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Abstract

3D face alignment of monocular images is a crucial pro-

cess in the recognition of faces with disguise.3D face recon-

struction facilitated by alignment can restore the face struc-

ture which is helpful in detcting disguise interference.This

paper proposes a dual attention mechanism and an efficient

end-to-end 3D face alignment framework.We build a stable

network model through Depthwise Separable Convolution,

Densely Connected Convolutional and Lightweight Chan-

nel Attention Mechanism. In order to enhance the ability of

the network model to extract the spatial features of the face

region, we adopt Spatial Group-wise Feature enhancement

module to improve the representation ability of the network.

Different loss functions are applied jointly to constrain the

3D parameters of a 3D Morphable Model (3DMM) and

its 3D vertices. We use a variety of data enhancement

methods and generate large virtual pose face data sets to

solve the data imbalance problem. The experiments on the

challenging AFLW,AFLW2000-3D datasets show that our

algorithm significantly improves the accuracy of 3D face

alignment. Our experiments using the field DFW dataset

show that DAMDNet exhibits excellent performance in the

3D alignment and reconstruction of challenging disguised

faces.The model parameters and the complexity of the pro-

posed method are also reduced significantly.

1. Introduction

The aim of face alignment is to locate the feature points

of the human face, such as the corners of the eyes, the cor-

ners of the mouth, tip of the nose. In general it involves

fitting a face model to an image and extracting the seman-

tic meaning of facial pixels. This is a fundamental step for

many face analysis tasks, such as face recognition [6], face

expression analysis [3] and facial animation [10, 9]. In this

paper we investigate face alignment in the context of face

disguise detection. The problem of detecting a face dis-

guise is concerned with determining whether a given pair

of images belong to the same person even if one of them is

subject to a disguise, or to different persons (one of them

being an imposter). In view of the importance of this prob-

lem, face alignment has been widely studied since the Ac-

tive Shape Model (ASM) of Cootes in the early 1990s [13].

Especially in recent years, face alignment has become a hot

topic in computer vision.

The existing methods of face alignment can be divided

into three categories: Constrained Local Model (CLM)

methods (e.g., [13, 35]), Active Appearance Model (AAM)

methods (e.g., [29, 30]) and regression methods (e.g., [10,

41]).

3D face shape reconstruction from 2D image is very

challenging by its nature if no prior knowledge is provided.

This is mainly because 2D data does not convey unambigu-

ous depth information. A common method to solve the

problem of monocular 2D face shape reconstruction is to

use a set of 3D base shapes to capture the subspace, or a

morphological model of face shape variations. Blanz and

Vetter[5] proposed a comprehensive approach to minimiz-

ing the difference between the input 2D image and its 3D

face rendering. Although this method has been able suc-

cessfully to solve the problem of 3D face reconstruction,

it is not friendly to changing lighting conditions, and its

computational cost is high. To overcome this limitation,

Blanz et al.[4] proposed to predict 3D parameters of a 3D

face model from 2D facial feature points by linear regres-

sion. Although this method is efficient, it abandons the

most useful information in the image and learns very sim-

ple regression functions. Recently, some innovative meth-

ods have been proposed, such as estimating 3D parameters

through CNN and related cascaded regression operations,

to achieve 3D face reconstruction. However, the network

structure used by these methods is complex and the model

parameter space is large, so the network is difficult to train

to achieve convergence.



Figure 1. Overview of our method.As efficient dual attention convolutional neural network(DAMDNet).(a)Training pipeline for a single

image 3D face Alignment,(b)Test pipeline. Figure 2 describes the details of DAMDNet.

Inspired by the efficiency of MobileNet[20], achieved

by the use of the Depthwise Separable Convolution in the

network structure, and DenseNet[22] strengthened by the

transmission of features, we prepose a network structure

that extends both the idea of Depthwise Separable Convolu-

tion, and the feature reuse of Densely Connected networks.

As dense connection convolution may lead to channel in-

formation redundancy, this paper adds a lightweight Chan-

nel Attention Mechanism in the network structure, which

improves the representation ability of the network without

increasing the number of network parameters.

In convolutional neural networks, in addition to chan-

nel feature re-calibration, another important dimension that

should be considered is the spatial dimension. For a specific

semantic group, it is desirable and beneficial to identify the

semantic features in the correct spatial location of the orig-

inal image. Based on the channel attention mechanism, we

enhance spatial features by grouping. Spatial Group-wise

Enhancement[28] is feature re-calibration in spatial dimen-

sion. By combining channel and spatial attention mecha-

nisms, the proposed network structure is a dual attention

convolutional neural network.

In order to solve the problem of paucity of training sam-

ples in the case of large poses, this paper also presents a

side-face data augmentation to enhance the robustness of

the network model for arbitrary pose. Extensive exper-

iments are conducted on AFLW dataset[26] with a wide

range of poses, and the AFLW2000-3D dataset[45], in com-

parison with a number of methods. We also provide the

means for subjective evaluation by visualizing the 2D/3D

face alignment and face reconstruction on the DFW[27, 37]

dataset.

An overview of our method is shown in Figure 1.

In summary, our contributions are as follows:

1)We proposes a novel efficient network struc-

ture(DAMDNet).To the best of our knowledge, this is the

first time that Depthwise Separable Convolution scheme, a

Densely Connected network structure, a Channel Attention

Mechanism and Spatial Group-wise Feature Enhancement

are combined to create a DNN novel architecture.

2)Different loss functions are used to optimize the pa-

rameters of 3D Morphable Model and its 3D vertices. The

resulting method can estimate 2D/3D landmarks of faces

with an arbitrary pose.

3)The training data set is augmented by integrating vari-

ous data enhancement techniques.The face profile technique

and virtual sample technique are used to increese its number

of the large pose face training data set.

4)We experimentally demonstrate that our algorithm has

significantly improved the 3D alignment performance, com-

pared to the state of the art methods. The proposed face

alignment method can deal with arbitrary poses and it is

more efficient.

2. Related Work

In this section, we review the prior work in generic face

alignment and 3D face alignment.

2.1. Generic Face Alignment

Face alignment research can boast many achievements,

included the active appearance model(AAM)[12, 34] and



Figure 2. (a)Details of DAMDNet. k3n64s1 corresponds to the kernel size(k),number of feature maps(n) and stride(s) of conv1. (b)The

details of one of the DenseBlock layers, namely Layer3. The convolution layer of a set of 1×1, 3×3, 1×1 filters and a SGE[28] module

in DAMDNet as a basic unit called SGE-MobileBlock. The transition layer is the number of channels to match the input and output feature

maps.

the active shape model(ASM)[11].These methods consider

face alignment as an optimization problem to find the best

shape and appearance parameters, which allow the appear-

ance model to achieve the best possible fit to the input

face.The basic idea of the Constrained Local Model (CLM)

method [14, 1, 36] in the Discriminative approaches cate-

gory is to learn a set of local appearance models, one for

each landmark.The output of the local models is combined

with the help of a global shape model. Cascaded regres-

sion gradually refines initial predictions through a series of

regressions. Each regression unit relies on the output of

the previous regression unit to perform simple image op-

erations. The entire system automatically learns from the

training samples[15]. The ESR[10] (Explicit Shape Regres-

sion) proposed by Sun et al. includes three methods, namely

two-level boosted regression, shape-indexed features and a

correlation-based feature selection method.

Besides the traditional models, deep convolutional neu-

ral networks have recently been used for feature point lo-

calization of faces. Sun et al.[38] were first to use CNN

to regress the raw face image landmark locations,accurately

positioning 5 key points of the face from coarse to fine. The

work of [19] uses the human body pose estimation, and the

boundary information for the key point regression. In re-

cent years, most of the landmark detection methods have

been adopted some form of ”coarse to fine” strategy. On the

other hand, Feng et al.[17] have taken a different approach,

using the idea of cascaded convolutional neural networks.

A [17] compared the commonly used loss functions for face

landmark detection, and based on this, the concept of wing

loss was proposed.

2.2. 3D Face Alignment

Although traditional methods provide a guide to success-

ful face alignment, they are affected by non-frontal pose, il-

lumination and occlusion in real-life applications. The most

common approach to deal with pose variation is the multi-

view framework [39], which uses different landmark con-

figurations for different views. For example, TSPM [47]

and CDM [44] use the DPM-like [18] method to align faces

of different shape models, and finally select the most prob-

able model as the final result. However, since each view

requires testing, the computational cost of the multiview ap-

proach is always high.

Apart from multi-view solutions, 3D face alignment is

also a popular approach. 3D face alignment [19, 23] aims to

fit a 3D morphable model (3DMM) [6] to a 2D image. The

3D Morphable Model is a typical statistical 3D face model.

It has a clear understanding of 3D faces based on a statisti-

cal analysis. Zhu et al.[45] proposed a localization method

based on 3D face shape, which solves the problem of some

feature points being invisible in extreme poses (such as side

faces), as well as the face appearance in different poses

varying greatly, making it difficult to locate landmarks. Liu

et al.[24] used a cascade of 6 convolutional neural networks

to solve the problem of locating facial feature points in im-

ages of faces with extreme poses by means of 3D face mod-

elling. This method not only predicts the 3D face shape

and projection matrix, but also calculates whether each fea-

ture point is visible or not. If a feature point is invisible,

the feature block about the invisible point is not used as in-

put, which is difficult to achieve for common 2D face align-

ment methods. Paper [16] designed a UV position map to



represent 3D shape features of a complete human face in

a 2D. The purpose of 3D face alignment is to reconstruct

the 3D face from a 2D image, and then align the 3D face

to the 2D image, so that 2D/3D face feature points can be

located. Our approach is also based on convolutional neural

networks, but we have redesigned the network structure to

make it efficient and robust. At the same time, we use dif-

ferent loss functions for 3D parameters and 3D vertices to

constrain the semantic information being recovered.

3. Proposed Method

In this section we introduce our proposed robust 3D face

alignment method, which fits a 3D morphable model using

DAMDNet.

3.1. 3D Morphable Model

The 3D Morphable model is one of the most successful

methods for describing 3D face space. Blanz et al. [6] pro-

posed a 3D morphable model (3DMM) of 3D face based on

Principal Component Ananlysis (PCA). It is expressed as

follows:

S = S +Aidαid +Aexpαexp (1)

where S is a specific 3D face, S is the mean face, Aid are

the principle axes trained on the 3D face scans with neutral

expression and αid is the shape parameter vector, Aexp are

the principle axes trained on the offsets between expression

scans and neutral scans and αexp is the expression param-

eter vector. The coefficients {αid, αexp} define a unique

3D face. In this work Aid adopted come from the Basel

Face Model (BFM)[31] and Aexp comes from the Face-

Warehouse model[8].

In the process of 3DMM fitting, we use the Weak Per-

spective Projection to project 3DMM onto the 2D face

plane. This process can be expressed as follows:

S2d = f ∗ Pr ∗R ∗ {S + t3d} (2)

where S2d is the 2D coordinate matrix of the 3D face

after Weak Perspective Projection, rotation and transla-

tion. f is the scaling factor. Pr is the projection matrix
(

1 0 0
0 1 0

)

. R is a rotation matrix constructed accord-

ing to three rotation angles of pitch, yaw and roll respec-

tively. t3d is the 3D translation vector.For the modeling

of a specific face, we only need to find the 3D parameters

P = [f, pitch, yaw, roll, t3d, αid, αexp]

3.2. Dual Attention Mechanism

Extracting the main facial features for the 3D face align-

ment task is a critical step. A 2D convolutional neural

network typically performs feature extraction in the Chan-

nel and Spatial dimensions.This paper enhances the feature

representation of convolutional neural networks by adding
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Figure 3. (a)SE Module(Squeeze and Excitation Module),(b)SGE

Module(Spatial Group-wise Enhance).

lightweight attention mechanisms in both, spatial and chan-

nel dimensions.

In the channel dimension, we opt for a SE[21] attention

mechanism module. The SE module uses a new feature re-

calibration strategy. Specifically, it learns the importance of

each feature channel automatically, and enhances the useful

features according to the learnt importance measure, and

suppresses the non informative features. Figure 3(a) de-

scribes the basic operation of the SE module.IT first uses a

global average pooling layer as a Squeeze operation. Then

the two fully connected layers form a Bottleneck structure

to model the correlation between the channels and output

the same number of weights as the number of input fea-

tures. A normalized weight between 0 and 1 is obtained by

a Sigmoid function to weight each channel.

The spatial attention mechanism induces the model to

pay more attention to the contribution of the key feature ar-

eas of the human face and reduces the influence of other

unrelated features. We introduce the SGE(Spatial Group-

wise Enhancement)[28] mechanism to strengthen the the

spatial distribution of facial semantic features. A compre-

hensive face feature is composed of many sub features, and

these sub features are distributed in groups in each feature

layer. By generating an attention factor for each group, SGE

module can gauge the importance of each sub feature, and

help to suppress noise in a targeted way. This attention fac-

tor is determined by the similarity of global and local fea-

tures within each group, so SGE is very lightweight. Fig-

ure 3(b) describes the specific computational operations of

SGE. First, the features are grouped, and each set of fea-

tures is spatially compared with the global pooling feature

(similarity) to get the initial attention mask.This part we call

Group Channel Attention. After, normalizing the attention

mask, we obtain the final attention mask through a sigmoid

operation, and scale the features of each position to the orig-

inal feature group.



3.3. DAMDNet(Dual Attention MobDenseNet)
Structure

The DAMDNet proposed in this paper applies the depth

separable convolution, dense connection, channel attention

and spatial attention mechanism to the 3D face alignment

task for the first time. The architecture of DAMDNet is

illustrated in Figure 2(a). Conv1 is a convolution layer

with kernel size(k) of 3, stride(s) of 2 and the number

of feature maps(n) totalling 32 to extract rough features.

Layer1 to Layer7 are 7 dense blocks for extracting deep

features. An SE[21] module is added between each Dense-

Block to explicitly model the interdependencies between

feature channels. Figure 2(b) shows the details of one of

the DenseBlock, Layer3. The convolution layer of a set

of 1 × 1, 3 × 3, 1 × 1 filters and the SGE[28] module in

DAMDNet form the basic unit called SGE-MobileBlock.

DenseLayer3 contains three sets of SGE-MobileBlock(each

SGE-MobileBlock output is cascaded as the input of the

next SGE-MobileBlock). As shown in Figure 2(b), Layer3

contains three sets of SGE-MobileBlock. In order to match

the number of channels connected to the Dense connection,

we add a transition layer after each SGE-MobileBlock (the

convolution layer filter is 1 × 1), the purpose is to adjust

the number of channels in the preview SGE-MobileBlock

output feature map.

3.4. Loss Function

We use two different Loss Functions to jointly train

DAMDNet. For predicting 3D parameters we make use of

the Weighted Parameter Distance Cost (WPDC) of Zhu et

al. [45] to calculate the difference between the ground truth

of 3D parameters and the predicted 3D parameters.The ba-

sic idea is explicitly to model the importance of each pa-

rameter:

Lwpdc = (Pgt − P )TW (Pgt − P ) (3)

where P is an estimate and Pgt is the ground truth. The

diagonal matrix W contains the weights. For each element

of the shape parameter p, its weight is the inverse of the

standard deviation that was obtained from the data used in

3DMM training. Our ultimate goal is to accurately obtain

68 landmarks of the human face, For 3D face vertices re-

constructed with the estimated 3D parameters, we use Wing

Loss[17] which is defined as:

Lwing(∆V (P )) =

{

ω ln(1 + |∆V (P )|/ ∈) if |∆V (P )| < ω
|∆V (P )| − C otherwise

(4)

where ∆V (P ) = V (Pgt) − V (P ),V (Pgt) and V (P ) are

the ground truth of the 3D facial vertices and the 3D facial

vertices reconstructed using the 3D parameters predicted by

the network, respectively. ω and ∈ are the log function

parameters.C = ω − ω ln(1 + ω/ ∈) is a constant that

smoothly links the piecewise-defined linear and nonlinear

parts.

Overall, the framework is optimized by the following

loss function:

Lloss = λ1Lwpdc + λ2Lwing (5)

where λ1 and λ2 are parameters, which balance the contri-

bution of Lwpdc and Lwing . The selection of these parame-

ters will be discussed in the next section.

3.5. Data Augmentation and Training

The input to DAMDNet is a 2D image with the facial

ROI localized by a face detector. In this paper, we use the

Dlib1 SDK for face detection. We first enlarge the detected

face bounding box by a factor of 0.25 of its original size and

crop a square image patch of the face ROI, which is scaled

to 120× 120. DAMDNet outputs a 62-dimensional 3D pa-

rameter vector, including 40-dimensional identity parame-

ter vector, 10-dimensional expression parameter vector and

12-dimensional pose vector. We use both real face images

and generated face images to train our DAMDNet. We use

the same method as [32] to generate a virtual face sample

with full parameters. The generated face samples contain a

large number of large poses.

Most of the current real training data sets contain mages

of small and medium poses and unoccluded faces. In or-

der to improve the robustness of the algorithm for arbi-

trary poses, we conduct a facial profile processing of real

face images using the methods proposed by Zhu et al. [46].

The face standardization process divides the face image into

three regions: the face region, the area around the face, and

the background region. Similar to face normalization, the

basic idea of face profile is to predict the depth of the face

image and generate a contour view that can be rotated in

three dimensions. When the depth information is estimated,

the face image can be rotated in three dimensions to produce

the appearance of larger poses. In this paper, we rotate each

real sample by 10 to 90 degrees on the z-axis to generate

a face image of new poses. Figure 4, (a) and (b) show the

effect of a 2D face image rotated by 0◦,15◦,30◦ and 60◦

respectively, and Figure 4(c) its 3D mesh

4. Experiments

In this section, we evaluate the performance of our

method on three common face alignment tasks, face align-

ment in small and medium poses, face alignment in large

poses, and face reconstruction in extreme poses (±90o yaw

angles), respectively.

1http://dlib.net/



Figure 4. (a) and (b) from left to right are face images and 3D

mesh diagrams rotated by 0
◦, 15◦, 30◦, and 60

◦ around the z-

axis;(c)virtual face samples.

4.1. Implementation details

We use the Pytorch 2 deep learning framework to train

the DAMDNet models. The loss weights of our method are

empirically set to λ1 = 0.5 and λ2 = 1. In our exper-

iments, we set the parameters of the Wing loss as ω = 10
and ∈= 2. The Adam solver[25] is employed with the mini-

batch size and the initial learning rate set to 128 and 0.01,

respectively. There are 680,000 face images in our training

set, including 430,000 real face images and 250,000 syn-

thetic face images. Real face images come from AFW[47]

and LFPW[2] data sets, and various data enhancement algo-

rithms are adopted to expand the datasets. We run the train-

ing for a total of 40 epochs. After 15, 25 and 30 epochs,

we reduced the learning rate to 0.002, 0.0004 and 0.00008

respectively.

4.2. Evaluation databases

We evaluate the performance of our method on three

publicly available face data sets AFLW [26], AFLW2000-

3D[45] and DFW[27, 37]. These AFLW and AFLW2000-

3D data sets contain small and medium poses, large poses

and extreme poses (±90o yaw angles). We divide the

dataset AFLW and AFLW2000-3D into three sections of

[0o, 30o], [30o, 60o], and[60o, 90o] according to the face ab-

solute yaw angle.

AFLW AFLW face database is a large-scale face

database including multi-poses and multi-views, and each

face is annotated with 21 feature points. This database

contains very diverse images, including pictures of vari-

ous poses, expressions, lighting, and ethnicity. The AFLW

face database consists of approximately 250 million hand-

labeled face images, of which 59% are women and 41% are

men. Most of the images are color images, only a few are

gray images. We only use the part of extreme pose face

2https://pytorch.org/

images of the AFLW database for qualitative analysis.

AFLW2000-3D AFLW2000-3D is constructed [45] to

evaluate 3D face alignment on challenging unconstrained

images. This database contains the first 2000 images from

AFLW and expands its annotations with fitted 3DMM pa-

rameters and 68 3D landmarks. We use this database to

evaluate the performance of our method for the face align-

ment task.

DFW Disguised Faces in the Wild (DFW)[27, 37]

dataset containing 11,157 images pertaining to 1,000 iden-

tities with variations in terms of different disguise acces-

sories. For a given subject there are four types of images:

normal, validation, disguised, and impersonator. We visu-

alized DAMDNet’s 3D face alignment effect on the DFW

data set, proving that our algorithm also has excellent per-

formance for disguised face.

4.3. The evaluation metric

We are given the ground truth 2D landmarks Ui, their

visibility vi, and estimated landmarks Ûi for Nt test im-

ages. Normalized Mean Error (NME) is the average of the

normalized estimation error of visible landmarks, defined

as,

NME =
1

Nt

Nt
∑

i

(
1

di|vi|1

N
∑

j

vi(j)||Ûi(:, j)− Ui(:, j)||)

(6)
where di is the square root of the face bounding box size.

Note that normally di is the distance of the two centers of

the eyes in most prior face alignment work dealing with

near-frontal face images.

4.4. Comparative evaluation

4.4.1 Comparison on AFLW

In the AFLW dataset, 21,080 images were se-

lected as test samples, with 21 landmarks available for

each sample. During testing, we divide the test set

into 3 subsets according to their absolute yaw angles:

[0o, 30o], [30o, 60o], and[60o, 90o] with 11,596, 5,457 and

4,027 samples respectively. Since a few experiments have

been conducted on AFLW, we choose baseline methods

for which the code is available, including CDM [44],

RCPR [7], ESR [10], SDM [43],3DDFA[45] and nonlinear

3DMM[40].Table 1 presents the results, given in terms of

NME(%) of face alignment on AFLW with the best results

highlighted. The results of the provided alignment mod-

els are identified with their references. Figure 5 shows the

corresponding CED curves. Our CED curve is only com-

pared to the best method in Table 1. Since the best non-

liner 3DMM method currently only provides data for the

AFLW2000-3D dataset, there is no CED baseline for it.

The results show that our algorithm significantly improves










