
DeepBees – Building and Scaling Convolutional Neuronal Nets

For Fast and Large-scale Visual Monitoring of Bee Hives

Julian Marstaller1

julian.marstaller@online.de

Frederic Tausch1,2

fredetic.tausch@apic.ai

Simon Stock1

simon.stock@kit.edu

1Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
2apic.ai, Karlsruhe, Germany

Abstract

The decline of bee populations is a global trend and

a severe threat to the ecosystem as well as to pollinator-

dependent industries. Factor analysis and preventive mea-

sures are based on snapshot information. Information

about the health state of a hive is infrequently acquired and

remains labor-intensive and costly.

In this paper, we describe a system that enables near-time,

scalable, and cost-efficient monitoring of beehives using

computer vision and deep learning. The systems pipeline

consists of four major components. First, hardware at the

hive gate is capturing the in and out streams of bees. Sec-

ondly, an on-edge inference for bee localization and track-

ing of single entities. Thirdly, a cloud infrastructure for de-

vice and data management with near-time sampling from

devices. Fourthly, a cloud-hosted deep convolutional neu-

ronal net inferring entity-based health insights. This Multi-

Net architecture, which we named DeepBees, is the main

focus of this paper. We describe the development of the ar-

chitecture and the acquisition of training data. The over-

all system is currently deployed by apic.ai and monitors 49

beehives in Karlsruhe in the south of Germany.

1. Introduction

In recent years, entomologists have been observing a

global decline in the population of pollinating insects [20,

10]. This is of considerable concern since the global agri-

cultural industry is heavily dependent on pollination [11].

One rather prominent representative of the species affected

is the western honey bee (Apis mellifera). Unfortunately,

the phenomenon cannot be traced to a single root cause. Re-

cent research on honey bee population decline and colony

collapse disorder (CCD) is suggesting a multitude of influ-

encing factors [4, 12, 17, 18, 33]. Namely harmful pesti-

cides, parasites, diseases, malnutrition and intruders. Fur-

thermore urbanization [6] and intensive monoculture culti-

Figure 1: Hardware system and the proposed bee monitor-

ing process. Bees are filmed at the hive entrance. Localiza-

tion and tracking is performed on the edge. Sample streams

of individual bees are transferred to the cloud and health

data is inferred by DeepBees.

vation [14] are man-made causes. It is difficult to determine

which of those factors ultimately lead to the death of a spe-

cific colony [36]. Deeper understanding of the ecosystem

and human impact on nature is required as well as inte-

grating this information in short and long-term decision-

making. This leads to the need of a constant, low-cost

surveillance of honey bee hives with the ability to auto-

matically extract health-related insights. We developed a

scalable, energy-efficient and non-invasive solution, using

off-grid hardware with visual sensors as depicted in Fig-

ure 1. It continuously records the entrance of the beehive

and evaluates the video material. Our system is detecting

and tracking the insects on a locally running, Raspberry Pi-

based, platform. Cropped image sequences of each insect

are transferred to a cloud based computing system which

is not limited by computational and energy resources. The

system architecture hence utilizes recent advances in edge

computing [15, 28] to minimize workload and communi-

cation bandwidth costs. It also enables a flexible sampling

of sequences based on current activity at the hive entrance,

energy supply, and a general trade-off between costs and ad-

ditional value due to enlarged samples. Also, information is

processed at a large scale, from a variety of different loca-

tions within an ecosystem and made available near-time.

Our approach to offline bee tracking is based on the ap-

proach by Bozek et al. [2] who tracked honey bees on ex-

tracted honeycombs. This method is intrusive to the hives.

Our proposed system is avoiding this issue by installing the

system at the entrance of the beehive. Therefore, all bees

entering and exiting can be monitored using a low-cost cam-

era at 640× 480 pixel resolution.

The proposed devices are currently deployed by apic.ai and

collecting data from 49 beehives in and around the city of

Karlsruhe in the south of Germany.

Having built this infrastructure, we now propose an archi-

tecture of a deep convolutional MultiNet as the primary an-

alytical model to derive health-related insights.

2. Related Work

Pollinator decline is a global problem and intensively an-

alyzed in the last decade. In Germany, Hallmann et al. [10]

measured the biomass of flying insects through installed

traps for 27 years. They registered a 76.7% drop of insect

biomass, including wild bees from 1989 until 2016. Several

approaches use less invasive sensor-based systems. Wario

et al. used vision sensors to automatically detect the dance

of bees and decode it [35]. The same authors noted that rec-

ognizing individuals visually alone is nearly impossible and

equipped several bees with a marker around the head [37].

The system of Schneider et al. [27] uses RFID tags for mon-

itoring. The drawback of such approaches is the modifica-

tions to the bees or their hive, which are required for those

setups to work. Bozek et al. [2] tracked bees with CNNs on

extracted honeycombs in large numbers and in close prox-

imity to each other. They were able to detect bees through

more than 720 video frames with over 375 thousand labeled

bees. This technique enables easy and scalable monitoring

on a individual level as well as bee counting at the entrance

of the hive.

Few studies try to locate and detect pollen on images. In

June 2017 Rodriguez et al. published a small dataset dedi-

cated to classifying bees in pollen-bearing and non-pollen-

bearing bees [23]. Later on, they used the dataset to test

and evaluate several Convolutional Neural Network archi-

tectures [24]. In their approach images of bees were scaled

to resolution of 180× 300 pixels with RGB color channels.

Rodriguez et al. [22] presented a particular interesting ap-

proach for detecting the pose of a bee using CNNs. They

use GoogLeNet [31] to decode confidence maps for the

left and right antenna as well as the tongue. Pereira et al.

[19] developed a general framework for tracking the mus-

culoskeletal system of insects. In particular tracking head,

body, legs and wing positions of drosophila melanogaster.

We aim to solve multiple monitoring tasks in one network

architecture. Therefore, we want to further investigate the

feasibility of multi-task learning. Ge et al. [7] and Gebru et

al. [8] showed that it is possible to transfer domain knowl-

edge for solving a great variety of problems even if data for

a certain challenge is sparse. The general idea is to use one

common encoder with application specific decoders or clas-

sifiers. These approaches are currently adapted for several

multi-task challenges like autonomous driving [32].

3. Concept

Solving the difficulty of multiple entities in an image and

temporal consistency on the edge-device, simplifies the in-

put of the cloud-based inference. The cloud-based CNN

thus infers on single-entity images of bees. Since health

indicators are versatile, we argue that a multi-task architec-

ture is well suited to formulate learnable tasks and create

annotated data for training.

3.1. DeepBees Architecture

The architecture shares a common encoder across all

tasks as depicted in Figure 2. We name our proposal Deep-

Bees, since it creates an extensive, feature-rich latent space

representation (LSR) of bees based on a variety of tasks.

Every trainable task adds additional features to the latent

Encoder

Pose ModuleClassification Module

Decoder

Genus Module Pollen Module

Normal Pollen Drone Dead

Bee Wasp Bumble-
bee

Hornet

Representation

Confidence
Maps

1280

224

224

3

32

112

112

16

1280
7
7

32

224

224

32

224

224

3

224

224

3

224

224

pollenbg x1 x2y1 y2

b
o
x
e
s

14x14

7x7

box offsetsconfidences

1
1

grids

 245
x 5

 1225

cells
def.box.
boxes

 245
x 5

 1225

cells
def.box.
boxes

 245
x 5

 1225

cells
def.box.
boxes

conf. x1 y1
keypoints

Class confidences

Genus confidences

Latent Space
Representation

Input

1280

1
1

GAP

GAP

layer_14, layer_17

LSR

LSR

Figure 2: DeepBees, a MultiNet consisting of a shared fea-

ture extractor and modules for genus identification, pollen

detection, unsupervised learning, pose estimation and clas-

sification.

space which can also improve the decision process of other

tasks. We choose MobileNet-v2 with a width multiplier of

1.0 proposed by Sandler et al. [26] as the preferred en-

coder.1 Next, we describe the output modules and tasks.

They are restricted to tasks with available training data or

feasible effort to collect and annotate such training data.

The Genus Module distinguishes between bees, wasps,

bumblebees and hornets. This way, information about at-

tacks, raiding or theft by intruders is collected. The rele-

vant features for this classification are also useful to learn

the general concept and shape of different types of insects.

We use global average pooling (GAP) to reduce the latent

space to a feature vector and the usual transformation with a

dense layer and softmax to score probabilities for these four

classes.

The Pollen Module detects pollen objects on bees. We use

the Single-Shot-Multibox-Detector (SSD) approach pro-

posed by Liu et al. [16] for this task. We score five default

boxes for each cell on layer 14 and layer 17 of MobileNet-

v2. By creating collections of detected pollen, we can create

measures for the diversity of nutrition in the hive and ag-

gregation over quantity measures. With this module, food

shortages can be identified. We integrate a Tensorflow im-

plementation by George Sung for this module [30]. To the

best of our knowledge there exists no published work that

attempts to detect pollen on bees using object detection.

The Pose Module module predicts the location of 32 rele-

vant keypoints on the insect. Explicitly inferring the pose

is beneficial in order to identify behaviour anomalies such

as trembling after poisoning or infections. It can also be

used to monitor grooming and hygienic behavior of the

colony, since it is a defense mechanism against mites [1].

We closely follow the concept proposed by Pereira et al. for

this task [19] by regressing confidence maps.

The Classification module scores probabilities for a total of

four mutually exclusive classes. Worker bees with pollen,

worker bees without pollen, drones and dead bees. While

the pollen detection scores the box for single pollen, the

classification infers on the entity-level. This is beneficial,

since often only one pollen is visually present or is strongly

blurred, if the leg is moved. The aggregation of the in-

formation sampled from the classification module can de-

rive ratios about the population split, food availability w.r.t.

colony size, as well as mortality ratios.

We also include a Decoder for structural learning. The ar-

chitecture can hence also train the encoder on all unlabeled

images.

We aim to add further tasks such as varroa detection, classi-

fication of specific diseases and activity scoring in the future

as soon as training data is available.

1We evaluated VGG, Inception, ResNets, MobileNets and PNASNets

at various sizes. MobileNet-v2 showed the best trade-off between perfor-

mance and resource requirement. A detailed comparison goes beyond the

scope of this paper.

3.2. Datasets

One benefit of a multi-task architecture is the flexibility

to compile individual datasets for each task. It also allows

for integration of existing datasets. Figure 3 displays sam-

ples from all datasets and classes. In Table 1, |X| summa-

rizes the number of frames compiled in the dataset. |Xtrain|
and |Xtest| describe the training and testing sizes respec-

tively.2 We extended the VIA-Annotator by the Visual Ge-

2When further extended, we will include a validation set as well.

(a) Bees [13]

(b) Bumblebees [13]

(c) Wasps [13]

(d) Hornets [13]

(e) Drones

(f) Dead bees

(g) Bees with pollen

Figure 3: Exemplary images from all datasets.

ometry Group (VGG) [5] with a NodeJS-based back-end to

interface with Google Storage for the annotation process.

To reduce workload, we utilize sequence-wise aggregations

of entities. Selecting images on sequence-level boosted

dataset sizes by a factor of 20 (the average sequence length).

We note that this practical methodology however introduces

further bias in the data. Most importantly, it destroys the

i.i.d. assumption of training data. E.g. successive frames

of the same entity are highly stochastically dependent. This

is why a random split between train and test data must in-

dispensably assign sequence-wise and not frame-wise for

correct performance measures. We propose to call this en-

largement of training data natural augmentations.

Next, we elaborate on dataset-specific choices and insights

for each task. For genus identification, the prototypes pro-

vided insufficient images of wasps, bumblebees and hor-

nets. Manual search for these events was infeasible. Thus,

we train this task solely on images from iNaturalist [13]. It

is important not to mix it with bee images from the proto-

type, since this would lead to overfitting. Hence, the task

is trained in another, closely related domain. Similar ap-

proaches such as multi-task domain adaptation by Gebru et

al. have been proposed [9].

We integrated a small classification dataset by Rodriguez et

al. and add box annotations. Furthermore, entity sequences

with pollen were sampled from different devices and pollen

boxes were drawn for each frame, creating a set of 5536 la-

beled images.

One issue with the classification module is class imbalance,

especially with only a few samples of dead honeybees being

dragged out of the hive. Every video or prototype contains

specific calibration parameters such as background tint and

slightly different focal lengths. We implemented two strate-

gies to reduce the risk of decision boundaries based on non-

task related information. First, for every sequence of an

underrepresented class, we include a sequence for the other

classes from the same video as well. Additionally, we intro-

duce special augmentations to reduce potential bias. This

includes the commonly used mathematical groups of rota-

tion, shifting, shearing and flipping. To avoid tint bias, we

utilize targeted color transformations based on Reinhard et

al. [21]. This augmentation adjusts tint in order to match a

Table 1: Overview of datasets sizes

Task Origin |Xtrain| |Xtest| |X|

Genus classification [13] 8519 632 9151

Pollen detection Ours 5238 298 5536

Pollen detection [23] 629 85 714

Classification Ours 9021 903 9924

Pose Estimation Ours 191 38 229

Structural Learning Ours 69387 15681 85068

target which we sampled from the overall training images.

We used an OpenCV implementation for this augmentation

[25].

The process of a systematic publication of the dataset as

a potential benchmark is ongoing. Until this infrastruc-

ture is built and data quality is reviewed, please refer to

data@apic.ai for early access.

3.3. Training

Training a multi-objective loss function imposes addi-

tional challenges. In particular the combination of pose es-

timation, object detection, two classification tasks and a de-

coder is to the best of our knowledge unprecedented. In this

section we elaborate on procedures and best practices that

we applied in order to stabilize this optimization problem.

First, we formally denote the total loss LMulti as a summa-

tion of balanced task-wise losses as

LMulti =α1LCla + α2LGen

+α3(L
Conf
Pol + LLoc

Pol)

+α4LPose + α5LDec +
d∑

j=0

βj‖Wj‖
2
2

. (1)

αi describes the weight of loss Li. We also use a L2-

regularization in all layers j ∈ {0, . . . d} of the graph for

all weights Wj and add it as
∑d

j=0 βj‖Wj‖
2
2. Classifica-

tion tasks are trained using the standard cross-entropy loss,

pose estimation and the decoder module use squared re-

gression errors and the pollen detection loss consists of the

box-classification and localization loss proposed by Liu et

al. [16]. The prediction vector ŷ depends on the input im-

age x and model parameters θ. The following tensor de-

scribes it for all five modules. p represent class probabil-

ities, x1, y1, x2, y2 box coordinates and pkx, pky the loca-

tion of the maximum value (peak) in the confidence maps

for each keypoint.

ŷ(x, θ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(p¬Pollen, pPollen, pDrone, pDead)
(pBee, pWasp, pBumblebee, pHornet)
[
(pPollen-Box, x1, y1, x2, y2)

(1)

(pPollen-Box, x1, y1, x2, y2)
(2)

]

confmaps(1,...,32),⎡
⎢⎣
(pkx, pky, pkconf)

(1)

...

(pkx, pky, pkconf)
(32)

⎤
⎥⎦

x̂

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2)

We used task-wise performance metrics to evaluate each

task, optimize hyperparameters and calculate a performance

metric for the multi-task net. It weights each task equal as

PMulti =
1

4

(
AUCCla+AUCGen+APPol+(1−ADPose)

)
. (3)

Classi“cation tasks use the Area Under Curve (AUC) of the
receiver operating characteristic as their evaluation metric.
Pollen detection uses the average precision of box estimates
at a 0.5 intersection over union (IOU). The pose estimation
is evaluated by the average distance (AD) between predicted
and actual keypoints. For a total ofK keypoints, this is

ADPose=
1
K

K�

j =1

1
|Xtest|

�

x� Xtest

1
d

� �pk
(j)

Š pk(j) � 2 (4)

We scale the difference between actual and predicted key-
points byd, which represents the diagonal of the image and
thus scales the error to an interval between zero and one.
Additionally, we tracked Multiscale Structural Similarity
(MS-SSIM) for the image reconstructions of the decoder
during training based on Wang et al. [34].
We chosejoint training as the training methodology in-
stead of alternate training, because we explicitly consider
all tasks in every parameter update. Therefore, we feed a
heterogeneous mini-batch to the model. We determine the
proportion of observations from task datasets with random
uniform sampling. Since an observation only contains an-
notations for one task, the loss and gradients of the other
tasks cannot be calculated for that particular sample. In
practice we therefore multiply the task-losses with an in-
dicator (•maskŽ), that is 0 if there exists no annotation for
the task and 1 otherwise.3

We test severalparameter update strategies. First, we up-
date model parameters� using the regular stochasticgra-
dient descentwith gradients calculated from the combined
lossL Multi and learning rate� :

� � � Š � � W L Multi . (5)

We test two approaches that use gradient normalization. In
theglobal norm scenario, we clip and normalize the whole
gradient vector over the total loss:

� � � Š �
1

�� W L Multi � 2
� W L Multi . (6)

This way, we try to keep parameter updates within a “xed
range. In the last approach we form gradients on each task
“rst, perform the normalization on each of these vectors and
then combine them as an average. We denote this approach
task-wiseGrad Norm as proposed by Chen et al. [3]:

� � � Š �
1
T

T�

t =1

1
�� W L t � 2

� W L t. (7)

This way, the signal to the parameter update from each task
should be represented equally. We can also combine the
gradient normalization approaches with balance updates.

3Masked gradients also need to be excluded from moment estimates of
optimizers

4. Experiments

4.1. Hyperparameters

To determine the right training setup, we “rst perform a
random search with a total of 40 models trained for 3000
steps each and a batch size of 32. We see the results in
Figure 4. The left plot depicts the gradient normalization

(a) Gradient Normalization. (b) Optimizer.

Figure 4: Random search on training hyperparameters.

strategies. In fact, using the global or the task-wise gradient
norm (gradnorm), establishes better conditions for learning
compared to the normal gradient descent setting. The Task-
wise gradient norm achieves the highest performance and
median and is used for the “nal training. In the second plot,
we compare two different optimizers Adam and Momen-
tum. Since Adam strongly outperforms Momentum, keep-
ing individual learning rates is very useful in a joint training
setting.
To mitigate signal differences from the hypersurface of each
individual loss, we also trained each task individually for
3000 gradient updates and normalized the task loss for the
multi-task training by the “nal training loss from the single-
task setting. We keep this normalization “xed because the
dynamic balancing of task losses did not work well with
Adam.

4.2. DeepBees Training

We trained the “nal MultiNet in two stages. In the “rst
stage the batch size is “xed to32 and the learning rate to
0.0001. Therefore, the effective batch size for each task
at that stage is32

5 � 6.4 on average. The performance of
pollen detection remained low with these batch sizes due to
high noise in the box coordinate regression. In the second
phase we decrease the learning rate to1eŠ 5 and increase
batch size to128, yielding an effective batch size of25.6 on
average for each task. Increasing batch size at a later stage is
a “nding by Smith et al. [29] and improved pollen detection
a lot. Decreasing the learning rates at the end of optimiza-
tion is also a common technique seen in literature. Figure 5
depicts various metrics and their changes on the training and
test set. In the “rst chart, we see the MS-SSIM of original
and reconstructed images. For both phases the similarity

