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Abstract

We propose a novel deep architecture for video summa-

rization in untrimmed videos that simultaneously recognizes

action and scene classes for every video segments. Our net-

works accomplish this through a multi-task fusion approach

based on two types of attention modules to explore semantic

correlations between action and scene in the videos. The

proposed networks consist of the feature embedding net-

works and attention inference networks to stochastically

leverage the inferred action and scene feature representa-

tions. Additionally, we design a new center loss function

that learns the feature representations by enforcing to mini-

mize the intra-class variations and to maximize the inter-

class variations. Our model achieves a score of 0.8409
for summarization and accuracy of 0.7294 for action and

scene recognition on test set of CoVieW’19 dataset, which

is ranked 3rd.

1. Introduction

Multimedia on the Internet is growing rapidly with a

development of online video service platforms such as

YouTube and Flickr. With this remarkable growth, current

efforts on understanding untrimmed videos have been fo-

cused on tackling video summarization task that produces a

shorter video to convey the important and relevant content

of the input video.

Video summarization has achieved great success in re-

cent years by leveraging deep convolutional neural net-

works (CNNs) with their high invariance to semantic vari-

ations, being considered as a structured prediction prob-

lem [40, 19, 41, 4, 37, 38, 12, 20, 27]. Most existing sum-

marization methods, however, ignore semantic context pri-

ors (e.g. human activities and surrounding scenes), even

though they have been shown to be effective in compre-

hensive understanding of videos [30]. Our key observa-

tion is that creating a brief yet informative synopsis of a
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Figure 1. Illustration of our video summarization with temporal

action and scene recognition. Given an input video, we aim to

predict importance scores for summarizing the video while simul-

taneously recognizing its highly relevant action and scene classes

for every clips of the video.

long video is highly correlated with certain events that con-

sist of human action, and usually constrained by particular

scenes. For example, generating the summarization of a

video with ’Go Skateboarding Day’ is highly related to ac-

tion (e.g., skate boarding) and scene class (e.g., street) as

illustrated in Fig. 1. Therefore, to extract representative

frames from videos, it is desirable to understand both the

action and scene of the video at the same time.

With this motivation, we present a novel network archi-

tecture that incorporates action and scene information of an

untrimmed video to determine the continuous importance

scores along the temporal axis. We studies the discovery of

highlights in a video considering the context based on ac-

tion and scene recognition. The key idea of the proposed

networks is to weave the advantages of action recognition,

scene recognition and video summarization in a joint and

boosting manner. Our networks accomplish this through an

unified network by learning three objectives from a shared

representation to improve learning efficiency and prediction

accuracy in an end-to-end manner.

Moreover, we investigate an aspect of self-attention

module in feature embedding networks inspired by

CBAM [36]. Self-attention module focuses on important

features and suppresses unnecessary ones at the channel and



Figure 2. An overall architecture of proposed model for video summarization with action and scene recognition. We first extract visual

and audio feature representations for a set of uniformly sampled video clips using pre-trained networks. At each stream, visual and audio

features are fused to predict each action and scene classes for every clips. And action and scene features are fused to predict importance

scores by exploiting the semantic correlations between action and scene.

temporal axis. In attention inference networks, we obtain

actionness and sceneness probabilities that indicate ’what

(i.e. action)’ and ’where (i.e. scene)’ to attend for three dif-

ferent video understanding tasks, respectively. We carefully

present a modified center loss [35] for simultaneously min-

imizing intra-class variations and maximizing inter-class

variations. Experimental results on the CoView’19 dataset

demonstrate the effectiveness of the proposed networks in

video summarization with temporal action and scene recog-

nition.

2. Related Work

2.1. Action Recognition

Action recognition is the one of the most important

task in video understanding. Many studies have been

extensively studied by leveraging the recent advances of

CNNs [29, 33, 3, 10, 39, 34] to encode spatio-temporal in-

formation. One natural way is to leverage CNNs with vari-

ous formulation such as devising two-stream architecture on

visual frames and stacked optical flows [29], extension of

convolution kernels in CNNs from 2D to 3D [33], or com-

bining two-stream processing and 3D convolutions [3]. An-

other alternative solution is to utilize recurrent neural net-

works (RNNs) over the activation of the last fully-connected

layer in a 2D CNNs [10, 39]. Although those methods have

shown improved performance in action recognition, it can

be observed that most aforementioned methods mainly fo-

cuses on improving action classification performance only.

2.2. Scene Recognition

Scene recognition in images gives helpful context in-

formation for object recognition. Since objects are main

components of scenes in images, accurate recognition of

scenes requires knowledge about both scene and objects [9].

Likewise, scene recognition in untrimmed videos helps rec-

ognizing action. Recently, some methods [8] for action

recognition have investigated this aspect to comprehen-

sively video understanding. Marszaek et al. [21] show the

relevance of the cooccurrence between action and scene for

retrieving actions in movie. Heilbron et al. [8] described

semantic context, i.e. action-object and action-scene rela-

tionships, in the detecting action process. Coview’18 chal-

lenge [30] has been held for studying strong mutual rela-

tionships among action and scene. However, relevance of

action and scene have not been studied yet for video sum-

marization.

2.3. Video Summarization

Several approaches have studied video summariza-

tion with various formulations including video synop-

sis Pritch08, time-lapses [11, 16, 26], montages [13, 32]

and storyboards [5, 7, 6, 18, 20, 37, 40]. Our problem

statement is related to storyboards which select represen-

tative video frames to summarize key events present in the

entire video. Recent works on video summarization have

learned how to select informative video subsets closed to

human-created summaries [18, 5, 7, 6, 28]. In the last

few years, several deep learning based approaches are pre-

sented [40, 19, 41, 4, 37, 38, 12, 20, 27] by learning with

labelled videos. Rochan et al. [27] have proposed fully con-
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Figure 3. Illustration of self-attention module. The inter-channel

relationship and the inter-temporal relationship of features are ex-

tracted in the channel attention module and the temporal attention

module, respectively. We can extract the coarse- and finer-level

attention by using two pooling layers.

volutional sequence model to summarize long, egocentric

videos into short representative videos.

More related to our work is highlight detection that pre-

dicts highlight score to each segment [38]. Yao et al. [38]

retrieved highlights from first-person videos with pairwise

deep ranking model to learn the relationship between high-

light and non-highlight segments. However, there is lack

of attention inference considering action and scene context

to determine the importance of each segment in the same

video.

3. Proposed Method

3.1. Problem Formulation

Given an input video composed of T clips vi for i ∈
{1, . . . , T}, we aim to determine the importance score of

each video clip ysum
i , and simultaneously recognize action

and scene classes, yact
i and yscn

i , in an end-to-end man-

ner. To this end, we formulate feature embedding networks

to extract shared action and scene feature representations,

and attention inference networks to infer the each class and

score with shared representations. Concretely, we first ex-

tract feature representations and then automatically detect

the semantically meaningful clips in temporal detection net-

works. Finally, classification networks are composed of

three classifiers estimate action class yact
i , scene class yscn

i ,

and importance score ysum
i of the clips. The importance

scores are continuous scores ranged from 0 (i.e. not impor-

tant) to 2 (i.e. important). The overall architecture of our

approach is illustrated in Fig. 2.

3.2. Network Architecture

Feature embedding networks. As shown in Fig. 2, fea-

ture embedding networks are formulated in two-stream con-

figuration, i.e., action stream and scene stream. Each stream

has same structure that incorporates both visual and audio

information to leverage complementary modalities from the

raw video.

Formally, let xact ∈ R
D×T , xscn ∈ R

D×T and xaud ∈
R

D×T be the video level visual feature map from pre-

trained action networks [14], visual feature map from pre-

trained scene networks [42] and audio feature represen-

tation from pre-trained networks [2], respectively. Each

stream in the feature embedding networks is designed to

extract action and scene features, denoted as f act and f scn

by passing through a feed-forward and concatenating visual

and audio features such that,

f act = F(xact;Wact
v )||F(xaud;Wact

a ),

f scn = F(xscn;Wscn
v )||F(xaud;Wscn

a ),
(1)

where || represents the concatenation operator, Wact and

Wscn are the network parameters for each action and scene

stream, respectively. The feature embedding networks are

composed of three convolution layers with rectified linear

unit (ReLU), and two self-attention modules [36] between

every convolution layers. We refine the features by sequen-

tially applying self-attention modules that emphasize mean-

ingful features along two principal dimensions respectively:

channel and temporal axes. The goal of self-attention mod-

ule is to increase representation power by focusing on im-

portant features and suppressing unnecessary ones based on

attention mechanism. To this end, we exploit the inter-

channel relationship of features in the channel attention

module, and utilize the inter-temporal relationship of fea-

tures in the temporal attention module. As shown in Fig.

3, each module is consisted of two pooling layers and fully-

connected (FC) layers with sigmoid activation function. We

adopt both average-pooling and max-pooling operations to

features aggregating general attention and finer attention as

in [36].

Given intermediate average-pooled features and max-

pooled features h ∈ R
D×T as input, the self-attention mod-

ule infers a 1D channel attention Ac ∈ R
D×1 and a tempo-

ral attention At ∈ R
1×T . The overall self-attention process

can be formulated as,

h′ = h+ h⊗Ac(h),

h′′ = h′ + h′ ⊗At(h
′),

(2)

where ⊗ represents element-wise multiplication. Motivated

by BAM [23], residual learning scheme is adopted along

with the attention mechanism to facilitate the gradient.

Attention inference networks Although the embedded

features from action and scene stream characterize the

video, a direct fusion (e.g., concatenation) of these inputs

does not present optimal performance for video summa-

rization. Thus, we suggest attention inference networks for



adaptive fusion of action and scene context. While the self-

attention module detects discriminative parts in the inter-

channel and the inter-temporal relationship, attention infer-

ence networks extract actionness and sceneness by exploit-

ing correlations between the visual and the audio features.

More precisely, the temporal detection network is com-

posed of two convolution layers with batch normalization

and ReLU function between two layers. The second fully-

convolution layer determines the weights for each clip in the

form of a probability distribution. The output of the second

convolution layer is element-wisely multiplied to the em-

bedded features similar to a soft attention mechanism [22]

such that,

zact = wact ⊗ f act,

zscn = wscn ⊗ f scn,
(3)

where wact and wscn are the attention weight vectors for

action and scene feature representations.

While the attention weighted features from attention in-

ference networks are fed into action and scene classifiers to

predict action and scene class for each clip, a concatenated

feature of zact and zscn utilizes to estimate importance score

for video summarization. The action and scene classifica-

tion module is consisted of a convolution layer with batch

normalization and a FC layer. The importance score clas-

sifier has same structure with the other two classifiers but

the number of parameters are twice since the dimension of

the input. The output of the importance score classifier is

passed through the sigmoid function to make the value of

the output from 0 to 1. Since groundtruth scores are ranged

from 0 to 2, we scale prediction of importance score by mul-

tiplying the scaling factor 2.

3.3. Loss Functions

To optimize the proposed network, we define the loss

function as the sum of three loss functions:

Ltotal = Lact + αLscn + βLsum, (4)

where Lact is the action loss, Lscn is the scene loss, Lsum is

the summarization loss, and α, β are the hyper parameters

to balance three loss functions.

The action and scene losses are composed of the classi-

fication loss and the center loss [35] as follows:

Lact,scn = Lcls + λLcent, (5)

where Lcls is a standard multi-label cross-entropy loss be-

tween groundtruth labels and predicted classes, Lcent is the

center loss which minimizes intra-class variations and max-

imizes inter-class variations, and λ is the hyper parameter

to balance two loss functions.

For the center loss, we first define a class center feature

ck ∈ R
d for k-th class, where d is the dimension of the

weighted feature f∗. The class center features are randomly

generated according to each class except for the background

class (no person for the action and unknown for the scene).

The background class center features are set to 0 to satisfy

the assumption that the importance score in the background

scene should be close to zero. With the weighted feature and

the class center feature, the center loss can be formulated as,

Lcent =
1

2

T∑

i=1

[||zi−cyi
||2
2
−

1

N − 1

∑

yj �=yi

||zi−cyj
||2
2
], (6)

where T is the total number of clips, zi is the weighted

feature of i-th clip, cyi
is the class center feature for i-th

clip, and N is the total number of classes. We can mini-

mize intra-class variations by minimizing the first term of

the center loss and maximize inter-class variations by min-

imizing the second term of the center loss. Unlike [35]

which focuses on minimizing intra-class variations, our loss

function allows for more discriminative feature by consid-

ering inter-class variations.

In our case, a importance score of each clip reflects its

degree of interest within a video. To this end, we use mean-

squared error (MSE) as the summarization loss to optimize

the importance scores. Note that the whole networks are

learn parameters with action labels, scene labels, and im-

portance score labels for every clips in the end-to-end man-

ner.

4. Experiments

4.1. Implementation Details

For RGB sequences, we use I3D networks [14] trained

on the Kinetics dataset [15] to extract action features and

ResNet50 trained on the Places365 dataset [42] to extract

scene features for video clips. We rescale the smallest di-

mension of a frame to 240 and perform the cropping of

size 224 × 224. In cropping process, we perform differ-

ent 5 crops (left-upper, right-upper, center, left-bottom, and

right-bottom) and randomly used during training for data

augmentation. The inputs to the I3D models are stacks of

16 frames sampled at 16 frames per second, and the input

to the ResNet50 is 1 frame sampled at 1 frame per second.

The action and the scene features are averaged at intervals

of every 5 seconds to obtain clip-level features. For au-

dio sequences, we use SoundNet [2] trained on the ESC50

dataset [25] to extract audio features. We convert the video

to sound MP3s and reduce the sampling rate to 22kHz, and

convert to single channel audio. We also scale the waveform

to be in the range of [−256, 256]. The window size of the

model set to 1 second and audio features are also averaged

at every 5 seconds.

We sample 160 clips at uniform interval from each video

in both training and testing. The networks are trained us-
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Figure 4. Video summarization with action and scene recognition result for qualitative analysis on CoVieW’19 dataset. We represent only

the class of “skiing” for action and “snow field” for scene although there are few other classes.

ing stochastic gradient descent (SGD) algorithm with learn-

ing rate 10−4 for classification losses and 10−2 for center

losses. The hyper parameters are set to α = 1, β = 10 in

(4), and λ = 10−1 in (5). Our algorithm is implemented in

PyTorch [24].

4.2. Experimental Settings

Dataset. Our method is evaluated on the CoVieW’19

challenge dataset for video summarization with action and

scene recognition task. The CoVieW’19 dataset con-

sists of untrimmed videos sampled from the Youtube-

8M [1] dataset, Dense-captioning dataset [17], and TVSum

dataset [31] with annotated importance score, action and

scene class labels for each video. Each label is annotated

with every 5 second long segments. The importance score

indicates how important each segment is compared to other

segments in the video and its value is scaled from 0 (not

important) to 2 (most important). The number of action and

scene classes are 99 and 78, respectively.

Dataset is consisted of 1,500 videos which are splitted

into 1,200 videos for training and 300 videos for testing. In

training phase, we randomly split training set to 1,080 and

120 videos for training and validation, respectively. For the

challenge, we evaluate the performance on test set which

composed of 300 videos.

Evaluation metric. For the quantitative evaluation, im-

portance score for video summarization, and temporal ac-

tion and scene recognition performance are measured sepa-

rately. The video summarization metric is defined as

1

N

N∑

k=1

∑Ns

i=1
I(k, predi)∑Ns

i=1
I(k,GTi)

,

where N is the total number of videos, Ns is the number of

selected clips, I(k, predi) is ground truth importance score

of the clip predicted to have top-i score, and I(k,GTi) are

ground truth importance score of the clip have top-i score

for k-th video, respectively. In CoVieW’19 challenge, Ns

is set to 6. The action and scene recognition performances

are measured differently in the validation set and the test

set. For the validation set, we evaluate separately the action

and scene recognition performances for whole clips by top-

1 and top-5 accuracy as used in action recognition [34]. For



Validation set Summarization score

Validation set 1 0.9093

Validation set 2 0.8768

Validation set 3 0.8971

Average 0.8944

Table 1. Performance evaluation with the proposed model on the

randomly divided validation set of CoVieW’19 dataset. Accura-

cies are measured using summarization metric.

Task scores rank

Video summarization 0.8409 2

Action & Scene recognition 0.7294 4

Table 2. Performance evaluation with the proposed model on the

test set of CoVieW’19 dataset. The scores are measured using

summarization metric and recognition challenge metric in (7).

Rank represents the ranking for each task.

Audio Action@1 Action@5 Scene@1 Scene@5

✗ 58.95 82.76 59.56 84.92

✓ 60.10 85.46 63.31 86.94

Table 3. Performance comparison of ablation study for audio

stream on validation set of CoVieW’19 dataset. Accuracies are

measured using the classification accuracy at top1 and top5 pre-

dictions.

the test set, we evaluate action and scene recognition per-

formance using top-k hamming scores for selected clips in

video summarization, such that,

H(K) =
1

N

N∑

n=1

L∑

label=1

K∑

k=1

AND(k − th Predlabel, GTlabel)

L
,

(7)

where AND(a, b) = 1 only if a and b has exactly same la-

bel index on action or scene. K is set to 5 in this challenge.

4.3. Results

In this section, we analyze our proposed network with

the qualitative and the quantitative evaluations. We inves-

tigate the contribution of components proposed in our ar-

chitecture with respect to 1) the effects on combination of

different modalities such as visual and audio, and 2) the ef-

fectiveness of the loss functions.

Fig. 4 shows the qualitative result for video summariza-

tion with action and scene recognition. In fact, there are few

other classes (e.g. talking for action, mountain for scene),

we only represent “skiing” class for action and “snow field”

class for scene that are dominant classes of the video. The

examples in top row are the successful cases in our tasks

and failure cases are shown in bottom row. While we can

obtain satisfactory results in the scene recognition, several

failure cases are shown in the action recognition. We ob-

serve that most failure cases are caused by the background

clutter.

Loss Action@1 Action@5

Lcls 52.19 80.72

Lcls + Lcent 60.10 85.46

Table 4. Action recognition performance comparison of different

loss functions on validation set of CoVieW’19 dataset. Accuracies

are measured using top1 and top5 predictions at clip level.

Loss Scene@1 Scene@5

Lcls 54.07 81.25

Lcls + Lcent 63.31 86.94

Table 5. Scene recognition performance comparison of different

loss functions on validation set of CoVieW’19 dataset. Accuracies

are measured using top1 and top5 predictions at clip level.

Table 1 shows the results on three validation set of

CoVieW’19 dataset for video summarization. Three valida-

tion set were randomly selected for each training phase, and

the performance is measured by the metric in Sec. 4.2. Our

network provides score of 0.8944 in the video summariza-

tion results. The results on test set of CoVieW’19 dataset

are shown in Table 2. The video summarization and action

scene recognition performances are evaluated and ranked

separately. For the video summarization, our model shows

the score of 0.8409, which placed 2nd among participants.

Also, action scene recognition performance evaluated us-

ing (7) shows the score of 0.7294, which ranked 4th.

The effectiveness of multi-modalities. As mentioned in

Sec. 3.2, we use both visual and audio sequences for detect-

ing action and scene recognition. Table 3 shows the effec-

tiveness of a single visual modality and the combination of

visual and audio modalities. Comparing the performance of

the visual modality only, the combination of two modalities

provides 2.7% improvement at results of top5 action clas-

sification and 1.8% improvement at results of top5 scene

classification, which show the importance to consider both

modalities for action and scene classification.

The effectiveness of loss functions. Our premise is that

discriminative features corresponding to classes can boost

the performance of recognition tasks. When we learn net-

works for action and scene classification, two loss terms are

employed, i.e., the classification loss and the center loss.

Table 4 and Table 5 summarize the results of action recog-

nition and scene recognition according to the different loss

functions. All accuracies are measured using classifica-

tion accuracy at top1 and top5. The first row of each table

shows the result with only classification loss, and the sec-

ond row represents the result with the center loss. As our

baseline, the loss function without the center loss provides

the 52.19% accuracy. We observe that the performance is

considerably enhanced by using the center loss.



5. Conclusion

We presented a novel deep architecture for comprehen-

sive video understanding that performed video summariza-

tion, and action and scene recognition tasks. The clas-

sification and summarization are performed by attention

weighted features, where two types of attention inference

module are proposed to refine features. Furthermore, we

proposed a novel loss function, called center loss, to mini-

mize intra-class variations and to maximize inter-class vari-

ations to learn discriminative feature representations. We

hope that the results of this study will be able to further ad-

vances in comprehensive video understanding area.
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