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Abstract

Mini-batch construction strategy is an important part of

the deep representation learning. Different strategies have

their advantages and limitations. Usually only one of them

is selected to create mini-batches for training. However, in

many cases their combination can be more efficient than us-

ing only one of them. In this paper, we propose Composite

Mini-Batches - a technique to combine several mini-batch

sampling strategies in one training process. The main idea

is to compose mini-batches from several parts, and use dif-

ferent sampling strategy for each part. With this kind of

mini-batch construction, we combine the advantages and

reduce the limitations of the individual mini-batch sampling

strategies. We also propose Interpolated Embeddings and

Priority Class Sampling as complementary methods to im-

prove the training of face representations. Our experiments

on a challenging task of disguised face recognition confirm

the advantages of the proposed methods.

1. Introduction

Training discriminative representations (embeddings)

with deep neural networks is an established method in dif-

ferent areas like face [48, 37, 41, 42] and speaker [30,

32, 31, 29] recognition, image retrieval [56, 28, 50], per-

son [57, 10] and vehicle [36, 3] re-identification, landmark

recognition [7], fine-grained recognition [16] and few-shot

learning [44, 34, 60].

Training of such representations is usually performed on

large datasets in a mini-batch regime: at each training iter-

ation a small portion of data (mini-batch) is used to calcu-

late the gradients and adjust the weights of the neural net-

Figure 1. Example of Composite Mini-Batch with three sampling

strategies

work. Mini-batches can be constructed in many different

ways: items could be sequentially selected from the whole

dataset, or sampled using some kind of importance measure

[6, 20], or selected based on their classes [45, 41]. Some

kind of hard example mining [22, 25, 46, 41, 42] can also

be used. Each of these sampling strategies has its advan-

tages and limitations.

Usually only one sampling strategy is used for the mini-

batch construction. In this paper, we present the way to

simultaneously utilize several strategies using Composite

Mini-Batches (Figure 1). The main idea is to use dif-

ferent sampling strategies for different parts of the mini-



batch. With this kind of mini-batch construction, the ad-

vantages of several sampling strategies could be combined,

and their limitations could be diminished. We evaluate the

proposed Composite Mini-Batches on the task of disguised

face recognition and confirm the advantages of this mini-

batch construction method.

We also propose Interpolated Embeddings and Prior-

ity Class Sampling as a complimentary ways to improve

the training of deep representations with Composite Mini-

Batches.

2. Related work

2.1. Face representation learning

Learning face representations with deep neural networks

is an established method to perform face recognition [35].

Training of these representations (embeddings) requires

large and rich face datasets [17, 4, 8], appropriate neural

network architectures [18, 58, 49, 9], loss functions [53, 12,

14] and mini-batch sampling strategies [45, 41, 42, 25].

2.2. Loss functions

Face representations supposed to be discriminative [55].

This is usually achieved with specialized loss functions, en-

couraging intra-class compactness and inter-class separabil-

ity.

One type of these functions is based on training a clas-

sifier with a version of normalized Softmax function [52],

employing some kind of margin [27, 26, 53, 12, 25, 59, 54].

Training with this type of loss functions encourages exem-

plar embeddings of each class to be close in the embedding

space to the prototypes of their corresponding classes and

far from the prototypes of other classes. These two objec-

tives are usually attempted to be achieved jointly, but they

could be “dissected” and accomplished separately [19]. For

face datasets with large number of identities Softmax-based

loss functions could become too computationally demand-

ing (very large number of classes in the classifier), but there

are ways to reduce computation in this case [62, 19].

Another way to train discriminative representations is to

use exemplar-based loss functions, which operate on dis-

tances between examples in the embedding space. These

functions use pairs [11, 41], triplets [37] or other groups

of examples [33], where distances between examples of the

same class are stimulated to be small, and distances between

examples of different classes are stimulated to be large, usu-

ally larger than some margin [37, 56]. Since examples are

used in pairs, and the training is performed in mini-batches,

these functions heavily rely on hard example mining and

smart mini-batch construction methods [37, 22, 41, 42],

which ensure that there is enough useful pairs (or triplets)

of examples in every mini-batch.

2.3. Mini-batch construction

There are several main ways to constuct mini-batches

for training. The simplest way is to iterate over the whole

dataset and use all the images sequentially [55, 12]. When

the end of the dataset is reached (training for one epoch is

performed), images in the dataset are shuffled and iterated

again. The process is repeated until convergence. We refer

this mini-batch sampling strategy as “Iterate-Shuffle” (see

Figure 3 (a)). This strategy achieves good results when

the dataset is balanced and no exemplar-based loss is used.

With this strategy each image in the dataset has the same

probability to be sampled in the mini-batch, and also it is

guaranteed to be used for training if at least one epoch is

performed. However, for the cases with severely unbal-

anced datasets (which is very common in face recognition,

see Figure 2 for the example), with this kind of strategy the

major part of the training process will be spent on the few

classes with large number of images. This kind of train-

ing can be helpful to teach the network to be robust to the

pose and appearance variations of faces (because there are

many different faces of the same person used for this type of

training), but it will more likely fail to distinguish between

faces of similarly-looking people in large datasets (because

there are likely not enough similarly-looking people in the

few image-rich classes). Also with this kind of training us-

ing exemplar-based loss functions becomes less efficient,

because there is no hard example mining involved, and so

there are very small possibility of finding useful pairs of ex-

amples in the mini-batches.

The second type of mini-batch sampling strategy can be

referred as “Classes-Then-Images” (see Figure 3 (b)). It

consists of two phases. At the first phase, some classes are

selected to be included into the current mini-batch. This can

be done randomly or using some kind of hard class min-

ing method [45, 41]. At the second phase, for each selected

class several images are chosen to be included into the mini-

batch. It also can be done randomly or with some kind of

hard example mining method [42]. With this kind of sam-

pling we can ensure that each class will appear in the train-

ing approximately same number of times. Also it is well

suited for exemplar-based loss functions because of hard

class and example mining. This strategy also works best

when the dataset is balanced and has difficulties in case of

unbalanced datasets. However, these difficulties are of the

different kind than for the first strategy: if the classes are

sampled randomly, then the images from image-rich classes

are less likely to be sampled into the mini-batch than im-

ages of other, smaller classes. For some cases there is even

a possibility, that some images may never be used in train-

ing at all. For the “long-tail” datasets with large number of

classes (like in Figure 2) this sampling strategy (especially

with hard class mining methods like Doppelganger Mining

[41]) can be well-trained to distinguish between similarly-



Figure 2. Training dataset with long-tail distribution

looking faces of different people, but fail in cases of large

appearance and pose variations of the faces of same person

(because it will be trained less on the intra-person face im-

age variations of image-rich classes).

There are other possible ways of mini-batch construction

like using of importance sampling [20], stratified sampling

[24], unequal training [63] etc. They all have their advan-

tages and limitations.

3. Proposed methods

3.1. Composite Mini-Batches

As a way to combine the advantages of several different

sampling strategies, we propose to use “Composite Mini-

Batches” (see Figure 3 (c)). This mini-batch construction

strategy presumes the composition of a mini-batch from

the several parts (sub-mini-batches), which can be of same

or different size, and using different sampling strategies

for each part. With this kind of mini-batch construction,

it can benefit from each sampling strategy simultaneously.

For example, by using “Iterate-Shuffle” and “Classes-Then-

Images” strategies for two different parts of a Composite

Mini-Batch, we ensure, that each training image from the

dataset will be sampled into the mini-batch regularly (be-

cause of the first strategy), and that each class will regularly

appear in the mini-batch (because of the second strategy).

Also there will be enough hard example pairs for exemplar-

based loss (if we include hard example mining method in

the second strategy). This way we combine the advantages

and reduce the limitations of the individual sampling strate-

gies mentioned above.

One possible downside of the proposed mini-batch con-

struction method is that for some cases not advantages, but

disadvantages of several sampling strategies could be com-

bined together. To prevent this, one should select sampling

strategies carefully, considering their collaborative abilities.

3.2. Interpolated embeddings

In real-world datasets with the long-tail distribution there

is a problem with image-poor classes: there are not enough

training examples to fill the “holes” in the embedding space

(see Figure 4 (a)). Gradients, computed in these cases,

could point in wrong directions, thus reducing the efficiency

of the exemplar-based training methods.

To alleviate these problems, we propose Interpolated

Embeddings (see Figure 4 (b)). These embeddings are cal-

culated at the face representation layer of the neural net-

work. They are computed using an interpolation of embed-

dings, which are presented for the selected class in current

mini-batch.

To create one Interpolated Embedding and add it to the

current mini-batch, we first randomly select a class, which

has at least 2 items in the current mini-batch. Then we ran-

domly select a subset of current mini-batch items, belong-

ing to this class. For each of them, we randomly generate

a weight in range (0, 1). At the face representation layer,

we take an embedding for each selected item, multiply it by

generated weight, sum them together and L2-normalize the

resulting embedding vector and add it to the current mini-

batch.

Exemplar-based loss function uses Interpolated Embed-

dings to select better hard example pairs (positive and neg-

ative) and fill the “holes” in the embedding space.

3.3. Priority Class Sampling

For some specialized problems like disguised face recog-

nition, the amount of available training data is too small to

train from scratch. Using this training data only for fine-

tuning could make the network to overfit on it and later

fail on more general problems. We can add this special-

ized training data to the full training dataset and train the

network on it to ensure that it will work on both tasks. How-

ever, if the ratio of specialized data is too small compared

to the full dataset, it will be sampled too infrequently. To

alleviate this problem, we propose Priority Class Sampling

strategy. The main idea is to create the priority class list

(which includes classes and images from specialized train-

ing data), and use it as a training dataset for one of the sam-

pling strategies of the Composite Mini-Batch. This way, a

small number of specialized training data is sampled in each

mini-batch, ensuring that the network is training for the spe-

cialized problem, while other parts of mini-batch keeping it

suitable for more general problems.

4. Experiments

In this section, we evaluate proposed Composite Mini-

Batch sampling strategy, Interpolated Embeddings and Pri-

ority Class Sampling on the challenging task of disguised

face recognition (DFW2018 [23] and DFW2019 [39]).

4.1. Disguised face recognition

Modern face recognition algorithms demonstrate high

accuracy in controlled conditions as well as in the wild



Figure 3. a) ”Iterate-Shuffle” sampling strategy. b) ”Classes-then-images” sampling strategy. c) Composite Mini-Batch.



Figure 4. Examples of hard negative pairs a) without Interpolated

Embeddings, b) with Interpolated Embeddings

scenario. One of the major challenges nowadays is sig-

nificant appearance variations, which include heavy make-

up, masks, sunglasses, beard (fake or natural), etc. In

the worst case, these changes are made intentionally to

hide ones identity or imitate the appearance of another per-

son [15, 38, 47]. This issue was addressed in the Dis-

guised Faces in the Wild (DFW) competition, which was

held in 2018 [23, 40] and in 2019 [39]. In order to deal

with this problem, several solutions have been proposed

Figure 5. Examples of the DFW faces. Subject images are at the

left, obfuscated images in the middle and impersonator images at

the right

[5, 21, 51, 61, 42].

For each person, the DFW dataset contains images of the

following types:

• “Subject”: a normal face image of a person.

• “Obfuscation” (also referred as “disguised”): a dis-

guised face image of the same person. The disguise

may be achieved by means of beard, sunglasses, make-

up, etc.

• “Impersonator” is a face image of another person that

bears a significant resemblance to the subject image.

Figure 5 shows the examples of DFW face images.

In our experiments, 3, 386 images of 400 people from the

DFW2018 dataset were included into the training set, 7, 771
test images from the DFW2018 dataset were used to per-

form an independent assessment of the performance of the

proposed sampling strategies, and 3, 840 images from the

new DFW2019 test set were used to perform comparison

with existing state-of-the-art algorithms of disguised face

recognition. Compared to DFW2018, new DFW2019 test

set also contains faces, modified by plastic surgery.

4.2. Implementation details

4.2.1 Preprocessing

We used RetinaFace detector [13] for face detection. All

faces were aligned and cropped to the size of 112x112.

Pixel values were normalized to [−1, 1]. We used random

horizontal flipping for the training phase and mirror trick

[41] at the testing phase.

4.2.2 Neural network architecture and training

In the experiments, we used SE-LResNet50E-IR [12] neural

network architecture, which takes images of size 112x112
and outputs L2-normalized embedding of size 512. We used

SV-Arc-Softmax [54] with m = 0.5, s = 64 and t = 1.2.

We also added COPRA margin [59] m2 = 0.01. In the

experiments containing Doppelganger Mining [41] we also



used Combined Margin Pairwise Loss [2] with m1 = 1.0,

m2 = 0.5, m3 = 0.0 and loss weight of 2.0.

For training we used mini-batches of size 300 and

Stochastic Gradient Descent with momentum of 0.9 and

weight decay of 0.0005. OneCycle learning rate policy [43]

with base value of 0.01, maximum value of 0.1 and mini-

mum value of 0.0001 was used for training: first 150, 000 it-

erations learning rate linearly increased from the base value

to the maximum value, then for another 150, 000 iterations

learning rate linearly decreased back to base value, and then

for 300, 000 more iterations it was linearly decreased to

minimum value.

For DFW2019 submission, we trained an ensemble of

SE-LResNet101E-IR [12] networks.

4.2.3 Training dataset

Training is performed on the combined dataset, which con-

sists of public face datasets: MS-Celeb-1M [17], VG-

GFace2 [8] and TrillionPairs-Asians [1]. We also included

training subset of the DFW2018 dataset [23].

To combine datasets properly (as they can contain same

people, which should be merged in the same classes), we

used the following strategy: using a pre-trained network,

we retrieved L2-normalized face embeddings for every im-

age in all datasets. Then, we calculated average embedding

for each person and used pairwise cosine distances to find

similar pairs of people. After that, we:

• merged people with cosine distances less than 0.3,

• treated pairs of people with cosine distances larger

than 0.5 as different people,

• dropped people with smaller number of images in

pairs, where cosine distance is between 0.3 and 0.5.

Cosine distance values 0.3 and 0.5 were chosen using a

manually examined subset of training data pairs. The re-

sulting dataset contains 178, 688 people and 11, 121, 926
images, ranging from 1 to 2, 901 images per person. This

dataset has severe long-tail distribution as shown on Fig-

ure 2.

4.2.4 Sampling strategies

We have trained seven neural networks with these sampling

strategies:

• “I-S”: This network is trained with Iterate-Shuffle (I-S)

strategy, mini-batch size is 300.

• “DM-AE”: This network is trained with Doppelganger

Mining with Auxiliary Embeddings (DM-AE) strat-

egy. Mini-batch of size 300 is sampled using a variant

of “Class-Then-Images” sampling strategy, with Dop-

pelganger Mining [41] used for class selection (two

classes are selected randomly, others - using Doppel-

ganger List) and Hard Example Mining with Auxiliary

Embeddings [42] used to select images for each class

(we used 4 as a number of images per class in the mini-

batch, 0.3 as a probability of hard positive and hard

negative pairs, and 100 as a maximum number of can-

didates). Auxiliary embeddings for the training dataset

are calculated with the final layer of the neural net-

work, after 300, 000 iterations of training. Before that

all images for selected classes are chosen randomly.

• “I-S + DM-AE (2:1)”: This network is trained with

Composite Mini-Batch, where 200 images are sam-

pled with I-S strategy and 100 images are sampled with

DM-AE strategy.

• “I-S + DM-AE (1:2)”: This network is trained with

Composite Mini-Batch, where 100 images are sam-

pled with I-S strategy and 200 images are sampled with

DM-AE strategy.

• “I-S + DM-AE (1:2), with IE”: This network is trained

with Composite Mini-Batch, where 100 images are

sampled with I-S strategy, 200 images are sampled

with DM-AE strategy, and 150 Interpolated Embed-

dings were added to the mini-batch at the embedding

layer.

• “I-S + DM-AE (1:2), with PCS”: This network is

trained with Composite Mini-Batch, where 100 images

are sampled with I-S strategy, 192 images are sampled

with DM-AE strategy and 8 more images (2 persons, 4
images per person) are sampled with PCS strategy. For

the Priority Class List, we used a list of classes, which

are added to the combined dataset from the DFW2019

training set. These classes are known to have a large

number of disguise variations, obfuscated faces, im-

personators and so on.

• “I-S + DM-AE (1:2), with IE and PCS”: This network

is trained with Composite Mini-Batch, where 100 im-

ages are sampled with I-S strategy, 192 images are

sampled with DM-AE strategy, 8 more images (2 per-

sons, 4 images per person) are sampled with PCS strat-

egy, and 150 Interpolated Embeddings were added to

the mini-batch at the embedding layer.

4.3. Results

The results on the DFW2018 test set are presented in

Table 1 and Figure 6. For the DFW2019 challenge sub-

mission we trained an ensemble of three larger networks.



Method GAR@1% GAR@0.1%

I-S 91.13% 86.95%

DM-AE 90.82% 86.38%

I-S + DM-AE (2:1) 91.68% 87.66%

I-S + DM-AE (1:2) 91.55% 87.61%

I-S + DM-AE (1:2), IE 91.78% 87.83%

I-S + DM-AE (1:2), PCS 91.80% 87.86%

I-S + DM-AE (1:2), IE, PCS 91.95% 87.96%

DFW2019 submission 91.92% 88.45%

Ensemble 92.40% 88.80%

Table 1. Results on the Disguised Faces in the Wild 2018 test set.

Evaluation metric is genuine accept rate (GAR) at false accept

rates (FAR) of 1% and 0.1%

Figure 6. Results on the Disguised Faces in the Wild 2018 test set

Method GAR@0.1% GAR@0.01%

Our submission 93.2% 52.0%

ResNet-50 [39] 47.60% 38.40%

LightCNN-29v2 [39] 74.40% 51.20%

Table 2. Results on the Protocol-1 (Impersonation) of DFW2019

test set. Evaluation metric is genuine accept rate (GAR) at false

accept rates (FAR) of 0.1% and 0.01%

We tested this ensemble on DFW2018 (“DFW2019 submis-

sion” in Table 1) and DFW2019 (“Our submission” in Ta-

bles 2-5) test sets. We also report the results, achieved af-

ter the challenge deadline by the ensemble of multiple net-

works, including networks from DFW2019 submission and

from experiments with sampling strategies (“Ensemble” in

Table 1).

The results on DFW2019 test set for Protocol-1 (Im-

personation), Protocol-2 (Obfuscation), Protocol-3 (Plastic

Surgery) and Protocol-4 (Overall) are presented in Tables 2,

3, 4, 5. Baseline results are taken from [39].

Composite Mini-Batch achieved improvement over the

individual sampling strategies. Interpolated Embeddings

and Priority Class Sampling improved results even more.

The best single network result on the DFW2018 test set

Method GAR@0.1% GAR@0.01%

Our submission 92.3% 87.7%

ResNet-50 [39] 35.38% 16.42%

LightCNN-29v2 [39] 55.56% 36.90%

Table 3. Results on the Protocol-2 (Obfuscation) of DFW2019 test

set. Evaluation metric is genuine accept rate (GAR) at false accept

rates (FAR) of 0.1% and 0.01%

Method GAR@0.1% GAR@0.01%

Our submission 95.6% 92.0%

ResNet-50 [39] 46.40% 22.40%

LightCNN-29v2 [39] 69.20% 47.20%

Table 4. Results on the Protocol-3 (Plastic Surgery) of DFW2019

test set. Evaluation metric is genuine accept rate (GAR) at false

accept rates (FAR) of 0.1% and 0.01%

Method GAR@0.1% GAR@0.01%

Our submission 92.1% 83.1%

ResNet-50 [39] 35.96% 16.89%

LightCNN-29v2 [39] 55.74% 36.50%

Table 5. Results on the Protocol-4 (Overall) of DFW2019 test set.

Evaluation metric is genuine accept rate (GAR) at false accept

rates (FAR) of 0.1% and 0.01%

(91.95% GAR@1%FAR and 87.96% GAR@0.1%FAR)

was achieved by a network using Composite Mini-Batch

with a combination of all proposed sampling strategies.

Our DFW2019 challenge submission achieved

the results of 91.92% GAR@1%FAR and 88.45%

GAR@0.1%FAR on the DFW2018 test set and performed

better than baseline on the DFW2019 test set for all four

protocols. We also report the results of multi-network

ensemble, which achieved 92.40% GAR@1%FAR and

88.80% GAR@0.1%FAR on the DFW2018 test set.

5. Conclusions

In this paper, we have presented a novel method of Com-

posite Mini-Batch construction to improve the training of

deep neural networks. The main idea of this method is to

use different sampling strategies for different parts of the

mini-batch. With this kind of mini-batch sampling, the ad-

vantages of several sampling strategies are utilized simulta-

neously.

Experimental results on the challenging task of disguised

face recognition confirmed the advantages of Composite

Mini-Batches over individual sampling strategies.

We also presented Interpolated Embeddings and Priority

Class Sampling as a complementary ways to improve the

training of face representations. We used them to get im-

provements on DFW2018 and DFW2019 datasets.
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