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Abstract

While videos contain long-term temporal information

with diverse contents, existing approaches to video under-

standing usually focus on a short trimmed video clip with a

specific content such as a particular action or object. For

comprehensive understanding of untrimmed videos, we ad-

dress an integrated video task of video summarization with

scene and action recognition. We propose a novel convolu-

tional neural network architecture for handling untrimmed

videos with multiple contents. The proposed architecture is

an encoder-decoder structure where the encoder captures

long-term temporal dynamics from an entire video and the

decoder predicts detailed temporal information of multiple

contents of the video. Two-stream processing is adopted for

obtaining feature representations, one for focusing on the

spatial information and the other for the temporal informa-

tion. We evaluate the proposed method on the benchmark

of the Challenge on Comprehensive Video Understanding

in the Wild (CoVieW 2019), and the experimental results

demonstrate that our method achieves outstanding perfor-

mance.

1. Introduction

Video understanding is a rapidly growing research area

of computer vision because of its wide availability for nu-

merous practical applications. According to the advent of

the deep learning era, research on the video domain have

been progressed with successful deep learning methods.

However, existing video understanding approaches usually

consider a short video clip with a highly specific task of the

video domain such as categorizing human actions or track-

ing particular objects. These kinds of approaches are not ap-

∗indicates equal contribution.

propriate for understanding videos deeply because the con-

tents of videos have strong relationships to each other and

the relationships change with time. To understand video

data in depth, the inherent contents need to be jointly ana-

lyzed in the dynamic scenes.

To overcome the issue that we mentioned above, this pa-

per deals with the comprehensive task named video sum-

marization with temporal scene and action recognition in

untrimmed videos, which is the task of CoVieW 2019. The

goal of the task is constructing a short video clip (30 sec-

onds) from an untrimmed video (5 to 10 minutes) using

given importance scores of video frames. At the same time,

human actions and scenes are jointly classified to a set of

predefined classes according to the content of the summa-

rized video clip. For the task, we propose a new Convo-

lutional Neural Network (CNN) architecture, which is de-

signed to handle untrimmed videos and multiple tasks effec-

tively. The proposed architecture consists of the encoder-

decoder structure with residual modules and receives a

whole untrimmed video as input. The architecture encodes

long-term temporal dynamics through temporal convolution

layers and outputs for every segment the multiple contents

through temporal up-scaling at the decoder phase. Addi-

tionally, to enable the network to learn more effectively, we

design the task-specific losses for each content and utilize

the two distinctive models to obtain abundant feature repre-

sentations from the input video frames.

2. Proposed Approach

This section presents the main methodology that we pro-

posed, called Temporal U-Network (TUNet). We first in-

troduce the feature extraction pipeline to construct the input

for TUNet, then describe the structure of TUNet and how it

works.



(a) Feature Representation (b) Temporal U-Network

Figure 1: The illustration of (a) shows the process of generating feature representations. Input video is divided into T

segments, which of each consists of multiple video frames, and they become the spatial and the temporal representations

obtained through the pre-trained 2D & 3D CNNs. The illustration of (b) shows the proposed architecture, TUNet. TUNet

is an encoder-decoder style structure, and the architecture captures temporal dynamics through residual convolutions over

temporal axis at the encoder phase, and conducts segment-wise predictions with upscaled residual convolutions over temporal

axis at the decoder phase.

2.1. Feature Representation

To provide abundant feature representations to our

model, we adopt the two-stream setting that consists of a

spatial stream network and a temporal stream network. We

exploit a ResNet-50 [4] trained on ImageNet [3] for the spa-

tial stream network and TSM ResNet-50 [7] trained on Ki-

netics [2] for the temporal stream network. Figure 1a illus-

trates the procedure of generating feature representations.

Input video is divided into N video segments with a same

duration, and each video segment is converted to a spatial

stream representation and a temporal stream representation

after passing through the two networks and average pool-

ing. Finally, the representations of both streams are fused to

have a single representation by an embedding layer which

consists of two 1 by 1 convolution layers and a concatena-

tion layer.

2.2. Temporal U-Network

Now, we describe the TUNet architecture, and the over-

all architecture is illustrated in Figure 1b. TUNet is an

encoder-decoder style architecture which is inspired from

[8] and receives an entire video as network input. We expect

that the architecture is effective for long-term untrimmed

videos because the architecture can capture long-term tem-

poral dynamics at the encoder phase while it can predict

detailed temporal information at the decoder phase. In ad-

dition, the proposed architecture consists of fully convolu-

tional networks, so the architecture is not restricted to the

video length and it could be linked to diverse tasks easily.

We employ residual convolution modules from [4] and

modify it to 1-d temporal version and use temporal max

pooling operations to encode the interaction over video

segments. The residual modules and max pooling opera-

tions are stacked in 4-level to cover large temporal recep-

tive fields. After the encoding phase, the latent features are

passed through the up-scaled residual convolution modules,

which of each is composed of up-scaling bi-linear interpola-

tion and the residual convolution module. We also concate-

nate the encoded feature at the earlier layer to up-scaled fea-

ture over the channel axis as common practice in encoder-

decoder architecture to incorporate low-level semantics. To

make the predictions on each video segment, the features

are up-scaled at the decoder phase until those have the same

length as the given input. Finally, the last feature represen-

tation is connected to each task with a 1 by 1 convolution

layer to learn the task-specific representation.

Since we focus on the comprehensive task, video sum-

marization with scene and action recognition, we set the

loss which is composed of multiple task-specific losses as

L = Lscene + Laction + Lim−score. (1)

Lscene and Laction denote losses for scene and action

recognition, respectively. We use segment-wise cross-

entropy (CE) loss for classifying scenes and actions, which

are simple extensions of naive CE losses along the tempo-

ral axis. Lim−score denote a loss for video summarization.

We adopt mean squared error (MSE) between the estimated

importance scores and ground truth importance scores. Ad-

ditionally, we found the CE loss also could be an another

option for Lim−score by quantizing the importance score.

How these losses affect models will be discussed in experi-

mental section.



3. Experiment

3.1. Dataset

We conduct experiments on CoVieW 2019 challenge

dataset. The dataset consists of 1,500 untrimmed videos

sampled from multiple video datasets [1, 6, 9], and the aver-

age duration of the videos is approximately 5 minutes. The

distribution between train set and test set is 1,200 and 300,

respectively. Since the label of test set is unknown, we ran-

domly split the 1,200 training videos to 1,000 train set and

200 validation set, and we evaluate our models on the vali-

dation set. Each video is divided into a set of 5-second long

segments and each segment is annotated with a scene, an

action and an importance score. The number of scene and

action categories are 78 and 99, and the importance score is

distributed from 0 to 2 at the interval of 0.1. For the evalua-

tion, we follow the proposed evaluation metric of CoVieW

2019.

3.2. Implementation Details

Training: The procedure of video pre-processing is

similar to that of [1]. Technically, we convert each video

to a set of frames at 1 frame-per-second. To generate

the feature representations, frames are center cropped and

fed into the two-stream networks, and the last convolu-

tional features are extracted from both streams. Extracted

feature representations are L2 normalized and embedded

to 1,024-dimensional vectors with a fully connected (FC)

layer. Lastly, feature representations of both streams are

concatenated. For training TUNet, we use the minibatch

SGD with Nestrov momentum for updating parameters, and

batch size is set to 32. The initial learning rate is set to 0.01,

and reduces its 1/10 after 10 epochs. The maximum epoch

number is set to 15.

Baseline model: We design a simple baseline to verify

the effectiveness of our architecture. The baseline is com-

posed of one FC layer and multiple classifiers. A dropout

layer is utilized after the FC layer and the loss function is

same as the proposed architecture. Similar to TUNet, we

use the minibatch SGD with Nestrov momentum for train-

ing, and batch size is set to 32. Since the baseline is much

lighter than the proposed architecture, the initial learning

rate is set to 0.01, and reduces its 1/10 after 10 epochs. The

maximum epoch number is set to 15.

3.3. Experimental Results

We first investigate the effectiveness of combining the

spatial and temporal representation. Each representation

has its own characteristic in performing different tasks; Spa-

tial representation was significant for scene recognition and

temporal representation seems to provide useful cues in pre-

dicting the action categories (Table 1). Moreover, the per-

formance is increased when both features are utilized to-

gether validating that those features are complementary to

each other. Hence, we used the both features for all the ex-

periments afterwards, unless explicitly stated otherwise.

Table 1: The result of the settings combined with two-

stream representations. The scores are computed according

to the metric stated in CoVieW 2019.

Model Scene Action Summarization

Spatial 56.92 / 83.08 50.50 / 79.92 77.71

Temporal 56.00 / 80.42 56.50 / 85.08 78.02

Two-stream 56.83 / 84.58 56.67 / 85.58 77.09

Now, we compare the baseline architecture with our

proposed model, TUNet. TUNet has several advantages

over the baseline model: 1) capturing long-term tempo-

ral dynamics, 2) rich semantics from the hierarchical en-

coding and decoding and 3) information flows from low-

level features through skip-connections. With all these fore-

mentioned components, the improvement on Top-1 accu-

racy at scene and action recognition are 4.09% and 4.16%

point, while the performance on summarization task has not

improved much. (Table 2). This is because MSE loss itself

does not significantly improve the performance of regress-

ing the importance score, as it will be seen later.

Table 2: The results of the baseline model and TUNet.

Model Scene Action Summarization

Baseline 56.83 / 84.58 56.67 / 85.58 77.09

TUNet 60.92 / 83.08 60.83 / 86.67 77.34

Table 3: Comparative study of different loss function for

importance score regression. CI denotes the class interval.

Model Scene Action Summarization

CI: 0.1 61.08 / 83.58 53.42 / 83.92 79.82

CI: 0.3 59.42 / 83.67 51.83 / 85.33 79.41

CI: 0.7 59.75 / 83.42 52.25 / 85.50 79.65

MSE 60.92 / 83.08 60.83 / 86.67 77.34

At last, we analyze the use of CE loss for the importance

score regression. Since the importance score ranges from 0

to 2, this can be partitioned into sub-classes with a certain

interval. We split the classes with the interval of 0.1, 0.3

and 0.7 resulting in 21, 7 and 3 classes respectively. Then,

we compare those with the model trained using MSE loss

(Table 3). For scene and action recognition, the model with

MSE loss attains similar or better accuracy, but it demon-

strates worse scores on the summarization task. The prior

work for the video summarization [5] also shows the models



with MSE loss perform worse than the models with CE loss,

indicating that CE loss is stronger than MSE loss for making

the model to focus on the corresponding task. Among the

variants of CE loss, we have not found the any significant

difference with regard to the number of classes.

Unfortunately, CE loss for the video summarization task

degrades the performance of other tasks, especially action

recognition. However, if we measure the performance on all

segments in the validation set, the average accuracy for CE

loss model having 21 classes are 58% and 57% for scene

and action recognition, respectively. These scores are al-

most identical to those of the MSE model; This implies

that the action recognition task are less relevant to summa-

rization task. To fully utilize the benefits of each task, loss

function should be applied adaptively according to the task

relationships, but we leave it to the future work.

4. Conclusion

We have presented a novel video understanding approach

that addresses the comprehensive task, video summariza-

tion with scene and action recognition in untrimmed videos.

We propose a new CNN architecture named TUNet to han-

dle untrimmed videos and multiple tasks together. TUNet

captures long-term temporal dynamics of untrimmed videos

through temporal convolutions and obtains detailed tempo-

ral information of multiple contents by segment-wise pre-

dictions. The proposed architecture reports great perfor-

mance on the challenge dataset and demonstrates the ef-

fectiveness of the TUNet architecture. We expect that our

approach could be extended to other comprehensive video

tasks in the future.
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