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Abstract

Visual data analytics is increasingly becoming an im-

portant part of wildlife monitoring and conservation strate-

gies. In this work, we discuss our solution to the image-

based Amur tiger re-identification (Re-ID) challenge hosted

by the CVWC Workshop at ICCV 2019. Various factors like

poor quality images, lighting and pose variations, and lim-

ited images per identity make tiger Re-ID a difficult task for

deep learning models. Consequently, we propose to utilize

both deep learning and traditional SIFT descriptor-based

matching for tiger re-identification. The proposed deep net-

work is based on a DenseNet model, fine-tuned by mini-

mizing a classification cross-entropy loss regularized by a

pairwise KL-divergence loss that promotes better seman-

tically discriminative features. We also utilize several data

transformations to improve the model’s robustness and gen-

eralization across views and image quality variations. We

establish the efficacy of our approach on the ‘Plain Re-ID’

challenge task by reporting results on the pre-cropped tiger

Re-ID dataset. To further test our Re-ID model’s robust-

ness to detection quality, we also report results on the ‘Wild

Re-ID’ task, which incorporates learning a tiger detection

model. We show that our model is able to perform well on

both the plain and wild Re-ID tasks. Code will be available

at https://github.com/FGVC/DelPro.

1. Introduction

Wildlife conservation, the preservation of animals and

of their natural habitat, is vitally important for a sustain-

able ecosystem. Conservation efforts are often driven by

∗Equal contribution

policy-level changes that may impose special restrictions on

human activities like infrastructure building, logging, defor-

estation for agriculture and poaching and trafficking of en-

dangered species and their body parts. Active and frequent

monitoring of endangered species populations is crucial in

facilitating timely policy-level decisions, where delays may

lead to species extinction. Based on population monitoring

and census, specially targeted conservation efforts like cap-

tive breeding programs can be designed for effective recov-

ery. However, traditional field-based methods of population

monitoring like collaring are invasive, expensive, tedious

and time-consuming, thus limiting their scalability and ulti-

mately their success.

With increasing use of visual sensors like camera traps

for passive monitoring of wildlife, data collection is sub-

stantially cheaper and more scalable. Advances in au-

tomated methods for population estimation could signifi-

cantly reduce turn-around times, thus helping achieve the

necessary conservation objectives for biodiversity preserva-

tion and sustaining the ecosystems in general. Historically,

there have been limited opportunities for applying Artificial

Intelligence (AI) for conservation. However, with increas-

ing amounts of data becoming available, there is a recent but

growing interest within the AI community. This growth is

exhibited by numerous workshops on AI for Conservation

[1, 2] and increasing efforts to make public repositories of

data from Camera Traps [3] and UAVs [5] for aiding con-

servation work. A key opportunity for the computer vision

(CV) community lies in the development of effective and

automated methods for visual animal biometrics, specially

designed for the monitoring of endangered species.

Visual animal biometrics is an extremely challenging

problem at the frontier of object recognition. Methods

to solve this problem seek to identify not just the type
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Figure 1. Overview of proposed approach. During training, a DenseNet121 network is finetuned using cross-entropy and pairwise KL-

divergence losses on images that have been augmented through a variety of transforms. During evaluation, the class-score vectors are used

as features for similarity ranking. The initial ranking is then modified by using flank information and SIFT descriptor matching.

of animal present in a photograph, nor even the species,

but endeavor to determine the precise identity of the ani-

mal – which individual within a large population was pho-

tographed. Moreover, the objective may be to recognize

which of many known individuals matches the observed an-

imal, or, to determine that it is instead a new and previously

unobserved individual.

Nearly all areas of computer vision have embraced deep

learning [19] as the solution to their problems. However,

animal biometrics and other data-scarce domains/problems

highlight one of the greatest challenges with deep learning:

its seemingly relentless demand for data. In domains where

data is limited, network models are typically trained on a

large dataset such as ImageNet [10], COCO [21] or iNat-

uralist [27]. The late-stage network layers are then fine-

tuned [11] using the limited task-specific data that is avail-

able. While this approach is commonplace, even ubiqui-

tous, it can certainly be viewed as a compromise.

As with other instance recognition problems, animal bio-

metrics is at the extreme end of the recognition spectrum

and has many challenges inherent to it. It can be very dif-

ficult to recognize what individual is present in an image

when illumination or image quality/resolution is poor, or

when the training data for that individual is either scarce or

in a different pose or view. Overcoming these difficulties

is critical for effective solutions to the animal biometrics

problem.

The Computer Vision for Wildlife Conservation

(CVWC) Workshop held at ICCV 2019 created a Dataset

Challenge on recognizing individual Amur tigers [20].

Due to the short timeframe it was not possible to broadly

address all of the difficulties listed above, but this paper

describes several technical contributions which, when

combined together, perform very effectively on this Re-ID

(repeat identification) task. These contributions include:

• Using data transformations specifically relevant for the

Re-ID task

• Using pairwise constraints as a regularizer to over-

come limited images per identity

• Combining SIFT-based matching together with the

deep learning-based approach

• With this combination of data augmentation, regu-

larization and fusion, we show robust Re-ID perfor-

mance, even over the Wild Re-ID task, without using

any pose information

The remainder of the paper is organized as follows. We

present a summary of related prior work in Sec. 2. In Sec.

3 we present the technical details of our approach followed

by experimental evaluation and ablative studies in Sec. 4.

Finally, we conclude with a discussion in Sec. 5.



2. Previous Work

Work in Visual animal biometrics has focused primar-

ily on animals that have unique coat patterns like tigers or

leopards, or on non-human primates like chimpanzees, go-

rillas and monkeys. Earlier techniques relied mostly on

human input to get the Region of Interest (ROI) or key-

points, while recent techniques utilize an end-to-end, au-

tomatic pipeline using a CNN for feature extraction or clas-

sification.

One of the earliest works in patterned species in-

dividual recognition developed the interactive software

method Extract-Compare [16] for recognizing individuals

by matching coat patterns for species like tigers, giraffes,

frogs, etc. While the tool works well in terms of accuracy,

it requires fifteen to twenty points to be manually marked

in each image so that a 3D surface model can be fit to the

animal’s body, which in turn is used to unwarp the flank

region to improve stripe matching. Sloop [12] is another

interactive retrieval engine which, in addition to utilizing

user input for key-points, preprocesses images for noise re-

moval, extracts various key-point descriptors like SIFT [23]

for matching and also has a relevance feedback loop for

crowdsourcing. Hotspotter [9] and Wild-ID [4] also use

SIFT features to match query images with a database of

existing animals. Hotspotter also uses efficient data struc-

tures like kd-trees, different scoring criterion and spatial

re-ranking to rank the matched descriptors obtained from

database images. For aquatic animals like Saimaa ringed-

seals, recent works [28, 8] use unsupervised segmentation

to segment the body into superpixels, followed by fore-

ground/background classification before using Hotspotter

and Wild-ID for matching.

Recent methods like [7] and [24] use a detector network

or unsupervised segmentation to crop the ROI and extract

CNN features from a pre-trained network to train an SVM

classifier for classification of individuals. A similar method

is employed by [13, 6] for classifying chimpanzee and go-

rilla faces. Due to limited training data, they explore the

use of different layers of a pre-trained AlexNet [18] as in-

put to an SVM, instead of fine-tuning the network. Re-

cently, [25] achieved state-of-the-art performance on chim-

panzee and macaque facial recognition by fine-tuning a pre-

trained ResNet [15] and DenseNet [17] with a pairwise

KL-divergence loss function in addition to the usual cross-

entropy loss.

3. Proposed Solution

One of the key challenges in visual biometric problems

like tiger re-identification is that cues related to pose or en-

vironmental factors like lighting and background clutter are

often stronger than the subtle marks that distinguish one in-

dividual from another (e.g., stripe arrangements at a partic-

ular location on the tiger’s coat). Differences in image reso-

lution and quality complicate things further, causing distri-

butional differences in the best case, or sometimes render-

ing the subject un-identifiable in the worst. Solving the re-

identification problem requires adequately addressing these

challenges.

Deep convolutional neural networks are remarkably

good at learning to extract relevant features for a wide vari-

ety of visual recognition tasks. However, they are prone to

overfitting, especially when the amount of training data is

small, and they struggle to generalize to data that does not

closely match the training data distribution. This poses an-

other challenge for tiger re-identification, where the amount

of training data is limited and evaluation data may consist

of novel individuals and environments.

One way to address the overfitting and poor generaliza-

tion problems in CNNs is through the proper application of

data augmentation. The goal of using data augmentation

is to artificially increase the variation in the training data

with the hope of reducing the distributional shift between

the training and test sets. In this work we employ several

types of data augmentation to account for a range of pos-

sible geometric, environmental, and image-quality transfor-

mations.

An important role that CNN-based classifiers play is

learning useful feature representations, even when simply

trained for classification. In a typical classification set-

ting, the network produces a probability distribution over

all classes, and a cross-entropy loss is used to encourage

the network to predict the correct class with high probabil-

ity. The cross-entropy loss only encourages predicting the

correct class, and ignores any other information present in

the distribution over all other classes. This can contribute

to overfitting and a lack of consistency between predictions

of different instances from the same class. We adopt a sim-

ilar strategy to [25] and include a pairwise KL-divergence

penalty to encourage the network to produce similar distri-

butions for instances of the same class, and dissimilar distri-

butions for instances of different classes. During training,

we apply the KL-divergence loss to every pair of images

within the mini-batch. While a thorough investigation of

the effect of the pairwise KL-divergence will be dealt with

in future work, we hypothesize that adding this term to the

loss has two direct benefits: first, that it acts as a regular-

izer for the cross-entropy term and reduces overfitting, and

second, by using pairs of images, we are able to use the

restricted training set more efficiently.

While global CNN features can be very powerful, they

may fail to capture important local information. On the

other hand, local image descriptors such as SIFT [23] can be

robustly detected and matched across a variety of views and

image conditions. We use SIFT descriptor matching at in-

ference time to inform our global descriptor distance-based



gallery ranking.

An overview of our method is shown in Figure 1. The

training images are transformed according to our augmen-

tation scheme before being passed to the convolutional net-

work. The network is trained to classify images accord-

ing to their identity, using a combination of regular cross-

entropy loss and a KL-divergence loss between pairs of

class-probability vectors. At inference time we take the

test set and treat each image as query, with all others as

the gallery. The goal is to rank all the images in the gallery

so that images of the same identity as the query get ranked

highest. We use the class scores produced by the network

as an image descriptor, and initially rank the gallery by co-

sine similarity to the query. We then reorder the ranking so

that all images of the same flank as the query (facing left

or right) get placed first. Finally, we re-rank the top twenty

gallery images by matching SIFT descriptors to the query.

In the remainder of this section, we discuss the details of

our data augmentation method, the KL-divergence loss, the

flank detection, and the SIFT matching for re-ranking.

3.1. Data Transformations

We utilize several types of image transforms to improve

the model’s robustness to geometric, environmental, and

image-quality variations. Common image augmentation

techniques are random cropping, random rotations, ran-

dom horizontal flipping, and random color-jitter (adjusting

brightness, contrast, etc.).

For handling geometric transformations, we do random

rotations within ±10◦. We found that incorporating random

crops gave poorer performance, so we did not use them.

We also did not use horizontal flips, since the tiger identi-

ties are based on the visible flank (left or right side). We use

small perturbations in brightness and contrast (±5%) to bet-

ter handle lighting variations in the data. We also randomly

convert some images to grayscale in order reduce model de-

pendency on color information.

To help with variability in image quality, we adopt a ran-

dom JPEG compression transform. This has been previ-

ously explored in the context of adversarial defences [14],

but we hypothesize that it can have a regularizing effect

against differences in internal image statistics caused by

general image quality differences. Figure 2 shows the vi-

sual effect of different levels of JPEG compression. We

randomly compress the images at each training iteration

with compression quality values between 50 and 80. To

our knowledge, JPEG compression has not been widely ex-

plored as a data augmentation technique. We validate its

use in our experimental results.

3.2. Loss function

To encourage the model to learn semantically consistent

and clustered feature representations, we augment the stan-

dard cross-entropy loss with a pairwise KL-divergence loss

defined on the class-probability vectors pi and pj of images

xi and xj :

LKL(pi, pj) = yLs(pi, pj) + (1− y)Ld(pi, pj) (1)

Here, y = 1 if images xi and xj have the same class, other-

wise y = 0. The similar pair loss is

Ls(pi, pj) = KL(pi||pj) +KL(pj ||pi) (2)

and the dissimilar pair loss is

Ld(pi, pj)=(m−KL(pi||pj))++(m−KL(pj ||pi))+
(3)

where m is user-specified margin (we use m = 2) and (.)+
indicates the max function max(0, .). The KL-divergence

is given by

KL(p||q) =
K∑

k=1

pk log
pk

qk
(4)

We compute the average loss across all pairs of images in a

training batch of size N , excluding self-pairs, yielding

LKL =
1

N(N − 1)

∑

i,j∈(1,N),i �=j

LKL(pi, pj) (5)

3.3. Flank Separation

During evaluation, we rank all gallery images against

each query image, with the goal of ranking highest the other

images of the same class. Since each tiger “identity” corre-

sponds to a single tiger flank (either the left or right side of

a tiger), it makes sense to rank images with the same flank

orientation higher. To determine the flank orientation for

each image, we use keypoints. A set of ground-truth key-

points is provided for the plain re-ID task, but we found

that many of the images had missing or incorrect keypoint

labels. Instead of using the ground-truth, we use keypoints

generated from a keypoint-prediction network. The key-

point prediction network is an HR-net [26] trained using

the noisy ground-truth keypoint annotations. To determine

the flank orientation, we find the median x-value for the

fore keypoints (nose, ears, shoulders, front paws) and the

hind keypoints(tail, hips, knees, back paws) and calculate

the vector from hind to fore. If the vector points right we

assign the image a right flank, otherwise a left flank. During

evaluation, we re-rank the gallery so that all images with a

flank orientation matching that of the query get put before

those which don’t match.

3.4. Re-ranking with SIFT Matching

Owing to the fact that SIFT [23] features are invariant

to image scaling, rotation and partially invariant to view-

point and illumination changes, they have been extensively



Figure 2. Effect of JPEG compression. At the lower quality (higher compression), block-like color artifacts introduced by the compression

is visible. While this change may seem insignificant to the human eye, it changes the internal statistics of the image. Compressing the

images at different random quality values during training helps the network become robust to those statistical differences. Given the

fine-grained nature of this visual recognition problem, we saw significant improvements in our empirical analysis (See Sec. 4 for details).

Method Description

SIFT (Baseline) No training is involved. The SIFT matching is done directly on the images without

any pre-processing or data transformations.

CE CE denotes finetuning the network with standard cross entropy loss, while using

standard data augmentation that includes random affine, color jitter and random

gray scale. During testing, the images are ranked based on cosine similarity.

CE+JPEG+LR+SIFT Same as CE, with additional JPEG compression during training. During test, im-

ages are first ranked with cosine similarity, followed by Left/Right pose reordering

and finally ranking top 20 entries with SIFT matching.

KLDiv+CE This denotes finetuning the network with cross entropy loss augmented with the

pairwise KL-divergence loss, using the standard data augmentation listed under

CE. The testing is same as CE.

KLDiv+CE+JPEG+LR+SIFT

(Proposed Method)

This denotes finetuning the network with cross entropy loss augmented with the

pairwise KL-divergence loss, using the standard data augmentation along with

JPEG. The testing is same as CE+JPEG+LR+SIFT.
Table 1. Brief description of various methods used in Tables 2 and 3 for the Re-ID task.

used for individual recognition of zebras, jaguars and sev-

eral other patterned animals in [4, 9, 7]. To avoid unnec-

essary keypoint detection and matching due to background

clutter, all the previous works compute SIFT features on

specific parts of the animal, like cropped flank of the Jaguar.

In addition, a query image is compared to all the database

images to get the final match, making the process time con-

suming.

In our case, we compute features on the whole image

but only use SIFT matching to re-rank the top 20 images

ordered by the cosine similarity score, thus increasing the

mAP and top-1 accuracy of the system in both single cam

and cross cam scenario. We also observed that using a larger

number of images for re-ranking decreased the performance

because of false matches in the background. For SIFT

matching, we use the standard matching algorithm [23] that

uses nearest neighbor matching, followed by Lowe’s ratio

test to reject false matches and finally computing the num-

ber of inliers by computing the homography.

4. Experimental Results

4.1. Dataset

The plain Re-ID dataset consists of 1887 training images

distributed across 107 identities and 1764 images in the test

set. The number of training images varies from minimum

10 to maximum 98 images per individual with an average

of 18 images per individual. The wild Re-ID dataset con-

sist of 1652 images in the test set which is the same as the

detection track test set.

4.2. Network Details and Hyper-parameters

We used a pretrained DenseNet-121 model. We fine-

tune the network with the objective function given in sec-

tion 3.2, with an initial learning rate of 10−3 using SGD.

The network is trained for 20 epochs with learning rate de-



Approach Single Cam Cross Cam

mmAP mAP Top-1 Top-5 mAP Top-1 Top-5

SIFT (Baseline) 0.532 0.748 0.943 0.969 0.317 0.766 0.897

CE 0.603 0.754 0.920 0.966 0.453 0.806 0.931

CE+JPEG+LR+SIFT 0.657 0.817 0.977 0.983 0.498 0.851 0.937

KLDiv+CE 0.658 0.801 0.948 0.980 0.515 0.840 0.914

KLDiv+CE+JPEG+LR+SIFT 0.691 0.847 0.986 0.986 0.535 0.891 0.940
Table 2. Ablation Study for Plain Re-ID Task on Test-dev.

Approach Single Cam Cross Cam

mmAP mAP Top-1 Top-5 mAP Top-1 Top-5

SIFT (Baseline) 0.538 0.749 0.930 0.970 0.327 0.768 0.909

CE 0.615 0.746 0.894 0.956 0.484 0.816 0.925

CE+JPEG+LR+SIFT 0.669 0.809 0.964 0.980 0.530 0.860 0.940

KLDiv+CE 0.662 0.791 0.923 0.969 0.533 0.833 0.926

KLDiv+CE+JPEG+LR+SIFT 0.696 0.836 0.973 0.981 0.556 0.872 0.948
Table 3. Ablation Study for Plain Re-ID Task for Full Test Data.

Approach Detection Data Split Single Cam Cross Cam

mmAP mAP Top-1 Top-5 mAP Top-1 Top-5

CE+KLDiv+JPEG 0.8 Test-dev 0.64 0.74 0.85 0.92 0.54 0.84 0.90

Full Test 0.65 0.75 0.86 0.92 0.55 0.85 0.92

CE+KLDiv+JPEG 0.5 Test-Dev 0.644 0.749 0.866 0.927 0.538 0.841 0.91

Full Test 0.653 0.756 0.882 0.930 0.55 0.849 0.920

CE+KLDiv+JPEG+SIFT 0.8 Test-dev 0.654 0.773 0.902 0.925 0.535 0.834 0.918

Full Test 0.662 0.777 0.913 0.932 0.547 0.844 0.926

CE+KLDiv+JPEG+SIFT 0.5 Test-dev 0.658 0.780 0.916 0.937 0.536 0.835 0.920

Full Test 0.667 0.787 0.927 0.946 0.548 0.845 0.928
Table 4. Wild Re-ID Task Results. We report performance on the Test-dev and Full Test test sets at two different detection levels (0.8 and

0.5 detection confidence). Note that for wild Re-ID we don’t use any pose information, including left-right flank filtering.

cay by 0.1 at 10 and 15 epochs. We use a batch size of

16 images. When training with KL-divergence, we sample

8 pairs of images, where each pair consists of two images

from the same identity. The randomized JPEG transforma-

tion chooses a random value between 50 and 80 (maximum

value 100). The compared methods are summarized in Ta-

ble 1.

4.3. Ablation Study for Plain Re-ID task

In order to establish the efficacy of the proposed ap-

proach, we performed a set of experiments to gauge the

relevance of different components that contribute to model

performance.

Sift Matching We use the standard SIFT matching to set

up the baseline for tiger identification. Because the pre-

cropped images in the Plain-ReID dataset have a lot of back-

ground clutter, the baseline matching causes a lot of false

matches. When re-ranking only the top twenty images, we

find that the SIFT matching in some cases improves the

ranking of images which lie outside the top-5, giving much

better performance across all metrics as seen in Tables 2, 3

and 4.

JPEG Transformations We also present the effect of

randomized JPEG transformation in network finetuning.

We observe that training with the proposed transformation

improves performance, specifically in the cross camera set-

ting where the images are more challenging, both in terms

of image quality and pose variation. We also use JPEG com-

pression during testing but with a fixed quality value of 65,

so that noisy artifacts do not affect the test performance.

Left-Right Prioritizing We use the keypoints to identify

the left and right flanks. We observed that accounting for

this information allows the system to avoid false matches

between left and right flanks.

Relevance of KL-divergence Loss We present the stan-

dard cross entropy results with and without JPEG compres-

sion and re-ranking, to establish the improvement brought

by adding the pairwise KL-divergence loss in both cases.



The cross-entropy loss without KL-divergence, JPEG com-

pression, or re-ranking performs much worse as can be seen

in Table 2 and 3 for Test-dev and Full Test respectively.

4.4. Results for Wild Re-ID

We also evaluate our approach on the wild Re-ID task.

We used the same model trained for plain Re-ID on the

plain Re-ID training dataset. We finetuned an RFBNet [22]

model on the detection dataset, and used detected bounding

boxes with confidence scores greater than 0.5 and 0.8. We

present the Re-ID results on both the Test-dev and Full Test

datasets. Here, the benefit of using SIFT features during

inference can be observed across all metrics in Table 4.

5. Conclusion

As visual sensing becomes a preferred modality for mon-

itoring wildlife, designing robust algorithms for applica-

tions like Re-ID of endangered species such as tigers be-

comes important for scalable data analysis. In this work,

we proposed a solution for tiger Re-ID by fine-tuning a pre-

trained deep learning model while also leveraging standard

SIFT-based image matching. In order to capture the wide

range of data variations inherent in this task, such as pose,

illumination, scale and image quality, we proposed to use

a set of data transformations for augmentation during net-

work fine-tuning. Additionally, to help mitigate the small

number of samples per class, we enhanced the standard

cross-entropy loss with a pairwise KL-divergence loss to

explicitly enforce consistent semantically-constrained deep

representations. We showed competitive results on the

Plain Re-ID task using our approach, and further demon-

strated its effectiveness when extended to the Wild Re-ID

task, without using any pose information, thus highlighting

the robustness of our Re-ID technique. We also showed

through a series of ablation experiments that each com-

ponent of our proposed approach helps contribute to a ro-

bust and general solution to the tiger re-identification prob-

lem.
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