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Abstract

Even though deep face recognition is extensively ex-

plored and remarkable advances have been achieved on

large-scale in-the-wild dataset, disguised face recognition

receives much less attention. Face feature embedding tar-

geting on intra-class compactness and inter-class discrep-

ancy is very challenging as high intra-class diversity and

inter-class similarity are very common on the disguised face

recognition dataset. In this report, we give the technical de-

tails of our submission to the DFW2019 challenge. By using

our RetinaFace for face detection and alignment and Arc-

Face for face feature embedding, we achieve state-of-the-art

performance on the DFW2019 challenge.

1. Introduction

Face representation using Deep Convolutional Neural

Network (DCNN) embedding is the method of choice for

face recognition [22, 4]. DCNN maps the face image, typi-

cally after a pose normalisation step [6, 28, 15, 16, 7, 8, 9],

into a feature embedding that has intra-class compact-

ness [20, 3] and inter-class discrepancy.

Even though remarkable advances have been achieved

on large-scale unconstrained face recognition, it has often

been observed that most of the face recognition systems are

susceptible to spoofing techniques or disguises. Although

anti-spoofing is well explored [33, 29, 19], disguised face

recognition [13, 24] receives less attention.

Disguised face recognition presents the challenge of face

verification and identification under both intentional and un-

intentional distortions. For instance, a criminal may in-

tentionally attempt to conceal his identity by using exter-

nal disguise accessories (e.g. sunglasses or breathing mask),

thereby resulting in a challenging genuine (positive) match

problem for an authentication system. In addition, an in-

dividual might intentionally attempt to impersonate another

person by professional make up, resulting in a challenging

imposter (negative) unauthorised login for the face recog-

nition system. In [13, 24], both obfuscation and imperson-

(a) Amitabh Bachchan

(b) Cosine Similarity Matrix by ArcFace

Figure 1. Sample images from the DFW2019 dataset. (a) Images

within blue boxes (Impersonation) are not Amitabh Bachchan. (b)

The cosine similarity matrix is predicted by ArcFace [4]. For neg-

ative pairs (in blue), the similarity score should not be too high.

For positive pairs (in white), the similarity score should not be too

low. We use red arrows to mark the challenging pairs.

ation are considered as the disguised face recognition prob-

lem. Obfuscation gives rise to intra-variance while imper-

sonation results in high inter-similarity, which poses great

challenge for current face recognition system.

In Figure 1(a) illustrates sample images of “Amitabh

Bachchan” from the DFW2019 dataset. The face images

are detected and aligned by RetinaFace [5], and the cosine

similarity matrix is predicted by ArcFace [4]. For this par-

ticular subject, there are positive pairs with low similarity

scores (< 0.3) and negative pairs with high similarity scores

(> 0.4). For negative pairs (in blue), the similarity score

should not be too high. For positive pairs (in white), the



similarity score should not be too low. However, we find

some challenging pairs (marked by red arrows). We can

also easily find the confusion between positive and negative

pairs around the interval of [0.3,0.4]. It can be observed

from Figure 1(b), disguised face images result in increased

intra-class variations, while the impersonator images render

lower inter-class variability.

In this report, we first set up the baseline by using our

RetinaFace [5] and ArcFace [4]. RetinaFace is a practical

state-of-the-art face detector, which also outputs five facial

landmarks for face normalisation. ArcFace is a state-of-the-

art face feature embedding method. Then, we explore some

extra intra and inter loss to further improve the performance

on disguised face recognition. Finally, our solution achieves

state-of-the-art performance on the DFW2019 challenge.

2. Related Work

Deep Face Recognition. Face recognition via deep learn-

ing has achieved a series of breakthroughs in recent years.

Triple loss [22] pioneered employing the margin penalty on

triplets and obtained state-of-the-art performance on face

recognition. The margin penalty can enhance intra-class

compactness and inter-class discrepancy at the same time

as the Triplet loss targets on that the Euclidean distance

between positive pairs should be closer enough by a clear

margin than the Euclidean distance between negative pairs.

Even though the motivation of the Triplet loss matches the

target of face feature embedding, the training procedure of

the Triplet loss is very challenging as (1) there is a combina-

torial explosion in the number of face triplets especially for

large-scale datasets, leading to a significant increase in the

number of iteration steps, and (2) semi-hard sample mining

is tricky for the model training. Since the margin penalty

is a confirmed effective method for deep face recognition

and the image-to-image comparison in Triple loss [22] is

too tricky, recent improvement works [17, 27, 26, 4] fo-

cused on incorporating margin penalty into a more feasi-

ble framework, softmax loss, which has extensive image-

to-class comparisons within the multiplication step between

the embedding feature and the linear transformation ma-

trix. As illustrated in Figure 2, we give the motivations of

translating Triplet loss [22] into Arcface loss [4]. Naturally,

each line of the linear transformation matrix is viewed as

the class centre to represent each class in SphereFace [17],

CosFace [27, 26] and ArcFace [4].

Disguised Face Recognition. Disguised face recogni-

tion [13, 24] is a special case of deep face recognition

but it is more challenging as (1) the intra-class distance

can be very large due to unintentional obfuscation (e.g. ag-

ing, heavy make-up, plastic surgery and occlusion) on the

face region, and (2) the inter-class distance can be very

small due to the intentional impersonation. The combina-

tion of both unintentional and intentional disguises render

Figure 2. Motivations of translating Triplet loss [22] into Arcface

loss [4]. Image-to-class comparison is more efficient and sta-

ble than image-to-class comparison as (1) class number is much

smaller than image number, and (2) each class can be represented

by a smoothed vector which is updated online during training.

the problem of disguised face recognition an arduous task.

In the DFW2018 challenge [13, 24], some methods (in Ta-

ble 1) were proposed to solve the problem of disguised face

recognition. However, only common deep face recognition

methods were used in the DFW2018 challenge to solve the

particular problem of disguised face recognition except for

some fine-turning on the training dataset of DFW2018.

3. Our Solution

3.1. Face Detection and Alignment by RetinaFace

RetinaFace [5] is a single-stage face detection method

which can jointly predict face boxes and five facial land-

marks. For any training anchor, RetinaFace minimises the

following multi-task loss:

L1 = Lcls(pi, p
∗
i ) + λ1p

∗
iLbox(ti, t

∗
i )

+ λ2p
∗
iLpts(li, l

∗
i ).

(1)

The loss-balancing parameters λ1 and λ2 are set to 0.25

and 0.1, respectively. Please refer to [5] for more details.

3.2. Face Feature Embedding by ArcFace

ArcFace [4] is an additive angular margin loss designed

on the softmax loss. Based on the feature and weight

normalisation, ArcFace adds an additive angular margin

penalty m between xi and Wyi
to simultaneously enhance

the intra-class compactness and inter-class discrepancy.

L2 = −
1

N

N
∑

i=1

log
es(cos(θyi+m))

es(cos(θyi+m)) +
∑n

j=1,j �=yi
es cos θj

.

(2)
Please refer to [4] for more details.

3.3. Further Improvement by Intra and Inter Loss

ArcFace views each class as a smoothed vector, which

is efficient and stable during training. However, the pre-

trained model by ArcFace can not ideally project all face

images of one subject into one point in the high dimension

space during testing. In fact, facial appearance variations

due to subject(e.g. aging, heavy make-up, plastic surgery



Method Brief Description

VGGFace Pre-trained VGG-Face model + Cosine distance

AEFRL MTCNN + 4 networks + Cosine distance

ByteFace Weighted ensemble of 3 CNNs (Centre loss, SphereFace, Joint Bayesian)

DDRNET Inception Network with Centre Loss

DisguiseNet Siamese network on pretrained VGG-Face + Cosine distance

DR-GAN MTCNN + DR-GAN + Cosine distance

LearnedSiamese Siamese Neural Network

MEDC MTCNN + Ensemble of 3 CNNs (Centre loss, SphereFace) + Average Cosine distance

MiRA-Face MTCNN + RSA Detector + Ensemble of CNNs

OcclusionFace MTCNN + Fine-tuned ResNet-28

Tessellation Siamese network with triplet loss model

UMDNets All-In-One Detector + ensemble of 2 CNNs

WVU CVL MTCNN + CNN + Softmax
Table 1. Solutions from the DFW2018 challenge [13, 24]. By default, original face boxes given by the dataset were used, and some

solutions used other face detection and alignment methods (e.g. MTCNN [32], RSA [18] and All-In-One [21]) to get the face crops.

and occlusion) and environment(e.g. camera pose, illumi-

nation, blur and low resolution) can significantly change

intra-class distance. The largest intra-class distance be-

tween samples is larger than the largest image-to-class dis-

tance, and the smallest inter-class distance between samples

is smaller than the smallest image-to-class distance. There-

fore, we can go back to image-to-image comparison method

to further improve the ArcFace model. To further improve

the performance of ArcFace on disguised face recognition,

we try to explore intra-loss and inter-loss by hard sample

mining in this paper.

Sampling Probability Update. When the ArcFace

model has roughly converged, most of the samples (around

90%) in the dataset have been well classified and do not

contribute to the network training. To improve the pre-

trained ArcFace model, we assign sampling probability to

each sample [14]. During training, when the sample is cor-

rectly classified in this iteration, we pass the signal to the

data layer and reduce its sampling probability. Otherwise,

we increase its sampling probability. Therefore, the samples

which are correctly classified will be gradually ignored and

the samples which are incorrectly classified will be repeat-

edly learned as the training progresses. We also set a mini-

mum sampling probability, in case simple samples are never

sampled. To avoid over-fitting on the noise data, we also

add feedback for noisy samples, as the noisy samples are

continuously mis-classified and have large sampling prob-

ability. For each sample in mini-batch, if the cosine sim-

ilarity between its feature and its corresponding centre is

lower than a threshold, we will pass the message to the data

layer to drastically reduce the sampling probability of this

sample.

Intra-Loss and Inter-Loss. In order to enhance the

discriminative power of the deeply learnt features, we add

intra-loss [10] and inter-loss [10] into ArcFace to minimise

the intra-class variations and keep inter-classes distances

within the batch. When xi and xj are from the same class,

their cosine distance should be higher than the threshold θ

(e.g. 0.3). By contrast, when xi and xj are from the differ-

ent class, their cosine distance should be smaller than the

threshold θ (e.g. 0.3).

L3 = L2 +
1

N2 −N

N
∑

i,j,i �=j

(

ξ + yij
(

θ − xi
Txj

))

+
, (3)

where m is the batch size, yij ∈ {±1} indicates whether

the faces xi, and xj are from the same class or not, (u)+ :=
max(u, 0) is the hinge loss [11], θ is the threshold to distin-

guish whether the faces are from the same person or not, and

ξ is the error margin besides the classification hyper-plane.

In this paper, θ is set as 0.3 and ξ is set as 0.1. As we employ

the intra-loss and inter-loss, the sampling strategies changes

from global random face images sampling into similar inter-

class identities sampling and then diverse intra-class images

sampling [10]. When single intra-loss or inter-loss is used,

we simply change the comparison between image pairs.

4. Ablation Experiments

4.1. Which training dataset is better?

For face feature embedding, we employ four re-

cent large-scale in-the-wild datasets (e.g. CASIA [30],

VGG2 [2] MS1MV2 [12] and Asian [1]). In Table 3, we

compare the performance of models trained on different

datasets. As we can see from the results, combining datasets

together can achieve best performance. In addition, we find

the BN-FC-BN structure is better than the BN-Dropout-FC-

BN structure to get the final 512-D embedding feature. By

increasing the capacity of the network (from ResNet100 to

ResNet140), we can also improve the performance.



Datasets #Identity #Image/Video

CASIA [30] 10K 0.5M

VGGFace2 [2] 9.1K 3.3M

MS1MV2 [12] 85K 5.8M

Asian [1] 94 K 2.83M

Table 2. Face datasets for the training of face feature embedding

network.

Methods 1e-05 1e-04 1e-03 1e-02 1e-01

VGG2-Res100 18.61 59.62 80.40 90.57 96.43

CASIA-Res100 21.75 65.07 81.02 90.09 95.92

MS1MV2Asian-Res100 18.08 76.23 88.57 93.94 97.39

MS1MV2-Res100 20.99 79.33 89.19 93.73 96.91

All-Res100 21.44 81.92 90.75 94.72 97.35

All-Res100FC 21.39 82.54 91.33 94.99 97.27

All-Res140 20.95 82.83 91.54 95.04 97.51

Table 3. Verification accuracy (%) of our methods under protocol-

3 (Overall) of the DFW2019 validation dataset.

4.2. Which ensemble strategy is better?

We select the top 3 models (e.g. All-Res100, All-

Res100FC and All-Res140)from Table 3 and explore the

best ensemble strategies. In Table 4, we consider two en-

semble strategies: feature ensemble and score ensemble.

For feature ensemble, we concatenate features from differ-

ent models with weights to construct new features. For in-

stance, feat-cb-equal3 denotes three feature ensemble with

equal weights, and feat-cb-532 denotes three feature ensem-

ble with weights of [0.5, 0.3, 0.2]. High weight is assigned

to better model (All-Res140). Feat-cb-equal2 denotes two

feature ensemble with equal weights and feat-cb-64 denotes

two feature ensemble with weights of [0.6, 0.4]. For score

ensemble, we use weighted average scores from different

models. We use similar abbreviations for the weights. Af-

ter balancing the performance and the efficiency, we finally

combine features from two models (All-Res140 and All-

Res100FC) with weights of [0.6, 0.4]. In the following ex-

periments, we call this ensemble feature as the ArcFace fea-

ture.

Methods 1e-05 1e-04 1e-03 1e-02 1e-01

feat-cb-equal3 21.23 83.29 91.60 95.12 97.49

feat-cb-532 20.96 83.36 91.70 95.12 97.51

feat-cb-433 21.16 83.47 91.65 95.14 97.52

feat-cb-equal2 21.08 83.28 91.66 95.16 97.49

feat-cb-64 21.16 83.33 91.76 95.11 97.52

score-cb-equal3 21.23 83.29 91.60 95.12 97.49

score-cb-532 20.99 83.52 91.72 95.14 97.51

score-cb-433 21.13 83.43 91.62 95.15 97.50

score-cb-equal2 21.08 83.28 91.66 95.16 97.49

score-cb-64 21.12 83.24 91.75 95.14 97.50

Table 4. Verification accuracy (%) of our methods under protocol-

3 (Overall) of the DFW2019 validation dataset.

4.3. Could Intra and Inter Loss improve the perfor-
mance?

As shown in Table 5, both the proposed intra-loss and

inter-loss can obviously improve the performance. By

combining the intra-loss and inter-loss, our solution finally

achieves GAR of 85.54% at 1e-4 FAR.

Methods 1e-05 1e-04 1e-03 1e-02 1e-01

ArcFace(R140+R100FC) 21.16 83.33 91.76 95.11 97.52

ArcFace+Intra 19.77 85.94 92.46 95.66 97.86

ArcFace+Inter 23.91 84.52 94.70 97.60 98.55

ArcFace+Intra&Inter 20.52 86.54 94.31 97.93 98.76

Table 5. Verification accuracy (%) of our methods under protocol-

3 (Overall) of the DFW2019 validation dataset.

5. DFW2019 Challenge

5.1. DFW2019 Benchmark

The DFW2019 benchmark [13, 24] contains training,

validation and testing datasets.

The training and validation datasets include 1,000 iden-

tities collected from the Internet. Most of the subjects are

adult famous personalities of Caucasian or Indian ethnic-

ity. The training and validation datasets comprise of 11,157

face images including different kinds of images for a given

subject, that is, normal, validation, disguised, and imper-

sonator. Each subject contains at least 5 and at most 26

face images. In Table 6 we give the statistics of the training

and validation datasets. Overall, the training and validation

datasets contain 1,000 normal images, 903 validation im-

ages, 4,814 disguised images, and 4,440 impersonator im-

ages.

For the testing dataset of the DFW2019 benchmark,

there are 3840 images of 600 subjects, encompassing dif-

ferent disguise variations including variations due to bridal

make-up and plastic surgery. Table 7 presents the statistics

of the DFW2019 dataset. The labels of the testing dataset

are kept by the organiser for fair comparison in the chal-

lenge.

Category Training Set Validation Set

Subjects 400 600

Images 3,386 7,771

Normal Images 400 600

Validation Images 308 595

Disguised Images 1,756 3,058

Impersonator Images 922 3,518
Table 6. Statistics of the training and validation sets of the

DFW2019 benchmark. Disguised images have same identity as

the normal image, while impersonator images have different iden-

tity.



Category Subjects Images

Bridal 100 200

Plastic Surgery 250 500

Other 250 3140

Total 600 3840
Table 7. Statistics of the testing sets of the DFW2019 benchmark.

5.2. Validation Results

The DFW2019 validation dataset has three protocols for

evaluation. All three protocols correspond to face verifica-

tion protocols, where a face recognition model is expected

to classify a pair of face images as genuine (positive) or im-

poster (negative). Detailed description of each protocol is

given below:

Protocol-1 (Impersonation) evaluates a face recognition

model for its ability to distinguish impersonators from gen-

uine users with high precision. A genuine (positive) pair for

this protocol is a normal image with a validation image of

the same subject. For imposter (negative) pairs, the imper-

sonator images of a subject are partnered with the normal,

validation, and disguised images of the same subject. In

total, there are 595 positive pairs and 24,451 negative pairs.

In Table 8, the performance of each method is reported in

terms of Genuine Acceptance Rate (GAR) at 1% and 0.1%
False Acceptance Rate (FAR). For the task of impersonation

on the validation dataset, the winner of DFW2018, AE-

FRL [25], presents a GAR of 96.80% and 57.64% at 1% and

0.1% FARs. By contrast, ArcFace significantly outperforms

all other algorithms by achieving 98.66% and 60.84% at 1%
and 0.1% FARs, respectively.

Algorithm
GAR

@1%FAR @0.1%FAR

VGG-Face 52.77 27.05

ByteFace 75.53 55.11

DDRNET 84.20 51.26

DenseNet + COST 92.1 62.2

DR-GAN 65.21 11.93

LearnedSiamese 57.64 27.73

MEDC 91.26 55.46

OcclusionFace 93.44 46.21

UMDNets 94.28 53.27

WVU CL 81.34 40.00

AEFRL 96.80 57.64

MiRA-Face 95.46 51.09

ArcFace 98.66 60.84
Table 8. Verification accuracy (%) of ArcFace and the baselines

on protocol-1 (impersonation) of the validation dataset. Results of

other methods are from [24].

Protocol-2 (Obfuscation) evaluates a face recognition

model for its ability to distinguish intentional or uninten-

tional disguises, wherein a person attempts to hide iden-

tity. The genuine (positive) pairs are constituted by all pairs

generated using the normal and validation images with the

disguise images, and the pairs generated between the dis-

guise images of the same subject. The cross-subject im-

poster (negative) pairs are created by combining the nor-

mal, validation, and disguised images of one subject with

the normal, validation, and disguised images of a different

subject. The impersonator images are not used in this pro-

tocol. In total, there are 13,302 positive pairs and 9,027,981

negative pairs.

Table 9 summarises the verification accuracy for all the

models, along with the proposed ArcFace. For the task

of obfuscation on the validation dataset, the winner of

DFW2018, MiRA-Face [31] achieves the best accuracy of

90.65% and 80.56% at 1% and 0.1% FARs. ArcFace ob-

viously outperforms all other algorithms by a clear mar-

gin of at least 4.43% for GAR@1%FAR and 11.64% for

GAR@0.1%FAR. Compared to the previous protocol (im-

personation), the difference in the verification accuracy at

the two FARs is relatively less, which indicates that recogni-

tion systems suffer less in case of obfuscation, as compared

to impersonation at stricter FARs.

Algorithm
GAR

@1%FAR @0.1%FAR

VGG-Face 31.52 15.72

ByteFace 76.97 21.51

DenseNet + COST 87.1 72.1

DDRNET 71.04 49.28

DisguiseNet 66.32 28.99

DR-GAN 74.56 58.31

LearnedSiamese 37.81 16.95

MEDC 81.25 65.14

OcclusionFace 80.45 66.05

Tessellation 1.23 0.18

UMDNets 86.62 74.69

WVU CL 78.77 61.82

AEFRL 87.82 77.06

MiRA-Face 90.65 80.56

ArcFace 95.08 92.20
Table 9. Verification accuracy (%) of ArcFace and the baselines on

protocol-2 (obfuscation) of the validation dataset. Results of other

methods are from [24].

Protocol-3 (Overall) evaluates a face recognition model for

its ability to distinguish disguises as well as impersonators

at the same time. The genuine (positive) and imposter (neg-

ative) pairs created in the above two protocols are combined

to generate the evaluation data for this protocol. In total,

there are 13,897 positive pairs and 9,052,432 negative pairs.

Table 10 presents the GAR values of all other baseline

methods as well as ArcFace. As with the protocol-2, Arc-



Face significantly outperforms the results of the winner of

DFW2018, MiRA-Face, by an obvious margin of 4.49%
and 12.5% at 1% and 0.1% FARs.

Algorithm
GAR

@1%FAR @0.1%FAR

VGG-Face 33.76 17.73

ByteFace 75.53 54.16

DenseNet + COST 87.6 71.5

DDRNET 71.43 49.08

DisguiseNet 60.89 23.25

DR-GAN 74.89 57.30

LearnedSiamese 39.73 18.79

MEDC 81.31 63.22

OcclusionFace 80.80 65.34

Tessellation 1.23 0.17

WVU CL 79.04 60.13

UMDNets 86.75 72.90

AEFRL 87.90 75.54

MiRA-Face 90.62 79.26

ArcFace 95.11 91.76
Table 10. Verification accuracy (%) of ArcFace and the baselines

on protocol-3 (overall) of the validation dataset. Results of other

methods are from [24].

ROC of ArcFace. Figure 3 presents the Receiver Operating

Characteristic (ROC) curves of ArcFace for all three proto-

cols on the DFW2019 validation dataset. Table 11 presents

the GAR values of ArcFace at more challenging FAR (e.g.

1e-4). As we can see from Figure 3 and Table 11, ArcFace

achieves 83.33% GAR at 1e-4 FAR, which is very impres-

sive. However, GAR is very low under small FAR (in Fig-

ure 3), which indicates the dataset is very challenging.

Protocols 1e-5 1e-4 1e-3 1e-2 1e-1

1(Impersonation) 5.71 14.96 60.84 98.66 99.83

2(Obfuscation) 78.42 88.01 92.20 95.08 97.45

3(Overall) 21.16 83.33 91.76 95.11 97.52

Table 11. Verification accuracy (%) of ArcFace on protocol-1 (im-

personation), protocol-2 (obfuscation), and protocol-3 (overall) of

the DFW2019 validation dataset.

Score Distribution of ArcFace. In Figure 4, we show the

cosine distance distribution of negative and positive pairs.

The DFW2019 dataset is so challenging that there are a

large number of positive pairs with low cosine similarity.

In Figure 5, we give some extreme challenging positive and

negative pairs, which can not be even distinguished by hu-

man.

5.3. Test Results

The DFW2019 test dataset has four protocols for eval-

uation. All four protocols correspond to face verification

protocols, where a face recognition model is expected to

classify a pair of face images as genuine (positive) or im-

poster (negative). Detailed description of each protocol is

given below:

Protocol-1 (Impersonation) evaluates a face recognition

model for its ability to distinguish impersonators from gen-

uine users with high precision. In Table 12, the perfor-

mance of our methods is reported in terms of GAR at dif-

ferent FARs. For the task of impersonation on the test

dataset, the ArcFace baseline, presents a GAR of 99.20%
and 72.40% at 1% and 0.1% FARs. Interestingly, the pro-

posed intra loss obviously decreases the GAR to 56.80%
and 17.60% at 0.1% and 0.01%FARs, which indicates that

compressing intra variance can has side effect on inter dis-

crepancy. In addition, the proposed inter loss has not im-

proved the GAR compared to the performance of the base-

line ArcFace, which indicates impersonators can construct

very challenging negative pairs. In conclusion, imperson-

ation is a very challenging problem for current deep face

recognition methods.

Methods 1e-4 1e-3 1e-2 1e-1

ArcFace 44.80 72.40 99.20 99.20

ArcFace+Intra 17.60 56.80 99.20 99.20

ArcFace+Inter 44.80 72.40 99.20 99.20

ArcFace+Intra&Inter 17.60 56.80 99.20 99.20

Table 12. Verification accuracy (%) of our methods on protocol-1

(impersonation) of the DFW2019 test dataset.

Protocol-2 (Obfuscation) evaluates a face recognition

model for its ability to distinguish intentional or uninten-

tional disguises, wherein a person attempts to hide identity.

In Table 13, the performance of our methods is reported

in terms of GAR at different FARs. Without impersonator

images, the performance of our methods on the Protocol-

2 (Obfuscation) are impressive at strict FARs. Both the

proposed intra loss and inter loss can significantly improve

the results. More specifically, the intra loss improves GAR

from 91.43% to 94.48% at 1e-4 FAR, and the inter loss im-

proves GAR to 97.99%. As these two losses are comple-

mentary to each other, their combination further improve

the GAR to 98.43% at 1e-4 FAR.

Methods 1e-5 1e-4 1e-3 1e-2 1e-1

ArcFace 84.00 91.43 95.73 98.06 99.13

ArcFace+Intra 90.55 94.48 97.03 98.42 99.31

ArcFace+Inter 96.14 97.99 98.73 99.15 99.40

ArcFace+Intra&Inter 97.68 98.43 98.92 99.31 99.47

Table 13. Verification accuracy (%) of our methods on protocol-2

(obfuscation) of the DFW2019 test dataset.

Protocol-3 (Plastic Surgery) evaluates a face recognition

model for its ability to distinguish identities after plastic

surgery, wherein a person takes a plastic surgery which can

intentionally or unintentionally change the identity. In Ta-

ble 14, the performance of our methods is reported in terms

of GAR at different FARs. Once again, the proposed in-



(a) protocol-1 (impersonation) (b) protocol-2 (obfuscation) (c) protocol-3 (overall)

Figure 3. ROC curves of ArcFace under protocol-1 (impersonation), protocol-2 (obfuscation), and protocol-3 (overall) of the DFW2019

validation dataset.

Figure 4. Cosine distance distribution of negative pairs and posi-

tive pairs. Cosine distance is predicted by ArcFace under protocol-

3 (overall) of the DFW2019 validation dataset. Density is set to

true for better visualisation, thus please neglect the y value.

(a) The ground-truth is same person.

(b) The ground-truth is different person.

Figure 5. Extreme challenging pairs (failure cases) for ArcFace

under protocol-3 (overall) of the DFW2019 validation dataset.

tra loss presents side effect, and the verification results are

slightly decreased compared to the results of ArcFace. By

contrast, the proposed inter loss significantly improves the

GAR from 87.60% to 95.60% at 1e-4 FAR. After combin-

ing the intra and inter loss, the side effect from the intra

loss is alleviated by the inter loss. Finally, the combination

solution obtains GAR of 95.60% at 1e-4 FAR.

Methods 1e-5 1e-4 1e-3 1e-2 1e-1

ArcFace 72.40 87.60 94.80 98.00 99.60

ArcFace+Intra 75.60 86.40 93.60 97.60 99.60

ArcFace+Inter 91.60 95.60 98.40 99.60 100.00

ArcFace+Intra&Inter 88.00 95.60 98.40 99.60 100.00

Table 14. Verification accuracy (%) of our methods on protocol-3

(plastic surgery) of the DFW2019 test dataset.

Protocol-4 (Overall) evaluates a face recognition model for

its ability to distinguish disguises as well as impersonators

at the same time. In Table 15, the performance of our meth-

ods is reported in terms of GAR at different FARs. At FAR

of 1e-4, ArcFace sets up a strong baseline performance of

88.86%. The proposed intra loss and inter loss separately

improve the GAR to 92.19% and 92.00%. When combin-

ing these two losses, our solution finally achieves GAR of

93.64% at 1e-4 FAR.

Methods 1e-5 1e-4 1e-3 1e-2 1e-1

ArcFace 41.36 88.86 95.29 98.03 99.15

ArcFace+Intra 47.76 92.19 96.71 98.37 99.31

ArcFace+Inter 41.36 92.00 98.30 99.14 99.41

ArcFace+Intra&Inter 48.67 93.64 98.45 99.30 99.47

Table 15. Verification accuracy (%) of our methods on protocol-4

(overall) of the DFW2019 test dataset.

ROC of Our Methods. In Figure 6, we give ROC curves

of our methods under protocol-1 (impersonation), protocol-

2 (obfuscation), protocol-3 (plastic surgery) and protocol-4

(overall) of the DFW2019 test dataset. Based on our ob-

servations, we have following conclusions: (1) ArcFace is a

very general and excellent face recognition algorithm which

can enhance intra-class compactness and inter-class dis-

crepancy to some extend. (2) Exploring challenging nega-

tive pairs (e.g. the proposed inter loss) to improve deep face



(a) protocol-1 (impersonation) (b) protocol-2 (obfuscation) (c) protocol-3 (plastic surgery) (d) protocol-4 (overall)

Figure 6. ROC curves of our methods under protocol-1 (impersonation), protocol-2 (obfuscation), protocol-3 (plastic surgery) and protocol-

4 (overall) of the DFW2019 test dataset.

Method Impersonation Obfuscation Plastic Surgery Overall

FAR 1e− 4 1e− 3 1e− 2 1e− 4 1e− 3 1e− 4 1e− 3 1e− 4 1e− 3
ResNet-50 [23] 38.40 47.60 - 16.42 35.38 22.40 46.40 16.89 35.96

LightCNN-29v2 [23] 51.20 74.40 - 36.90 55.56 47.20 69.20 36.50 55.74

ArcFace 44.80 72.4 99.2 91.4 95.7 87.6 94.8 88.6 95.2
ArcFace+Intra 17.60 56.8 99.2 94.4 97.0 86.4 93.6 92.1 96.7
ArcFace+Inter 44.80 72.4 99.2 97.9 98.7 95.6 98.4 92.0 98.3
ArcFace+Intra&Inter 17.60 56.8 99.2 98.4 98.9 95.6 98.4 93.6 98.4

Table 16. Verification accuracy (%) of our methods under protocol-1 (impersonation), protocol-2 (obfuscation), protocol-3 (plastic surgery)

and protocol-4 (overall) of the DFW2019 test dataset.

recognition is one of the general and effective approaches.

(3) Exploring challenging positive pairs (e.g. the proposed

intra loss) can be tricky and unstable. Enhancing intra-class

compactness on the face images with extremely large ap-

pearance variations can affect the manifold optimisation.

(4) Disguised face recognition is still a very challenging

problem in the field of deep face recognition.

Official Evaluation of Our Methods. In Table 16, we give

the verification results reported by the organisers. Under

four protocols of the DFW2019 test dataset, the organisers

are more interested in GAR at 1e-3 and 1e-4 FARs. On the

Impersonation track, our solution is worse than the baseline

method (LightCNN-29v2 [23]) provided by the organiser.

On other tracks, our solution achieves significant better re-

sults than the baseline methods.

6. Conclusions

Disguised face recognition features high intra-class di-

versity and inter-class similarity. In this report, we give the

technical details of our submission to the DFW2019 chal-

lenge. By using our RetinaFace for face detection and align-

ment and ArcFace for face feature embedding, we achieve

state-of-the-art performance on the DFW2019 challenge.
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