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Abstract

Re-identifying different animal individuals is of signifi-

cant importance to animal behavior and ecology research

and protecting endangered species. This paper focuses on

Amur tiger re-identification (re-ID) using computer vision

(CV) technology. State-of-the-art CV-based Amur tiger re-

ID methods extract local features from different body parts

of tigers based on stand-alone pose estimation methods.

Consequently, they are limited by the pose estimation ac-

curacy and suffer from self-occluded body parts. Instead

of estimating elaborated body poses, this paper simplifies

tiger poses as right-headed or left-headed and utilizes this

information as an auxiliary pose classification task to su-

pervise the feature learning. To further enhance the feature

discriminativeness, this paper learns multiple complemen-

tary features by steering different feature extraction network

branches towards different regions of the tiger body via

erasing activated regions from input tiger images. By fus-

ing the pose-guided complementary features, this paper ef-

fectively improves the Amur tiger re-ID accuracy as demon-

strated in the evaluation experiments on two test datasets.

The code and data of this paper are publicly available at

https://github.com/liuning-scu-cn/AmurTigerReID.

1. Introduction

Distinguishing different animal individuals is an essen-

tial prerequisite for animal behavior and ecology research

and for protecting endangered species. Without the knowl-

edge of which individual an animal is in its population, it

is impossible to understand the animal and its population’s

habitual behaviors or status, and thus difficult to effectively

protect them. For a long time, people have to spend lots of

efforts to determine the identity of individual animals and to

acquire precise up-to-date information of the animal popu-

Figure 1. Example tiger images. Right and left sides of one tiger

could have quite different stripe patterns (e.g., left view and right

view of Tiger A), and are defined as different tiger entities [15].

Two different tigers may have similar appearance on different

sides of their bodies (e.g., left view of Tiger A and right view of

Tiger B). The appearance of the same side of one tiger could look

different in different images due to varying pose and illumination

(e.g., the two images of the right view of Tiger A).

lation by visual inspection, collecting excreta and biology

samples of the animals, or attaching emitters or microchips

to the animals. Therefore, it is highly demanded to develop

automatic methods for identifying individual animals [18].

In this paper, we aim to propose an effective method for au-

tomatically recognizing individual Amur tigers in the wild.

In recent years, thanks to the widespread surveillance

cameras installed in the habitats of wildlife, some re-

searchers have made attempts to recognize individual ani-

mals by using computer vision technology for a number of

species, such as African penguins [1], northeast tigers [23],

lemurs [3], great white sharks [12], primates [4], ringed



seals [2], giant pandas [14] and red pandas [7]. They ex-

tract discriminative features from certain body parts of the

animals, and differentiate different individuals based on the

extracted features. Similar techniques have also been ap-

plied to cattle [21], diary cows [16], and pigs [5] in agricul-

ture applications. Despite the impressive accuracy achieved

in these studies, they mostly assume that the animals are

imaged under well-controlled conditions. Such assumption

is however more than often unrealistic for recognizing ani-

mals in the wild because of the large variations in the body

pose of the animals and the illumination on the images.

As for the task of recognizing individual tigers, Peng

[23] and Hiby et al. [10] demonstrated the effectiveness

of the stripe patterns on the body of tigers for differentiat-

ing individual tigers. However, they did not consider dis-

tracting factors in practical tiger images, like varying poses

and illuminations, occlusions and cluttered background (see

Fig. 1). Li et al. [15] for the first time studied the full

pipeline of automatically recognizing individual tigers in

the wild. They approached the in-the-wild individual tiger

recognition problem as a re-identification (re-ID) problem,

and constructed the largest public dataset (called ATRW) of

annotated in-the-wild Amur tiger images with specific eval-

uation protocol for various tasks. Motivated by the re-ID

methods for pedestrians and vehicles, they provided several

baseline re-ID methods for Amur tigers by using different

losses or different features. Particularly, they proposed a

pose part based model (PPbM) to deal with the large pose

variation of tiger body caused by non-rigid motion. PPbM

divides tiger body into different parts according to a stan-

dalone pose estimation method, and combines the features

extracted from these parts to determine the identity of indi-

vidual tigers. Although PPbM achieves state-of-the-art ac-

curacy, it could be easily affected by the pose estimation

errors and self-occluded body parts.

In this paper, we simplify tiger poses into right-headed

or left-headed (see Fig. 1, Left view of Tiger A and Right

view of Tiger A), and integrate the tiger pose classification

task into the re-ID feature learning procedure as an auxil-

iary task. Besides, inspired by recent advances in object

localization and person re-ID [24, 22] which learn diverse

features by forcing the feature extraction network to pay at-

tention to various image regions, we propose a multi-branch

feature extraction network in which one branch learns a

feature representation from the images that have been par-

tially erased according to the activation maps of previ-

ous branches. This way, different branches are enabled to

learn complementary features. Our experiments on two test

datasets show that improved Amur tiger re-ID accuracy can

be obtained based on the combination of the learned com-

plementary features. To summarize, this paper makes the

following contributions.

• A novel end-to-end method is proposed to learn di-

verse features for re-identifying in-the-wild Amur

tigers based on multi-task learning and complementary

feature learning. By using an auxiliary task of simpli-

fied pose classification to guide the feature learning,

the proposed method is not dependent on third-party

pose estimation modules and can more effectively cope

with large pose variations.

• A set of in-the-wild images of 27 tiger entities are col-

lected as a supplementary to ATRW that can be used

as a validation set.

• Evaluation results show that the proposed method puts

forward the state-of-the-art Amur tiger re-ID accuracy

by large margins.

2. Problem Statement

Following the formulation in [15], we treat the left-view

and right-view of the same tiger as two different classes (or

entities), though they belong to the same individual tiger.

As can be seen from Fig. 1, this is reasonable, because

one tiger could have substantially different stripe patterns

on the two sides of its body. The Amur tiger re-ID problem

can be thus stated as follows. Given a probe image of an

Amur tiger (either left-headed or right-headed, but unknown

in advance), the goal of re-ID is to retrieve from a gallery

of Amur tiger images the images that belong to the same

view of the same tiger, according to which the identity of

the tiger in the probe image can be determined. Note that

the pose of the tiger images in the gallery is unknown too.

Because the pose of the tiger images is unknown in ad-

vance, it is possible to match the left-view of one tiger to

the right-view of another tiger (or vice versa), especially

considering that one view of one tiger could have very sim-

ilar appearance to the other view of another tiger (see Fig.

1, Left view of Tiger A and Right view of Tiger B). To

avoid such mistake, it is necessary to take into considera-

tion the pose of tiger images when learning discriminative

re-ID features. In this paper, instead of using elaborated

pose keypoints as in [15], we simplify the tiger body pose

into two categories according to the heading direction of

the tigers, i.e., left-headed (or left view) and right-headed

(or right view). This reduces the cost of annotating training

data and enables our proposed method to more flexibly deal

with large pose variations and self-occlusions.

3. Proposed Method

3.1. Overview

Fig. 2 shows the flowchart of the proposed pose-guided

complementary features learning (PGCFL) method for

Amur tiger re-identification. PGCFL mainly consists of

four modules, base module, image-erasure module, com-

plementary module, and fusion module. The base module



Figure 2. Overview of the proposed pose-guided complementary features learning (PGCFL) method for Amur tiger re-identification.

takes the original tiger image as input and learns base re-

ID features (f11). Based on the feature maps of the back-

bone network of the base module, the image-erasure mod-

ule constructs the activation map that reveals which parts

of the tiger image the base module focuses on, and then

erases these activated parts from the tiger image to gener-

ate a masked tiger image, which is used as the input to the

complementary module during training. The complemen-

tary module thus learns new discriminative features (f21)

from the remaining parts of the tiger image. These features

are finally unified into a single feature representation by the

fusion module. Note that multiple image-erasure and com-

plementary modules can be stacked when implementing the

PGCFL method, and the image-erasure module is used only

during training (in other words, both base and complemen-

tary modules take the original tiger images as input when

using the trained PGCFL model to extract features from

tiger images for re-ID). In the rest of this section, we intro-

duce in detail the modules as well as the training of PGCFL

and the application of PGCFL for Amur tiger identification.

3.2. Base Module

The base module employs the SE-ResNet50 [6, 11] as

the backbone with the residual block adapted according to

[8]. More specifically, the convolution layers from Layer0

to Layer4 of SE-ResNet50 are used in PGCFL. The fea-

ture maps of Layer4 are fed into a Global Average Pool-

ing (GAP) layer [17] to generate the base feature vector

f11 ∈ R
2048×1, which is then transformed to another fea-

ture vector f12 ∈ R
512×1 via a fully connected (FC) layer

followed by a batch normalization (BN) layer [13] and a

dropout layer [20]. Based on f12, the identity (yc) and pose

(zp) of the input tiger image (I) are respectively predicted

via softmax layers.

3.3. Image-Erasure and Complementary Modules

Given an input tiger image I , the backbone network of

the base module generates feature maps through Layer0 to

Layer4. Let F ∈ R
K×H×W denote the feature maps on

Layer4, where H ×W is the spatial size, K is the number

of channels (or feature maps). We accumulate these feature
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Figure 3. Illustration of image erasure. From left to right: input tiger image, activation map of Layer4 in the base module, binary mask

(threshold= 0.6), input erased tiger image for the complementary module during training.

maps via pixel-wise summation crossing channels,

M =

K−1∑

k=0

F k, (1)

where F k is the kth feature map. As shown in Fig. 3, the

accumulated feature map M reveals which parts of the input

image the feature extraction layer focuses on. Therefore,

M is also called activation map. In this paper, the image-

erasure module up-samples the activation map of Layer4 to

the same spatial size as the input tiger image, and forms a

mask by binarizing it with a threshold α to locate the image

regions that have been utilized by the base module. The

image-erasure module then sets these regions on the input

image to black, resulting in a new tiger image I ′ in which

the already-used regions are excluded from the subsequent

feature learning. See Fig. 3.

The complementary module takes the masked tiger im-

age I ′ as input, and is enforced to discover additional dis-

criminative features from the remaining regions in the orig-

inal tiger image. It employs the same network structure as

the base module, and learns another feature f21 ∈ R
2048×1.

Fig. 4 visualizes the activation maps of Layer4 in the base

and complementary modules for some input tiger images.

Obviously, the base and complementary modules do focus

on different regions of tiger images and thus extract com-

plementary features for re-identifying the tigers.

3.4. Fusion Module

The objective of fusion module is to combine the base

and complementary features to form a unified diverse fea-

ture representation. This is done by first concatenating the

base feature f11 and the complementary features f21 to get

a single feature vector f31, and then transforming it to the

unified feature f32 ∈ R
512×1 via a FC layer followed by a

BN layer and a dropout layer. Based on this unified feature,

another prediction of the identity and pose of the input tiger

image is obtained via softmax layers.

3.5. Training

The proposed PGCFL model is trained in three phases.

In Phase I, the backbone network (i.e., SE-ResNet50) of

all branches in PGCFL is pre-trained on ILSVRC [19]. In

Phase II, the entire PGCFL model is trained in an end-to-

end manner under the supervision of two tasks, identifica-

tion (LID) and pose classification (LLR). Both tasks are

evaluated with cross-entropy loss. In Phase III, we fine-

tune the PGCFL model with TriHard loss [9]. Specifically,

TriHard loss is applied over the unified features f32 (note

that the features are normalized such that they have unit L2

norm).

3.6. Application to Tiger Re-ID

Once the PGCFL model is trained, we can apply it to

tiger images to extract the unified diverse feature (i.e., f32)

for each image. Given a tiger image, we first feed it into

the trained PGCFL model and obtain a feature vector f1

32
.

Then, we horizontally flip the tiger image, and get another

feature vector f2

32
by feeding the flipped image into the

trained PGCFL model. We finally concatenate the two fea-

ture vectors to get the final unified diverse feature of the

tiger image. It is worth mentioning that when using the

trained PGCFL model to extract feature from an image,

both the base and the complementary modules take the orig-

inal image as input. This is different from the training phase

during which the complementary module uses the partially-

erased image rather than the original image as input. By

using original images as input for both base and comple-

mentary modules during feature extraction can not only re-

duce the computational complexity, but also avoid potential

negative impact of the erasure operation.

After the features are extracted for all the tiger images in

the gallery and for the probe tiger image, we compute the

cosine similarity between the features of probe image and

each gallery image, and generate as the re-ID result a rank

list of all the tiger entities in the gallery according to their

similarities with the probe image.

4. Experiments

4.1. Experiment Setup

Datasets. To evaluate the effectiveness of the proposed

method, we use the training data in ATRW [15] to train the
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Figure 4. Visualization of the activation maps in the base and complementary modules for some input tiger images. It can be clearly

observed that the two modules learn complementary features in different regions on the tiger images.

PGCFL model, and the test data in ATRW as well as a set

of tiger images collected by ourselves to assess the perfor-

mance of the trained PGCFL model. The ATRW training set

contains 1, 887 images of 107 Amur tiger entities from 75

different tigers. After removing the low quality tiger images

due to blurring or heavy occlusion, we use the remaining

1, 824 images to train the proposed PGCFL model.

The ATRW test set provides 1, 762 images of 75 entities

from another 58 individual tigers. These test images are

divided into single-camera and cross-camera cases accord-

ing to whether the query and gallery images are captured

by the same camera or by different cameras. The single-

camera case has 701 images of 47 tiger entities, and the

cross-camera case has 1, 061 images of 28 tiger entities. For

more detail please refer to [15].

Besides, we collected an additional test set of Amur tiger

images. These tiger images were cropped from in-the-wild

videos of Amur tigers that are publicly available in the Inter-

net. When cropping the images, we tried to remove the high

correlation between different tiger images by using as large

time interval as possible to sample video frames. Following

the protocol of ATRW, we finally acquired 276 images of 27

tiger entities as another test set, which we call SCU-Tiger.

Training and Testing Settings. To train the PGCFL

model, we resize all the images to 324 × 504, and aug-

ment the training data by randomly cropping images of

288 × 448 (which is the input spatial size required by the

PGCFL model) from the original images, randomly eras-

ing parts of the images, and randomly horizontally flipping

the images. Note that for a horizontally flipped image, its

pose label should be reversed, but its identity label remains

unchanged.

We implement PGCFL in Pytorch, and train it on a PC

with two NVIDIA GTX-1080Ti GPUs. In the Phase II

training, for the first three epochs, we fix the backbone net-

work and warm-up the rest layers with learning rate from

0.0001 to 0.01. We use SGD with momentum of 0.9, basic

learning rate lr = 0.01, weight decay λ = 0.0001, label

smoothing of 0.1 and batch size of 10. The learning rate

of backbone is set to 0.1 ∗ lr, and the training stops after

30 epochs with the learning rate decreased by a factor of

10 at epoch 20. In the Phase III training, when fine-tuning

the PGCFL model with TriHard loss, we do not carry out

warm-up training, and use the same parameter setting as in

Phase II except setting the basic learning rate as 0.001 and

the margin of TriHard loss as 0.4.

When using the trained PGCFL model to extract features

from tiger images during testing, we resize the tiger images

to 324 × 504, from the center of which we crop images of

288× 448 as input for PGCFL.

Evaluation Protocol. For evaluation on the ATRW test

data, we follow the official protocol in which each image in

the test set is taken as probe image, while all the remained

images are used as gallery. The re-ID result for each probe

image is a rank-list of the gallery images. For evaluation on

the SCU-Tiger test data, we randomly choose 30% of each

tiger entity as gallery and use the rest images as probe. To

further increase the re-ID difficulty, we enlarge the gallery

with all the training tiger images from ATRW. We report the

top-1 and top-5 identification rates in the Cumulative Match

Characteristic (CMC) curves as well as the mean average

precision (mAP) results.

4.2. Comparison with State of the Art

In Table 1, we compare our method with the baseline

(CE, Triplet Loss, and Aligned-reID) methods and the state-

of-the-art PPbM methods in [15] in terms of mAP, top-1 and

top-5 identification rates on the ATRW test data. As can



be seen, our method achieves the best results in all cases.

Specifically, our method substantially improves the state-

of-the-art mAP and top-1 identification rate by 15.7% and

7.2% for the single-camera case, and by 12.6% and 13.7%

for the cross-camera case.

Table 1. Comparison with state-of-the-art re-id methods on the

ATRW test data.

Method
Single-camera (%) Cross-camera (%)

mAP top-1 top-5 mAP top-1 top-5

CE 59.1 78.6 92.7 38.1 69.7 87.8

Triplet Loss 71.3 86.6 96.0 47.2 77.6 90.6

Aligned-reID 64.8 81.2 92.4 44.2 73.8 90.5

PPbM-a 74.1 88.2 96.4 51.7 76.8 91.0

PPbM-b 72.8 89.4 95.6 47.8 77.1 90.7

PGCFL (ours) 89.8 96.6 97.7 64.3 91.3 95.8

We believe that the improvement achieved by our

method owes to the following factors. (i) Our method learns

complementary features from adaptively-determined differ-

ent regions in tiger images, whereas the counterpart meth-

ods in [15] manually select local parts on tiger body based

on the pose keypoints located by a standalone method. (ii)

Our method utilizes pose classification as an auxiliary task

to supervise the feature learning procedure, whereas the

counterpart methods use the pose information only as in-

put for feature extraction. (iii) A simplified pose definition

(i.e., right-headed or left-headed) is employed in this paper,

which makes our method easier to train and more robust to

large pose variation and self-occlusion.

4.3. Ablation Study

Contribution of Pose Classification and Complemen-

tary Learning. We evaluate the contribution of the aux-

iliary pose classification task and the complementary fea-

ture learning module to the superior performance of the

proposed PGCFL model by using the SCU-Tiger dataset.

We adapt the PGCFL model by enabling or disabling pose

classification task and complementary module. When the

complementary module is disabled, the image-erasure and

fusion modules are disabled also; in other words, only the

base module is active. When the pose classification task

is disabled, only the identification loss is used to train the

model. The results are summarized in Table 2. Obvi-

ously, the best mAP and top-1 identification rate are ob-

tained when both pose classification task and complemen-

tary learning module are enabled. These results demon-

strate the effectiveness of our proposed method in learn-

ing discriminative features for in-the-wild Amur tiger re-

identification.

Importance of Diverse Features. In this experiment,

we evaluate the necessity of learning diverse features for

Amur tiger re-ID. According to Section 3, the proposed

PGCFL model can generate three types of features, base

Table 2. Performance of the proposed method on the SCU-Tiger

dataset when pose classification task and complementary learning

module are enabled or disabled.

Pose
Complementary

mAP (%) top-1 (%) top-5 (%)classification
learning

task

× × 60.5 73.1 82.1

� × 74.4 82.1 92.1

× � 63.3 74.3 87.4

� � 76.4 84.8 91.6

Table 3. Effectiveness of base features, complementary features

and unified features for re-ID on the SCU-Tiger dataset by using

the PGCFL model trained on the ATRW dataset.

Features mAP (%) top-1 (%) top-5 (%)

Base (f11) 67.3 73.8 87.9

Complementary (f21) 69.0 77.4 86.3

Unified (f32) 76.4 84.8 91.6

Table 4. Impact of binarizing activation maps with different

threshold values on the re-ID performance on the SCU-Tiger

dataset with the PGCFL model trained on the ATRW dataset.

Threshold mAP (%) top-1 (%) top-5 (%)

0.2 75.4 81.6 91.6

0.3 76.0 83.7 91.0

0.4 73.4 81.6 90.5

0.5 75.9 83.2 91.0

0.6 76.4 84.8 91.6

0.7 76.6 84.2 91.6

0.8 74.3 80.1 91.6

features (f11), complementary features (f21) and unified

features (f32), among which the unified features are fusion

of the other two types of features and thus capture more di-

verse information of the tigers. Given the PGCFL model

trained on ATRW, we use it to extract these features for

the tiger images in the SCU-Tiger dataset, and then com-

pute the re-ID accuracy based on them. The results are

shown in Table 3. Not surprisingly, the unified diverse fea-

tures achieve the best results for all the performance met-

rics, which proves the importance of learning diverse fea-

tures in Amur tiger re-ID.

Impact of Thresholding Activation Maps. As intro-

duced in Section 3.3, the image-erasure module locates the

image regions to be masked out for the complementary

module based on the binarized activation map of the base

module. In this experiment, we use different threshold val-

ues to binarize the activation map and evaluate their impact

on the re-ID performance. Table 4 gives the obtained re-

sults, according to which we observe that a threshold value

in between 0.6 and 0.7 is better. In the other experiments in

this paper, we set the threshold value as 0.6.



Table 5. Computational complexity of the proposed model in

terms of involved number of parameters, required number of float-

ing point operations per second (FLOPs), and the time taken to

process one batch of samples during training and testing phases,

respectively, when using CPU or GPU.

Phase Parameters (M ) FLOPs (G) CPU (s) GPU (s)

Train 60.54 321.96 23.71 0.50

Test 60.54 321.90 9.27 0.15

4.4. Computational Complexity

To evaluate the computational complexity of the pro-

posed method, we ran our model in batch mode on a PC

with one CPU of Intel core i7-8700K and two GPUs of

NVIDIA GeForce GTX 1080 Ti. We counted the seconds

taken by our model for processing one batch of samples

(batch size is set to 10, and image size is 288× 488) during

training phase and testing phase, respectively, when using

CPU or GPU. The results are given in Table 5. As can be

seen, our model can re-identify an Amur tiger within tens

of milliseconds. The number of parameters involved in our

model and the number of floating point operations per sec-

ond (FLOPs) required by our model are also reported in Ta-

ble 5.

5. Conclusion

In this paper, we propose a novel method to discover dis-

criminative diverse features for Amur tiger re-identification.

In order to deal with large pose variation of tiger body, un-

like existing state-of-the-art methods, we employ a sim-

plified definition of tiger pose (i.e., right-headed or left-

headed) and use an auxiliary task of pose classification to

supervise the re-ID feature learning. Moreover, we intro-

duce for the first time complementary feature learning into

tiger re-ID. By adaptively erasing partial regions on tiger

images, our method can force different feature extraction

branches to focus on different parts of tiger images and thus

learn complementary features for re-identifying tigers. Ex-

tensive evaluation experiments on the ATRW dataset and

our self-constructed SCU-Tiger datasets show that our pro-

posed method can substantially improve state-of-the-art in-

the-wild tiger re-ID accuracy. In the future, we are going to

further extend our proposed method to other species, e.g.,

red pandas.
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