based metrics, but

the standard adversarial training [32] performs best on the

IoU. In the supplementary material, we provide qualitative

results for the Camvid [2] test set and extra images for the

aforementioned experiments.

5. Discussion

Correct/incorrect versus real/fake discrimination. We

reformulated the adversarial real/fake discrimination task

into training a critic network to learn to spot the likely incor-

rect predictions. As shown in Figure 3, the discrimination

of real and fake causes undesired gradient feedback, since

all the softmax vectors converge to a one-hot vector. We

empirically showed that this behavior is caused by a value-

based discrimination of the adversarial network. Moreover,



RGB-image Ground-truth CE

Focal loss CE + adv EL-GAN

Gambling nets Betting map

Figure 4: Qualitative results on Cityscapes [6] with the U-Net based architecture [21].

Method road swalk build wall fence pole tlight sign veg. ter. sky pers rider car truck bus train mbike bike mean

CE 95.2 68.4 84.4 26.0 30.9 43.0 38.9 51.3 87.2 50.3 91.5 59.0 32.6 85.5 22.8 43.2 19.2 15.4 57.4 52.7

Focal loss [30] 96.0 71.3 87.1 32.2 34.9 48.6 47.6 57.8 88.9 54.2 92.7 62.9 33.5 87.2 28.5 47.5 18.3 19.3 60.0 56.2

CE + adv [32] 95.9 72.7 83.5 28.9 35.2 49.8 47.8 59.3 89.0 54.8 92.3 66.4 38.4 87.2 27.8 41.4 15.3 20.3 62.5 56.3

EL-GAN [13] 96.1 71.1 86.8 33.5 37.0 48.7 46.6 57.3 88.9 53.6 92.9 62.6 34.4 87.1 26.0 38.3 16.3 17.8 58.9 55.4

Gambling 96.3 73.0 87.6 33.4 39.1 52.9 51.3 61.9 89.7 55.8 93.1 68.1 38.9 88.7 30.3 40.2 11.5 24.8 63.2 57.9

Table 3: IoU per class on the validation set of Cityscapes [6] with U-Net based architecture [21] as segmentation network

Method road swalk build wall fence pole tlight sign veg. ter. sky pers rider car truck bus train mbike bike

CE 84.8 69.0 77.3 15.6 13.7 66.4 31.3 53.7 82.3 28.7 82.0 47.5 29.2 76.0 8.3 12.2 2.6 8.9 44.1

Focal loss [30] 87.2 72.4 80.7 19.7 16.0 71.0 40.1 62.3 86.1 35.8 84.8 51.6 32.0 79.4 9.2 18.0 4.3 12.1 50.5

CE + adv [32] 82.6 72.3 79.8 16.2 16.2 72.1 43.6 65.7 86.2 34.5 83.3 54.8 34.4 78.8 8.7 17.5 4.4 14.0 52.0

EL-GAN [13] 86.9 72.3 79.9 19.3 16.4 70.7 38.2 63.4 85.5 32.7 84.0 51.2 32.7 78.1 9.5 16.8 4.8 8.8 47.0

Gambling 87.4 74.3 81.3 20.7 18.6 74.0 45.7 67.8 87.2 35.4 85.4 57.0 38.8 80.0 11.2 19.3 4.4 15.6 52.9

Table 4: BF-score [7] per class on the validation set of Cityscapes [6] with U-Net based architecture [21] as segmentation

network

modifying the adversarial task to correct/incorrect discrim-

ination solves several problems. First of all, the reason to

apply adversarial training to semantic segmentation is to

improve on the high-level structures. However, the value-

based discriminator is not only providing feedback based

on the visual difference between the predictions and the la-

bels, but also an undesirable value-based feedback. More-

over, updating the weights in a network with the constraint

that the output must be a one-hot vector complicates train-

ing unnecessarily. Finally, the value-based discriminator

hinders the network from properly disclosing uncertainty.

Both the structured prediction and expressing uncertainty



Method Mean IoU BF-score Hausdorff

CE 72.4 69.0 19.4

Focal loss [30] 71.5 67.4 21.2

CE + adv [32] 68.0 67.0 20.9

EL-GAN [13] 71.3 67.0 21.2

Gambling nets 73.1 70.1 18.7

Table 5: Results on Cityscapes [6] with PSPNet [48] as seg-

mentation network.

Method Mean IoU BF-score Hausdorff

CE 72.5 71.8 17.9

Focal loss [30] 70.8 71.4 17.7

CE + adv [32] 72.7 72.7 17.1

EL-GAN [13] 70.1 69.6 19.1

Gambling nets 72.1 73.8 16.0

Table 6: Results on Camvid [2] with PSPNet [48] as seg-

mentation network.

RGB-image Ground-truth

Cross-entropy Gambling nets

Figure 5: Qualitative results on Cityscapes [6] with PSP-

Net [48] as segmentation network

can be of great value for semantic segmentation, e.g. in au-

tonomous driving and medical imaging applications. How-

ever, changing the adversarial task to discriminating the cor-

rect from the incorrect predictions resolves the aforemen-

tioned issues. The segmentation network is not forced to

imitate the one-hot vectors, which preserves the uncertainty

in the predictions and simplifies the training. Although we

still notice that the gambler sometimes utilizes the predic-

tion values by betting on pixels where the segmenter is un-

certain, we also obtain improvements on the structure-based

metrics compared to the existing adversarial methods.

Gambling adversarial networks vs. focal loss The ad-

versarial loss in gambling adversarial networks resembles

the focal loss [30], since both methods up-weight the harder

samples that contain more useful information for the up-

date. The focal loss is defined as: Lfoc(y, ŷ, pt) = −(1 −
pt)

γy log ŷ, where pt is the probability of the correct class

and γ is a focusing factor, which indicates how much the

easier samples are down-weighted. The advantage of the

focal loss is that the ground-truth is exploited to choose the

weights, however, the downside is that the focal loss might

be over-pronouncing the ambiguous or incorrectly labeled

pixels. The adversarial loss in gambling adversarial net-

works learns the weighting map, which can mitigate the

noise effect. Moreover, the adversarial loss generates an

extra flow of gradients (flow B), as observable in Figure 2.

Gradient stream A provides information to the segmenta-

tion network independent of other pixel predictions similar

to the focal loss, whereas gradient stream B provides gradi-

ents reflecting structural qualities, which is lacking in case

of the focal loss.

Insights into betting maps Inspecting the betting maps

(see for instance Figure 4), we observe that some of the

bets correspond to the class borders, especially the ones that

seemingly do not match the visual evidence in the underly-

ing image or the expected shape of the object. We should

note that even though there are chances that the ground-

truth labels on the borders are different from the predic-

tions, blindly betting on all the borders is not even close

to the optimal policy. The clear bad structures in the predic-

tions, e.g. the weird prediction of rider inside the car or the

badly formed wall on the left side, are still more rewarding

investments that are also being spotted by the gambler.

6. Conclusion

In this paper, we studied a novel reformulation of adver-

sarial training for semantic segmentation, in which we re-

place the discriminator with a gambler network that learns

to use the inter-pixel consistency clues to spot the wrong

predictions. We showed that involving the segmenter in a

minimax game with such a gambler results in notable im-

provements in structural and pixel-wise metrics, as mea-

sured on two road-scene semantic segmentation datasets.
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