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Abstract

The goal of this paper is to label all the animal individu-

als present in every frame of a video. Unlike previous meth-

ods that have principally concentrated on labelling face

tracks, we aim to label individuals even when their faces

are not visible. We make the following contributions: (i)

we introduce a ‘Count, Crop and Recognise’ (CCR) multi-

stage recognition process for frame level labelling. The

Count and Recognise stages involve specialised CNNs for

the task, and we show that this simple staging gives a sub-

stantial boost in performance; (ii) we compare the recall us-

ing frame based labelling to both face and body track based

labelling, and demonstrate the advantage of frame based

with CCR for the specified goal; (iii) we introduce a new

dataset for chimpanzee recognition in the wild; and (iv) we

apply a high-granularity visualisation technique to further

understand the learned CNN features for the recognition of

chimpanzee individuals.

1. Introduction

Recognising animal individuals in video is a key step

towards monitoring the movement, population, and com-

plex social behaviours of endangered species. Traditional

individual recognition pipelines rely extremely heavily on

the detection and tracking of the face or body, both for

humans [6, 11, 18, 27, 34, 42, 56, 61, 64] and for other

species [13, 48, 52, 60]. This can be a daunting annota-

tion task, especially for large video corpora of non-human

species where custom detectors must be trained and expert

knowledge is required to label individuals. Furthermore,

often these detectors fail for animal footage in the wild due

to the occlusion of individuals, varying lighting conditions

and highly deformable bodies.

Our goal in this paper is to automatically label individ-

uals in every frame of a video; but to go beyond face and

body recognition, and explore identification using the en-

tire frame. In doing so we analyse the important trade
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off between precision and recall for face, body and full-

frame methods for recognition of individuals in video. We

target the recognition of chimpanzes in the wild. Con-

sider the performance of models at the three levels of face,

body and frame (Figure 1). Face recognition now achieves

very high accuracy [44, 51, 55] for humans due to the

availability of very large datasets for training face detec-

tion [31, 49, 63, 65] and recognition [2, 7, 24, 32, 59]. The

result is that the precision of recognising individuals will be

high, but the recall may well be low, since, as mentioned

above, face recognition will fail for many frames where the

face is not visible. Using a body level model occupies a

middle ground between face and frame level: it offers the

possibility of recognising the individual when the head is

occluded, e.g. by distinguishing marks or shapes in the case

of animals, or by hair or clothes in the case of humans (al-

beit it is worth noting that changes in clothing can reduce

this advantage – animals obligingly are unclothed). How-

ever, body detectors do not as yet have the same perfor-

mance as face detectors, as animal bodies in particularly are

highly deformable and can often overlap each other. This

means that bodies may be missed in frames, especially if

they are small. A frame level model offers the possibility

of very high recall (since there are no explicit detectors that

can fail, as there are for faces and bodies). In addition, such

a method can implicitly use higher-level features for recog-

nition, such as the co-occurrence and spatial relationships

between animal individuals (eg. infants are often present in

close proximity to the mother). However, the precision may

be low because of the challenge of the large proportion of

irrelevant information present in the frame (in the case of

body and particularly face detection, irrelevant information

is removed).

In this paper we show that the performance of frame

level models can be considerably improved by automati-

cally zooming in on the regions containing the individuals.

This then enables the best of both worlds: cheap supervi-

sion at the frame level, obviating the necessity to train and

employ face or body detectors, and high recall; but with

the precision comparable to face and body detection. We



Figure 1. Levels of localisation that can be used to recognise individuals in raw footage. Left to right: (1) Face: high precision, but

often individuals are not detected. (2) Full Body: while recall is higher, bodies can be incredibly difficult to detect due to their extremely

deformable nature. (3) Full Frame: In this work we explore an architecture to recognise individuals using only frame level supervision.

make the following contributions: (i) we propose a multi-

stage Count, Crop and Recognise (CCR) pipeline to recog-

nise individuals from raw video with only frame level iden-

tity labels required for training. The first two Count and

Crop stages proposes a rectangular region that tightly en-

closes all the individuals in the frame. The final Recog-

nise stage then identifies the individuals in the frame using

a multilabel classifier on the rectangular region at full res-

olution (Figure 2). (ii) We analyse the trade-offs between

using our frame level model and other varying levels of lo-

calised supervision for fine-grained individual recognition

(at a face, body and frame level) and their respective perfor-

mances. (iii) We have annotated a large, ‘in the wild’ video

dataset of chimpanzees with labels for multiple levels of su-

pervision (face tracks, body tracks, frames) which is avail-

able at www.robots.ox.ac.uk/˜vgg/research/

ccr. Finally, (iv) we apply a high-granularity visualisation

technique to further understand the learned CNN features

for the recognition of chimpanzee individuals.

2. Related Work

Animal recognition in the wild: Video data has become

indispensable in the study of wild animal species [8, 43].

However, animals are difficult objects to recognise, mainly

due to their deformable bodies and frequent self occlusion

[1, 4]. Further, variations in lighting, other individual

flora, and motion blur create additional challenges. Tak-

ing inspiration from computer-vision based systems for

humans, previous methods for species identification have

focused on faces, for chimpanzees [13, 21], tigers [35, 37],

lemurs [12] and even pigs [25]. Compared to bodies, faces

are less deformable and have a fairly standard structure.

However, unlike human faces or standard non-deformable

object categories, there is a dearth of readily available

detectors that can be used off the shelf to localize animals

in a frame, requiring researchers to annotate datasets and

train their own detectors. It is also often not clear which

part of the animal is the most discriminative, e.g. for

elephants ears are commonly used [15], whereas for other

mammals unique coat patterns such as stripes for zebras

and tigers [37] and spots on Jaguars could be key for

recognition [26]. Moving to a full-frame method obviates

the need to identify a key discriminating region. Popular

wildlife recognition datasets, such as iNaturalist [58],

contain species level labels and in contrast to our dataset,

typically contain a single instance of a class clearly visible

in the foreground. While a valuable dataset does exist for

the individual recognition of chimpanzees [21, 39], this

dataset only contains cropped faces of individuals from zoo

enclosures, less applicable to applications of conservation

in the wild.

Human recognition in TV and film videos: The original

paper in this area by Everingham et al. [18] introduced

three ideas: (i) associating faces in a shot using tracking by

detection, so that a face-track is the ‘unit’ to be labelled;

(ii) the use of aligned transcripts with subtitles to provide

supervisory information for character labels; and (iii) visual

speaker detection to strengthen the supervision (if a person

is speaking then their identity is known from the aligned

transcript). Many others have adopted and extended these

ideas. Cour et al. [11] cast the problem as one of ambiguous

labelling. Subsequently, Multiple Instance Learning (MIL),

was employed by [6, 27, 34, 61, 64]. Further improvements

include: unsupervised and partially-supervised metric

learning [9, 23]; the range of face viewpoints used (e.g.

adding profile face tracks in addition to the original near-

frontal face tracks) [19, 53]; and obtaining an episode wide

consistent labelling [56] (by using a graph formulation and

other visual cues). Recent work [42] has explored using

only face and voice recognition, without the use of weak

supervision from subtitles.

Frame level supervision: The task of labelling im-

age regions given only frame level labels is that of weakly

supervised segmentation: every image is known to have



Figure 2. The Count, Crop and Recognise pipeline consists of three stages: (1) a coarse-grained counting network to count the number of

individuals per frame, (2) a crop stage where the class activation maps from the counting network are used to localise regions of interest in

the image, and (3) a fine-grained classifier trained on these cropped images.

(or not) – through the image (class) labels – one or several

pixels matching the label. However, the positions of these

pixels are unknown, and have to be inferred. Early deep

learning works on this area include [33, 46, 47]. Our

problem differs in that it is fine-grained – all the object

classes are chimpanzees that must be distinguished, say,

rather than the 20 PASCAL VOC classes of [33, 46, 47].

While there have been works on localising fine-grained

objects with weak supervision [5, 22, 29], they deal only

with the restricted case of one instance per image (i.e. an

image containing a single bird of class Horned Puffin). As

far as we know, we are the first to tackle the challenging

task of classifying multiple fine-grained instances in a

single frame with weak supervision.

3. Count, Crop and Recognise (CCR)

Our goal is, given a frame of a video, to predict all the

individuals present in that frame. We would like to learn

to do this task with only frame-level labels, i.e no detec-

tions and hence no correspondences (who’s who). The ma-

jor challenge with such a method, however is that frames

contain a lot of irrelevant background noise (Figure 3), and

the distinctions between different individuals is often very

fine-grained and subtle (these fine details are hard to learn

due to the limited input resolution of CNNs).

Hence we propose a multi-stage, frame level pipeline

that automatically crops discriminative regions containing

individuals and so eliminates as much background informa-

tion as possible, while maintaining the high resolution of

the original image. This is achieved by training a deep CNN

with a coarse-grained counting objective (a much easier task

than fine-grained recognition), before performing identity

recognition. The method is loosely inspired by the weakly-

supervised object detection method C-WSL [22], however,

unlike this work, our method requires neither explicit ob-

ject proposals nor an existing weakly supervised detection

method. Since we do not require exact bounding boxes per

instance, but simply a generic zoomed in region, we use

class guided activation maps to determine the region of fo-

cus. The multiple stages of our CCR method are described

in more detail below. Precise implementation details can be

found in Section 6.2, and a diagrammatic representation of

the pipeline can be seen in Figure. 2.

Let x ∈ R
C×H×W be a single frame of the video and let

Y ∈ {0, 1}k be a finite vector denoting which of the total

k individuals are visible. Y [i] = 1 if the i-th individual is

visible in x, and Y [i] = 0 otherwise.

Count: We first train a parameterised function cθ(x
′),

given a resized image input x′ ∈ R
C×H′

×W ′

to count the

number of individuals n within a frame. In general, we

can cast this problem as either a multiclass problem or a

regression problem. Since the number of individuals per

frame in our datasets is small, we pose this counting task

as one of multiclass classification, where the total number

of individuals present can be categorised into one of the

following classes n ∈ {0, 1, ..., N} where all counts of

N or more are binned into a single bin, with N selected

as a hyperparameter (in this work we use N = 3). The

‘Negatives’ class (n = 0) is very important for training.

Labels for counting come for free with frame level anno-

tation (total number of labels per frame, or n = |Y |). The

loss to be minimised can then be framed as a cross-entropy

loss on the target n values. In this work we instantiate

c(x′) as a deep convolutional neural network (CNN) with

convolutional layers followed by fully connected layers.

Generally H ′,W ′ < H,W due to the discrepancy in

resolution of raw images and pretrained CNNs.

Crop: Class Activation Maps (CAMs) [67] are gen-

erated from the counting model cθ(x
′) to localise the

discriminative regions. For resized input image x
′, let

fk(i, j) denote the activation of a unit k in the last convo-

lutional layer, and wn
k denote the weight corresponding to

count n for unit k. The CAM, Mn, at each spatial location

is given by:
Mn(i, j) =

∑

k

wn
kfk(i, j) (1)



describing the importance of visual patterns at different

spatial locations for a given class, in this case a count. By

upsampling the CAM to the same size of x (H,W ) image

regions most relevant to the particular category can be iden-

tified. The CAM is then normalised and segmented:

Mnorm
n (i, j) =

Mn(i, j)−min
i,j

Mn(i, j)

max
i,j

Mn(i, j)
(2)

M thresh
n (i, j) =

{

1, if Mnorm
n (i, j) > T

0, otherwise
(3)

where T ∈ [0, 1] is the chosen threshold value. The

largest connected component in M thresh
n is found using

classical component labelling algorithms [20, 62], exam-

ples shown in Figure 3. The bounding box enclosing this

component is used to crop the original input image x to

get xcrop, removing irrelevant portions of the image and

permitting higher resolution of the cropping region.

Recognise: The cropped regions xcrop are used to train

a fine grained recognition classifier Rφ(x
′

crop) using the

original frame-level labels Y . This second recognition

classifier is also instantiated as a CNN, with different

parameters φ, and trained for the task of multilabel classi-

fication, with one class for every individual in the dataset.

We use a weighted Binary Cross-Entropy loss, where the

weight wi for each class i is: wi = fmax/fi, where fmax

refers to the number of instances for the most populous

class, and fi is the number of instances for class i.

Figure 3. Region proposals for the Chimpanzee Bossou dataset.

These are learnt via our counting CNN with no detection super-

vision at all. Top row: original frame; middle row: CAM for the

count; bottom row: region proposal. Note in the second column,

how the localisation works well even when the individuals are far

apart from each other.

Why use counting to localise? Our method begs the fol-

lowing question: if a model must identify discriminative

regions to be able to count individuals, surely it must also

identify these regions to perform fine-grained recognition?

Figure 4. Region proposals for both the baseline (recognition) and

counting method. Note how the baseline method mistakenly fo-

cuses on the background features, rocks and trees, to recognise

individuals.

In this case we could just train the fine grained recogni-

tion network to obtain region proposals, crop regions and

then retrain the recognition network in an iterative manner.

However, counting objects is a much easier task than the

fine-grained recognition of identities (a widely studied phe-

nomenon in psychology, called subitizing [10] suggests that

humans are able to count objects with a single glance if the

total number of objects is small). We find that this leads to

much better region proposals, as demonstrated in Figure 4

where we show proposals obtained from a counting model

and from an identification model. By tackling an easier task

first, our model is using a form of curriculum learning [3].

4. Face and Body Tracking and Recognition

In order to test recognition methods that explicitly use

only face and body regions, we first create a chimpanzee

face and body detection dataset, by annotating bounding

boxes using the VIA annotation tool [16]. We then train

a detector with these detection labels, and run the detector

on every frame of the video. A tracker is then run to link

up the detections to form face-tracks or body-tracks, which

then become a single unit for both labelling and recognition.

Examples are shown in Figure 5. Finally, we train a stan-

dard CNN multi-class classifier on the regions in the track

using a cross-entropy loss on the identities in the dataset to

train a recognition model.



Figure 5. Chimpanzee tracks for face (top row) and body (bottom two rows).

5. Datasets

Chimpanzee Bossou Dataset: We use a large, un-edited

video corpus of chimpanzee footage collected in the

Bossou forest, southeastern Guinea, West Africa. Bossou

is a chimpanzee field site established by Kyoto University

in 1976 [30, 41, 50, 54]. Data collection at Bossou was

done using multiple cameras to document chimpanzee

behaviour at a natural forest clearing (7m x 20m) located

in the core of the Bossou chimpanzees’ home range. The

videos were recorded at different times of the day, and

span a range of lighting conditions. Often there is heavy

occlusion of individuals due to trees and other foliage.

The individuals move around and interact freely with one

another and hence faces in video have large variations in

scale, motion blur and occlusion due to other individuals.

Often faces appear as extreme profiles (in some cases

only a single ear is visible). While the original Bossou

dataset is a massive archive with over 50 hours of data

from multiple years, in this paper we use roughly 10 hours

of video footage from the years 2012 and 2013, of which

we reserve 2 hours for testing. Chimpanzees are visible

for the vast majority of this footage, therefore we also in-

clude sampled frames of just the forest background (n = 0)

from other years to permit negative training for all methods.

Dataset annotation and statistics: We manually provide

frame level annotations (i.e. name tags for the individuals

present) for every frame in the videos using the VIA video

annotation tool [17]. VIA is an open source project based

solely on HTML, Javascript and CSS (no dependency on

external libraries) and runs entirely in a web browser∗.

In addition, we compute face and body detections and

tracks (as described in Section 4) and also label these

tracks manually using the VIA tool. All identity labelling

∗http://www.robots.ox.ac.uk/˜vgg/software/via/

hours #frames # individuals

train 8.30 830k 13

test 1.56 161k 10

total 9.86 992k 13

Table 1. Dataset Statistics for the Chimpanzee Bossou dataset.

We annotate facetracks, bodytracks and identities at a frame level.

Figure 6. Instance frequency histograms for each individual in the

Chimpanzee Bossou dataset.

was done by an expert anthropologist familiar with the

identities in the archive. The statistics of the dataset are

given in Table 1. The frame-level frequency histogram for

each individual is shown in Figure 6, where an instance of

an individual is defined as a frame for which the individual

is visible.

6. Experiments

We first evaluate the performance of the face-track and

body-track methods, in particular the proportion of frames

that they can label (the frame recall), and their identity



recognition performance. This is then compared to the per-

formance of the frame-level CCR method using average

precision (AP) to analyse the trade-offs thoroughly. We also

compare the CCR method to a simple baseline, where an

identity recognition CNN is trained directly on the resized

raw (not zoomed in) images x′.

6.1. Evaluation Metrics

Detector Recall: The detector recall is the proportion of

instances where faces (or bodies) are detected and tracked.

This provides an upper bound on the number of individual

instances that can be recognised from the video dataset

using the face-track or body-track methods. We note that

this is a function of two effects: (1) the visibility of the

face or body in the image (faces could be turned away, be

occluded etc); and (2) the performance of the detection

and tracking method (i.e. is the face detected even if it is

visible); though we do not distinguish these two effects

here.

Identification Accuracy: This is the proportion of

detections that are labelled correctly (each face-track or

body-track can only be one of the possible identities).

System-level Average Precision (AP): For the face (and

body) track methods, the precision and recall for each indi-

vidual is computed as follows: all tracks are ranked by the

score of the individual face classifier; if the track belongs

to that individual, then all the frames that contain that track

are counted as recalled; if the track does not belong to that

individual, then the frames that contain that track are not re-

called (but the precision takes these negative tracks into ac-

count), i.e. we only recall the frames containing a track if we

correctly identify the individual in that track. For the frame

level CCR method, the frames are ranked by the frame-level

identity classifier, and the precision and recall computed for

this ranked list. We then calculate both the micro and macro

Average Precision score over all the individuals. Macro Av-

erage Precision (mAP) takes the mean of the AP values for

every class, whereas Micro Average Precision (miAP) ag-

gregates the contributions of all classes to compute its aver-

age metric. For our heavily class unbalanced datasets, the

latter is a much better indicator of the overall performance.

(histograms are provided in the supplementary material).

6.2. Implementation Details

CNN architecture and training: For a fair comparison,

we use the following hyperparameters across all recog-

nition models: a ResNet-18 [28] architecture pretrained

on ImageNet [14] with input size H ′,W ′ = 224 i.e. for

the counting CNN cθ(x
′), the fine-grained identity CNN

Rφ(x
′

crop), and the recognition CNNs used for both the

body and the face models. This architecture achieves

a good trade-off between performance and number of

parameters. In principle any deep CNN architecture could

be used with our method. The models are trained and

tested on every third frame from the video (to avoid the

large amount of redundancy in consecutive frames). We

use a batch size of 64; standard data augmentation (colour

jittering, horizontal flipping etc.) but only random cropping

on the negative (n = 0) samples. All models are trained

end-to-end in PyTorch [45]. Models and code will be

released.

Face and Body tracks: The face and body tracks

were obtained by training a Single Shot MultiBox Detector

(SSD) [38], on 8k and 16k bounding box annotations

respectively. The annotations were gathered on frames

sampled every 10 seconds from a subset of training footage

as well as from videos from other years. The detectors are

trained in PyTorch with 300 × 300 input resolution and the

same data augmentation techniques as [38]. We use a batch

size of 64 and train the detectors for 95k iterations with a

learning rate of 1E−4 . We used the KLT [40, 57] and SPN

[36] tracker to obtain face and body tracks respectively.

During the recognition stage, predictions are averaged

across a track.

Count, Crop and Recognise: The coarse-grained

counting CNN is applied on the entire dataset and the CAM

of the highest softmax prediction for each image recorded.

The CAMs, just 7 × 7 int arrays, are saved cheaply as

grey-scale images each of size 355 bytes. Alternatively,

this can be performed online during training, albeit at a

greater computational cost since the CAMs are recomputed

every epoch. Before training the recognition stage, we

upsample the CAMs to the size of its corresponding image

and threshold with T = 0.5, perform full-resolution

cropping and then resize back to 224 × 224, the input size

of the fine-grained identity CNN Rφ(xcrop). Fine-grained

recognition is then performed on these cropped regions.

6.3. Results

Detector recall and identification accuracy: The perfor-

mance is given in Table 2. It is clear that recall is a large

limitation for both the face-track and body-track methods.

The face detector recall is low (less than 40%), far lower

than that of the body detector. This reflects the fact that the

chimpanzee’s faces are not visible in many frames, rather

than failures of the face detector. Hence even a perfect face

recognition system would miss many chimpanzee instances

at the frame level. While the identification accuracy for

chimpanzees, is slightly higher for faces than for bodies,

the relatively high recall of the body-track method shows a

clear advantage over faces.



#instances #tracks recall (%) test acc. (%)

face 1.02m 5k 39.9 71.3

body 1.64m 12k 64.0 70.5

frame 2.13m - 100.0 -

Table 2. Face and body detector recall and identification test accu-

racy (acc.) results for the Bossou dataset. Recall is calculated as

a percentage of the total number of instances annotated at a frame

level, which we note as a theoretical upper bound of 100%.

Method mAP miAP

Random 28.4 29.2

Face 40.1 47.1

Body 42.4 58.3

Frame Level

Baseline 45.5 48.2

CCR 50.0 59.1

Figure 7. Left: Comparison of system level AP for all methods

on the test set; Right: PR curves for a single individual from the

Chimpanzee dataset.

System level AP: Results are given in Figure 7, left. We

compare our CCR method to a simple baseline without the

Count and Crop stages. CCR outperforms the baseline by

a large-margin (more than 9% AP). The PR curve for the

chimpanzee ‘JIRE’ (Figure 7, right), reiterates the results

that face-track recall is the lowest, albeit with the highest

precision. In contrast, the CCR method has far higher re-

call and with a similar level of precision. The overall AP

values (Figure 7, left) show that the body-track AP is quite

high, since it achieves a large boost in recall over the face-

tracks with a very small drop in identification accuracy (less

than 1%). We note that the CCR method, however, outper-

forms the body-track method as well. This is an impressive

performance considering CCR requires only frame level su-

pervision in training, and eschews the need to train a body

detector.

7. Weakly Supervised Localisation of Individ-

uals

Labelling individuals within a frame offers insight into

social relationships by monitoring the frequency of co-

occurrences and locations of the capturing cameras. How-

ever, unlike face and body detection, the frame level ap-

proach does not explicitly localise individuals within the

frame, preventing analysis of the local proximity between

individuals. To tackle this, we propose an extension to CCR

which localises individuals without any extra supervisory

data. This is shown in the examples of Figure 8.

Following a similar process to the ‘Crop’ stage in CCR,

bounding boxes are generated for each labelled individ-

ual from CAMs extracted from the recognition model

Rφ(x
′

crop). The locations of the individuals are assumed

Figure 8. Weakly supervised localisation of individuals.

to be at the centroid of these bounding boxes, with qual-

itatively impressive results even when the individuals are

grouped together.

8. Interpretability

In this penultimate section, we introduce a high-

granularity visualisation tool to understand and interpret the

predictions made by the face and body recognition mod-

els. These tease out the discriminative features learnt by the

model for this task of fine-grained recognition of individu-

als. Understanding these features can provide new insights

to human researchers.

A Class Activation Map (CAM) [67], introduced in Sec-

tion 3, can be used to localise discrimnative features but

it does so at low resolution and thus cannot identify high-

frequency features, such as edges and dots. An alterna-

tive visualisaton method is Excitation Backprop (EBP) [66].

EBP achieves high-granularity visualisation via a top-down

attention model, working its way down from the last layer

of the CNN to the high resolution input layer. Activations

are followed from layer to layer with a probabilistic Winner-

Take-All process.

In Figure 9, we show the EBP visualisations from the

face recognition model of example images of individuals

in the Bossou dataset. When the ears are visible, the face

model shows high activation on the ear region – similarly

for the brow and mouth regions. Upon closer inspection of

the original face images, the ears of each individual are in-



deed highly unique and distinguishable. The expert anthro-

pologist, who manually labelled the dataset, noted that he

doesn’t pay particular attention to the ears when identifying

the individuals. Perhaps our discovery of ear uniqueness in

chimpanzees in this dataset, and possibly all chimpanzees,

could improve expert’s recognition of chimpanzee individ-

uals.

The EBP visualisation for the body recognition model

in Figure 9 reiterates the importance of the face and ears

in distinguishing the individuals. Further, note Jejes hair-

less patch on his left leg in the top of Figure 9g and cor-

responding EBP activation, indicating that the body recog-

nition model also uses distinguishing marks on the body.

Similarly, Foafs white spot above his upper lip (Figure 9e) is

another region of high activation. The presence of the white

spot was unbeknownst to the anthropologist who noted he

would now use this information to identify Foaf in the fu-

ture. These two examples show that a CNNs learned dis-

criminative features for a specific individual can be visu-

alised and interpreted by humans. Of course, these findings

are not statistically relevant and quantitative analysis would

be needed in order to determine the effectiveness of the use

of recognition CNNs to train human experts.

9. Conclusion

We have proposed and implemented a simple pipeline

for fine-grained recognition of individuals using only

frame-level supervision. This has shown that a counting

objective allows us to learn very good region proposals, and

zooming into these discriminative regions gives substantial

gains in recognition performance. Many datasets ‘in the

wild’ have the property that resolution of individuals

can vary greatly with scene depth, and with cameras

panning and zooming in and out. Our frame-level method

approaches the precision of face-track and body-track

recognition methods, whilst now allowing a much higher

recall. We hope that our newly created dataset will

spur further work in high-recall frame-level methods for

fine-grained individual recognition in video, and that our

preliminary work on interpretability of CNNs for classi-

fying individuals of species gives insight on identifying

discriminative features.
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(a) Fana - Face

(b) Pama - Face

(c) Jeje - Face

(d) Foaf - Face

(e) Foaf - Body

(f) Fana - Body

(g) Jeje - Body

Figure 9. Excitation Backprop [66] visualisations (right) from the

face and body recognition model for example images of of indi-

viduals in the Chimpanzee Bossou dataset.
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