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Abstract

Face anti-spoofing is an important task to assure the

security of face recognition systems. To be applicable to

unconstrained real-world environments, generalization ca-

pabilities of the face anti-spoofing methods are required.

In this work, we present a face anti-spoofing method with

robust generalization ability to unseen environments. To

achieve our goal, we suggest bipartite auxiliary supervi-

sion to properly guide networks to learn generalizable fea-

tures. We propose a bipartite auxiliary supervision net-

work (BASN) that comprehensively utilizes the suggested

supervision to accurately detect presentation attacks. We

evaluate our method by conducting experiments on public

benchmark datasets and we achieve state-of-the-art perfor-

mances.

1. Introduction

Current state-of-the-art face recognition methods [11,

12, 22, 34] can recognize faces almost perfectly with ac-

curacy that exceeds what humans can achieve. However,

these face-recognition technologies may give false authen-

tication when the system is presented with spoof images,

such as video replays or photographs. Since face spoofs

are easier to acquire compared to other biometric modali-

ties (e.g., fingerprints or iris), face recognition systems can

be easily fooled, and therefore, fragility exists in the face

recognition system. To assure the security of face recogni-

tion, face anti-spoofing methods to prevent these deceptions

must be developed.

Several methods to prevent face spoofing have been de-

veloped. Some methods used Local Binary Patterns (LBPs)

[8, 23] to capture textural differences between presenta-

tion attacks (PAs) and live faces. Another method [14]

attempted to utilize moiré-pattern to distinguish between

real faces and printed photographs with analysis in Fourier

spectra. Some other methods [25, 38] used motion cues

such as lip movement and eye blinking to distinguish real
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Figure 1. Comparison of face anti-spoofing using binary, unipar-

tite and bipartite auxiliary supervision. Contours of input spaces

of spoof (yellow) and live (blue) images, and supervision space

(red). Compared to the simple binary supervision and unipartite

supervision, bipartite auxiliary supervision helps to learn mapping

relation from input space to a wider supervision space. In this way,

feature representation can be enriched, and models can be guided

to capture more generalizable features of both live faces and pre-

sentation attacks.

faces from PAs. However, these methods that rely on hand-

crafted features do not achieve powerful feature representa-

tion and show limited performance that decreases in cross-

tests [3, 5, 10, 41].

Recently, deep neural networks have achieved great suc-

cess in computer vision society by outperforming former

state-of-the-art performances in almost every task [15, 18,

33, 45], including face anti-spoofing [21, 28, 43, 46, 49].

[28] fine-tuned a CNN pre-trained on ImageNet [42], then

used an SVM-based classifier to detect PAs. [46] adopted

LSTM-CNN architecture and attempted to learn both spa-

tial information and temporal patterns of the input sequence.

Despite the progress in performance, existing methods
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Figure 2. Reflection map as auxiliary supervision. Light rays that

travel from the photographers side to the surfaces of PAs (e.g.,

coatings of photographs) are reflected and captured by cameras,

and thereby cause reflection artifacts. Bipartite auxiliary supervi-

sion is achieved by using this reflection artifact along with facial

depth maps as auxiliary supervision.

are not readily generalized, and show great degradation of

performance when evaluated on datasets that they are not

trained on. Most of the deep learning-based methods guide

networks with binary supervision that only uses binary class

labels with softmax loss [28, 39, 47]. These methods that

only use class labels as supervision do not properly guide

networks to capture generalizable features, and the net-

works are prone to capture arbitrary features that may only

exist in the train set. As a result, networks are easily get

overfitted and lead to deterioration of performances.

To solve this problem, [32] provided auxiliary 3D fa-

cial depth map and remote-photoplethysmography (r-ppg)

signals to serve as supervision for the network. They ex-

ploited the fact that spoof media do not exhibit face-like

depth, nor physiological signals. The provided information

of facial depth map and r-ppg signal served as additional

ground truth for the network, and the network was trained

to predict depth maps and physiological signals. As a re-

sult, the network was trained to better capture generalizable

features and made notable improvements in performance.

However, the auxiliary supervision that was used in [32]

only has faithful meaning for the live face and is less mean-

ingful for PAs because the provided supervision is constant-

valued (i.e., constant depth map or constant r-ppg signal for

PAs). Similar to the simple binary supervision, this type

of supervision can mislead the neural network to learn ar-

bitrary features of PAs that may not be generalizable on a

test set. As a result, error rates increase, and generaliza-

tion capability is degraded. Also, this can limit the feature

representation of a network because the supervision guides

the network to learn a mapping relation from input space

to a limited supervision space (Fig. 1). Therefore, the su-

pervision of spoof images requires increased meaning and

complexity that help to capture generalizable features.

We propose a bipartite auxiliary supervision network

(BASN) that comprehensively utilizes the following faith-

ful auxiliary information of both spoofs and live images:

3D facial depth map for live images and spoof medium re-

flection map for spoof images. Light rays that are reflected

from a surface of spoof medium cause reflection artifacts in

recaptured images (Fig. 2). Compared to spoof media, sur-

faces of live faces show differences in smoothness and tex-

tures, and reflection artifacts rarely occur during the image

capturing. Therefore, if we can accurately capture reflection

artifacts, spoofs can be effectively detected. We thereby aim

to estimate the reflection map by providing auxiliary reflec-

tion supervision. Along with the reflection supervision, we

also use faithful depth map information as auxiliary super-

vision for live faces. In this way, meaningful supervision

can be utilized for both live and spoof images. We call this

type of supervision as bipartite auxiliary supervision since

we use meaningful supervision for both spoof and live im-

ages. We type the former method [32] that utilizes mean-

ingful supervision for either spoof or live images as unipar-

tite auxiliary supervision. The proposed BASN achieves ro-

bust generalization ability by extracting discriminative and

generalizable features of both spoof and live images and by

comprehensively interpreting them.

Contributions of our work are summarized as follows:

• We exploit a depth map and a reflection map as bipar-

tite auxiliary supervision that well represents charac-

teristics of both live and spoof faces. Bipartite auxil-

iary supervision helps to enrich feature representation

and improve the generalization capabilities of models.

• We propose BASN, an architecture that effectively

learns to extract and fuse auxiliary features to detect

presentation attacks.

• We evaluate our model on several publicly-available

face anti-spoofing datasets and achieve comparable to

or higher performance than the state-of-the-art meth-

ods.

2. Related Works

Initially, researchers mainly focused on hand-crafted fea-

ture representation, such as LBP [5, 9, 10, 36], HoG [26, 48]

and SIFT [40] to tackle the problem. However, these hand-

crafted feature-based methods showed a lack of generaliza-

tion capability due to limited feature representation. After

the great success of deep learning in several computer vi-

sion tasks [15, 18, 33, 45], researchers have more focused

on approaches based on CNNs. [47] first attempted to uti-

lize deep features for face anti-spoofing with Alexnet [27]

architecture. [39] proposed to learn textural features from

both facial and non-facial regions under CNN framework,

believing that spoof patterns exist in the whole frame. They

also attempted to detect eye blinking by estimating frame

difference and utilized the state change of eye movements

as an additional clue. [28, 37] approached to apply SVM



as a classifier with deep features extracted by CNN. [28]

proposed to extract partial convolutional features by gath-

ering thresholded values of feature maps and applied PCA

to extract generalizable features. In [29], LBP features are

extracted with CNNs, and the extracted features are utilized

to distinguish between spoofs and live images. Also, there

were some attempts to capture both spatial and temporal re-

lation of the input sequence by adopting LSTM-CNN struc-

ture [46, 49]. [49] approached to learn spatio-temporal fea-

tures by attending to discriminative regions of input images,

and made contributions with an additional data synthesis

method.

Recently, there were several attempts of utilizing auxil-

iary supervision to guide networks, aiming to avoid overfit-

ting. [2] proposed to extract both local features of patches

and depth maps of facial regions by adopting two-stream

CNN architecture. [43] attempted to achieve improvements

in generalization capabilities by adopting an adversarial-

learning [16] strategy that a generator aims to fool multi-

ple adversarial discriminators pre-trained on different do-

mains. [21] regarded face anti-spoofing as image decompo-

sition problem and attempted to estimate spoof noise pattern

with auxiliary supervision. [32] proposed to guide networks

with auxiliary supervision of facial depth information and

remote-photoplethysmography (r-ppg) signal. The methods

proposed to utilize auxiliary supervision were more prop-

erly guided to capture generalizable features and achieved

notable improvements in PA detection performance.

3. The Proposed Method

The main goal of this work is to guide the network with

faithful information of both spoof and live images; We aim

to utilize 3D facial depth map supervision for live faces and

spoof medium reflection map supervision for spoof images.

Similar to simple binary supervision, training networks with

unipartite auxiliary supervision (i.e., supervision with faith-

ful information for either live or spoof images) lead to

degradation of generalization capability. Therefore, instead

of providing meaningful supervision only for live faces, we

also provide reflection maps that well represent the char-

acteristics of face spoofs to serve as auxiliary supervision.

To realize our goal, we propose a bipartite auxiliary super-

vision network (BASN) (Fig. 3) that comprehensively uti-

lizes the suggested bipartite auxiliary supervision. The pro-

posed BASN extracts faithful features of both spoof and live

images with bipartite auxiliary supervision, and enriches

the extracted features for effective counter-measurement

against face spoofing.

3.1. Bipartite Auxiliary Supervision

Depth Map. We use 3D facial depth map information to

detect PAs. Spoof medium and live face show distinct dif-

ferences in shapes. Spoof media exhibit even and flat sur-

faces, whereas live faces show more irregular shapes that

are not flat. This key difference in appearance can be repre-

sented as a depth map, and we thereby aim to train the net-

work to estimate depth maps to detect PAs. Since there is

no ground truth label of the depth map in spoof datasets, we

estimate depth maps of face images by using the existing

dense-face-alignment method [13] and regard them as the

ground truths. Instead of estimating the actual depth of the

image, the ground truth depth map is provided by estimat-

ing 3D shapes of a face, and the estimated depth values are

limited to the facial region. The ground truth facial depth

map D is defined as,

D(I|y) =

{
0, if y is spoof,
1

|D| d̃(I), if y is live,
(1)

where I is a given image, y is a label of I and d̃ is a depth

map of a face. The values of depth map are normalized to

the range [0, 1] by using the normalization factor |D|, where

0 indicates farthest from the viewer and 1 indicates closest

to the viewer. Following the suggestion from [32], we use

facial depth map consisting only of zeros as supervision for

fake images, assuming that spoof media are on flat struc-

tures.

Reflection Map. Using meaningful supervision only for

live images (i.e., unipartite auxiliary supervision) is not

enough for the network to capture faithful features of PAs,

because the constant map supervision does not consider

spatial patterns. We use a reflection map as additional aux-

iliary supervision to remedy this lack. As the reflection ar-

tifacts caused by reflected lights from smooth and flat sur-

faces of spoof media rarely occur from live faces, these ar-

tifacts are key difference that help to distinguish spoof from

live faces. We thereby aim to capture reflection artifacts

of spoof images by utilizing reflection maps that represent

the artifacts as auxiliary supervision. By allowing reflection

map to serve as additional auxiliary supervision, bipartite

auxiliary supervision is achieved (i.e., faithful supervision

for both live and spoof images), and the network is guided

to learn more generalizable features of both PAs and live

images. As a result, accurate PA detection can be accom-

plished. We define the ground truth reflection map R as

auxiliary supervision as,

R(I|y) =

{
1

|R| r̃(I), if y is spoof,

0, if y is live,
(2)

where I is a given image, y is a label of I and r̃ is an es-

timated reflection artifact by [51]. Since the ground truth

data of reflection map r̃ is not provided in spoofing datasets,

we estimate the reflection map by using the state-of-the-art

reflection estimation network [51] and regard them as the

ground truths. The generated reflection maps have 3 chan-

nels for RGB whereas depth map only has a single channel.
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Figure 3. The proposed architecture of BASN. The number of kernels is denoted in the bottom of each convolutional layer. The kernel size

of the last two convolutional layers of the classifier is 1×1 and 8×8, respectively. Every other convolutional layer of BASN has a kernel

size of 3×3. Every convolutional layer uses a stride of 1. The filter size is 2×2 for pooling layers with strides of 2.

For consistency with depth map supervision, and to avoid

being overfitted to backgrounds, we crop face regions from

reflection maps. To crop face regions, facial depth maps

are estimated by using the dense-face-alignment-network

[13], and the depth maps are thresholded to generate a bi-

nary mask. Then, the inner product of the binary mask and

the reflection map is computed, and only the face region of

reflection map remains. Also, each RGB value of the re-

flection maps is divided by the maximum values |R| of the

region of each channel, so that the values are normalized to

be in the range of [0, 1]. As reflection artifacts rarely occur

from live faces, we use reflection maps that consist only of

zeros for live faces, assuming that live face images do not

have reflection artifacts.

3.2. Network Architecture

Backbone Network. The proposed BASN is based on

VGG-16 [44] network that is pre-trained on ImageNet [42]

(Fig. 3). We use an additional convolutional layer before

the first VGG-16 layer that outputs a 3-channel feature map.

We use the pre-trained model to extract features of spoofing

datasets that are more generalizable. The extracted feature

maps are common convolutional features that are shared by

depth and reflection feature extractors of auxiliary feature

extractor (AFE) module. Motivated by [31], we adopt Fea-

ture Pyramid Network (FPN) structure to construct feature

maps of multi-scales. Feature maps of conv2, conv3, conv4

from VGG-16 are resized to the fixed size of 64×64, and

the feature maps are concatenated to be passed to the AFE.

Also, feature maps of conv2, conv3, conv4, and conv5 of

VGG-16 are resized to the size of 16×16 and are concate-

nated as a feature map. The second concatenated feature

maps are passed directly to the feature enrichment part (Fig.

3).

Auxiliary Feature Extractor. Auxiliary feature extractor

(AFE) receives feature maps from the backbone network

to estimate auxiliary maps. Each depth and reflection fea-

ture extractors of AFE are identical in structure except for

the number of kernels in the last layer of each extractors

that outputs auxiliary maps of different number of channels

(Fig. 3). Every convolutional layer is followed by a batch

normalization layer [19] and ReLU. Each auxiliary feature

extractor is supervised to minimize following loss function

with the ground truth auxiliary maps:

Ldepth =
1

N

N∑

i=1

||Mdepth(fi)−D(Ii|yi)||
2

1
(3)

Lref =
1

N

N∑

i=1

||Mref (fi)−R(Ii|yi)||
2

1
(4)

where N is the batch size, M is predicted auxiliary maps

of AFE module and fi denotes concatenated feature maps

from the backbone network. The second to last feature maps

of each depth and reflection feature extractors are passed to

following layers of feature enrichment.

Feature Enrichment and Classification. Feature repre-

sentations are enriched by fusing feature maps from AFE

and the backbone network. A reflection feature map is sub-

tracted feature-wise from a depth feature map (Fig. 3). Af-

ter subtraction, two consecutive convolutional layers and a

max-pooling layer follow. The feature map from the back-

bone network is fed to convolutional layers and the output



Category Method APCER (%) BPCER (%) ACER (%)

Baseline Baseline 7.1 12.5 9.8

Supervision
Model A 1.0 14.2 7.6

Model B 4.3 14.2 9.3

Enrichment
Model C 6.7 10.0 8.3

Model D 1.5 5.8 3.6

Table 1. The ablation study results on Oulu-NPU Protocol 1. Each

Model A and B is trained with unipartite supervision of depth map

and reflection map, respectively. Model C and Model D are trained

with bipartite supervision with different feature fusion method.

The depth and reflection feature map of Model C is feature-wise

added, and Model D is the proposed BASN.

feature map is feature-wise added to the subtracted feature

map. To maintain negative values of feature maps, every

convolutional layer is not followed by activation functions

for feature fusion. Also, to prevent certain feature maps

from dominating the fusing process, a batch normalization

layer that helps to balance the scale of a feature map follows

each of the convolutional layers. Finally, the fused feature

map with enriched feature representation is passed to the

classifier to make a final decision, and the classifier is su-

pervised to minimize softmax cross-entropy loss.

Loss Functions. The overall training process of our net-

work is conducted in a multi-task learning fashion:

LBASN = λ1Lcls + λ2Ldepth + λ3Lref (5)

where Lcls, Ldepth, and Lref denote softmax cross-entropy

loss function for the classifier, and loss functions for auxil-

iary map extractors in AFE, respectively. Each λ denotes a

weight of each loss functions. We set values for λ1 = 10,

and λ2 = λ3 = 0.00005. The weight values are empirically

selected to balance the contribution of each loss term.

4. Experiments

4.1. Datasets and Metrics

We evaluate the performance of our method by evaluat-

ing it on four publicly-available datasets: SiW [32], Oulu-

NPU [7], CASIA-FASD [52] and Replay-Attack [8]. We

conduct intra-testing on Oulu and SiW datasets, and cross-

testing by training on a train set of Replay-Attack and test-

ing on a test set of CASIA-FASD datasets, and vice-versa.

Oulu-NPU. This dataset contains 4,950 videos, 990 of

which are real, and 3960 of which are spoofs. Four pro-

tocols are defined in the dataset, and each protocol evalu-

ates different generalization capabilities. Protocol 1 evalu-

ates generalization capability on backgrounds and illumina-

tion. Protocol 2 evaluates generalization capability by train-

ing and testing on different types of print- and video-attack.

Protocol 3 evaluates generalization capability on types of

image capturing devices. Protocol 4 evaluates generaliza-

tion capability of combinations of all variations that are in-

cluded in protocols 1-3.

SiW. This dataset contains 4,478 high-resolution videos of

165 individuals. The videos are recorded with a range of

factors such as illumination and attack medium. Three dif-

ferent protocols are defined in the dataset and each proto-

col evaluates a different generalization capability. Proto-

col 1 evaluates generalization to pose and expression varia-

tions. Protocol 2 evaluates generalization to cross-medium

of replay-attack. Protocol 3 evaluates generalization to un-

known presentation attacks by training and testing on a

dataset that exclusively contains videos of replay-attack or

print-attack.

CASIA-FASD and Replay-Attack. CASIA-FASD dataset

contains 150 real and 450 spoof videos that record 50 in-

dividuals under varied illumination and resolution. Replay-

Attack includes 1200 videos of 50 individuals that are pro-

vided in a single resolution. CASIA-FASD and Replay-

Attack datasets are used for cross-testing.

Metrics. We report the performance of our method by eval-

uating it using the following metrics: Attack Presentation

Classification Error Rate (APCER) [20], Bona Fide Pre-

sentation Classification Error Rate (BPCER) [20], Average

Classification Error Rate (ACER) = (APCER+BPCER)/2

[20] and Half Total Error Rate (HTER) = (False Acceptance

Rate + False Rejection Rate)/2 [20].

4.2. Implementation Details

All data in the public datasets are provided in video for-

mat, so every frame is extracted from the videos and con-

verted to an image file. For each frame, face regions are

cropped and resized to 256 × 256, by using a face detector

[50]. The input images are augmented to have six chan-

nels (RGB+HSV). Other than this, we do not use any data

augmentation methods. The initialization method from [17]

is used to initialize the weights of our network. For every

dataset that we use, the number of spoof images is larger

than the number of real images. Therefore, for every train-

ing epoch, we randomly sample negative images to set the

ratio of positive and negative images as 1 : 1. To train the

network, we use a constant learning rate of 0.00005 with

Adam optimizer [24]. Every experiment is conducted on a

single NVIDIA Titan Xp GPU, and Tensorflow [1] frame-

work is used to implement our work.

4.3. Ablation Study

We conduct ablation study to understand the effect of the

proposed methods with three broad configurations:

(i) Baseline: The baseline model is designed to ablate the

AFE module from BASN and is trained with only a soft-

max loss. Therefore, the feature map from the backbone

network is not enriched with auxiliary feature maps. The

remaining settings are the same as the proposed architec-



ture.

(ii) Baseline with auxiliary supervision: The models of this

configuration are trained with unipartite auxiliary supervi-

sion. The AFE module of Model A and B is designed to

have a single stream of depth feature extracting part and

reflection feature extracting part, respectively. Therefore,

feature fusion is performed only with an auxiliary feature

map and the feature map from the backbone network. The

remaining settings are the same as the proposed model.

(iii) Baseline with feature enrichment method: The mod-

els of this configuration are trained with bipartite auxiliary

supervision with different feature enrichment methods. In-

stead of subtraction, Model C is designed to feature-wise

add feature maps of depth and reflection, and Model D is

the proposed BASN.

Each model is evaluated by following Oulu-NPU Protocol

1, and results are shown in Table 1.

Advantage of Bipartite Auxiliary Supervision. The base-

line model with simple binary supervision shows the poor-

est performance with the highest ACER. Compared to

the result of the binary supervision, both of the models

with unipartite and bipartite supervision show better perfor-

mances. Model D with bipartite supervision outperforms

the models with unipartite supervision with a large margin.

From this result, we can see the effectiveness of the bipar-

tite auxiliary supervision.

Advantage of Proposed Feature Fusion Method. The re-

sult of Model C is worse than the result of Model A of uni-

partite supervision. However, the result of Model D with the

proposed feature fusion method achieves lower ACER than

the result of Model C by a large margin, as the subtraction

allows a wider range of representation. The result indicates

that the bipartite supervision is effective only if the proper

feature fusion method is applied. With the proposed fea-

ture fusion methods, BASN shows notable improvements

in performance and this demonstrates the effectiveness of

our method.

4.4. Intra-Testing

Intra-testing is conducted on SiW and Oulu-NPU

datasets. Different protocols are defined for each dataset

and we strictly follow the defined protocols. Comparisons

of our results with the existing methods are shown in Tables

2, 3.

Oulu-NPU. Our method outperforms the state-of-the-art re-

sults on Protocol 3 and 4 but shows higher ACER on Proto-

col 1 and 2. Our method shows a weakness of generaliza-

tion ability when evaluated on Protocol 1, which evaluates

generalization capabilities on illumination and background

variations. For Protocol 2, our method achieves 0.5 per-

centage points (pp) higher ACER compared to the best re-

sult, and it is ranked as the 3rd (Table 2). For Protocol 3,

our method outperforms the state-of-the-art by a margin of

Prot. Method APCER (%) BPCER (%) ACER (%)

1

CPqD [4] 2.9 10.8 6.9

GRADIANT [4] 1.3 12.5 6.9

MILHP [30] 8.3 0.8 4.6

STASN [49] 1.2 2.5 1.9

Auxiliary [32] 1.6 1.6 1.6

FaceDe-S [21] 1.2 1.7 1.5

Ours 1.5 5.8 3.6

2

MixedFASNet [4] 9.7 2.5 6.1

MILHP [30] 5.6 5.3 5.4

FaceDe-S [21] 4.2 4.4 4.3

Auxiliary [32] 2.7 2.7 2.7

GRADIANT [4] 3.1 1.9 2.5

STASN [49] 4.2 0.3 2.2

Ours 2.4 3.1 2.7

3

MixedFASNet [4] 5.3±6.7 7.8±5.5 6.5±4.6

MILHP [30] 1.5±1.2 6.4±6.6 4.0±2.9

GRADIANT [4] 2.6±3.9 5.0±5.3 3.8±2.4

FaceDe-S [21] 4.0±1.8 3.8±1.2 3.6±1.6

Auxiliary [32] 2.7±1.3 3.1±1.7 2.9±1.5

STASN [49] 4.7±3.9 0.9±1.2 2.8±1.6

Ours 1.8±1.1 3.6±3.5 2.7±1.6

4

MassyHNU [4] 35.8±35.3 8.3±4.1 22.1±17.6

MILHP [30] 15.8±12.8 8.3±15.7 12.0±6.2

GRADIANT [4] 5.0±4.5 15.0±7.1 10.0±5.0

Auxiliary [32] 9.3±5.6 10.4±6.0 9.5±6.0

STASN [49] 6.7±10.6 8.3±8.4 7.5±4.7

FaceDe-S [21] 1.2±6.3 6.1±5.1 5.6±5.7

Ours 6.4±8.6 3.2±5.3 4.8±6.4

Table 2. The intra-testing results of four protocols of Oulu-NPU

dataset.

0.1 pp. For the most challenging Protocol 4, which evalu-

ates a generalization ability of all possible variations in this

dataset, our method outperforms the state-of-the-art by 0.8

pp.

SiW. Our method achieves more noticeable improvements

on SiW dataset. For every protocol defined in this dataset,

our method achieves lower ACER than the state-of-the-art

(Table 3). The ACER of our method is 63%, 57%, and 22%

lower than the state-of-the-art for Protocol 1, 2 and 3, re-

spectively.

4.5. Cross-Testing

The generalization capability of the proposed BASN is

demonstrated by conducting cross-dataset evaluations. We

use CASIA-FASD and Replay-Attack for the experiments

and results are measured in HTER. Our approach shows

better performance than the state-of-the-art on cross-dataset

evaluation from CASIA-FASD to Replay-Attack with 4.0

pp lower HTER and achieves 1.5 pp higher HTER than



Prot. Method ACER (%)

1

Auxiliary [32] 3.58

STASN [49] 1.00

Ours 0.37

2

Auxiliary [32] 0.57±0.69

STASN [49] 0.28±0.05

Ours 0.12±0.03

3

STASN [49] 12.10±1.50

Auxiliary [32] 8.31±3.80

Ours 6.45±1.80

Table 3. The intra-testing results of three protocols of SiW dataset.

the state-of-the-art on evaluation from Replay-Attack to

CASIA-FASD (Table 4). As an average score of both evalu-

ations, our method achieves HTER of 26.75%, which is the

lowest among all methods tested. This result is notable be-

cause cross-testing is usually more challenging than intra-

testing. The cross-testing results of our method demonstrate

that bipartite auxiliary supervision is effective to guide the

network to capture faithful features that lead to improve-

ments in generalization capability.

Method
Train Test Train Test

CASIA-

FASD

Replay-

Attack

Replay-

Attack

CASIA-

FASD

Motion [10] 50.2% 47.9%

LBP-TOP [10] 49.7% 60.6%

Motion-Mag [3] 50.1% 47.0%

Spectral cubes [41] 34.4% 50.0%

LBP [5] 47.0% 39.6%

Color Texture[6] 30.3% 37.7%

CNN [47] 48.5% 45.5%

STASN [49] 31.5% 30.9%

FaceDe-S [21] 28.5% 41.1%

Auxiliary [32] 27.6% 28.4%

Ours 23.6% 29.9%

Table 4. The cross-testing results on CASIA-FASD vs. Replay-

Attack.

5. Visualization

To better understand the behavior of the feature enrich-

ment of BASN, we visualize distributions of the intermedi-

ate feature maps of BASN (Fig. 4) and a binary supervision

model. Each mark of Fig. 4 denotes a test video of Oulu-

NPU Protocol 1 and t-SNE [35] is used for visualization.

By comparing the distribution of the output feature maps of

the proposed feature enrichment method with the others, we

can observe that the feature maps are more discriminately

clustered. The ablation studies and visualization demon-

strates that the proposed feature enrichment is effective and

important.

Also, auxiliary maps estimated by BASN are shown in

Fig. 5. The auxiliary maps are successfully estimated on

images with various conditions, such as poses, genders, and

expressions. Most of the estimated results are successful

and selected results of failure cases are also presented.

6. Conclusions

In this paper, we present a new perspective of using

auxiliary supervision for effective face anti-spoofing. In-

stead of providing faithful supervision of either live or spoof

images, we suggest using bipartite auxiliary supervision

that well represents characteristics of both live and spoof

images. This bipartite auxiliary supervision helps to im-

prove the generalization capabilities of the trained network.

Also, we propose a bipartite auxiliary supervision network,

which uses bipartite auxiliary supervision with a feature-

enrichment method. The feature representation is enriched

by fusing the extracted faithful features and the fused fea-

tures help to detect presentation attacks with low error rates.

We conduct several studies and experiments, and the results

demonstrate the effectiveness of our work.
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[36] Jukka Määttä, Abdenour Hadid, and Matti Pietikäinen. Face
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