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Abstract

We propose a method for learning a scene coordinate

regression model to perform accurate camera relocaliza-

tion in a known environment from a single RGB image. Our

method incorporates self-supervision for scene coordinates

via multi-view geometric constraints to improve training.

More specifically, we use an image-based warp error be-

tween different views of a scene point to improve the ability

of the network to regress to the correct absolute scene co-

ordinates of the point. For the warp error we explore both

RGB values, and deep learned features, as the basis for the

error. We provide a thorough analysis of the effect of each

component in our framework and evaluate our method on

both indoor and outdoor datasets. We show that compared

to the coordinate regression model trained with single-view

information, this multi-view constraint benefits the learning

process and the final performance. It not only helps the net-

works converge faster compared to the model trained with

single-view reprojection loss, but also improves the accu-

racy of the absolute pose estimation using a single RGB

image compared to the prior art.

1. Introduction

Relocalizing a camera in a known environment is an im-

portant task in computer vision and robotic vision, with

applications in Simultaneous Localization and Mapping

(SLAM) and Virtual Reality. Commonly formulated as a

retrieval problem, the goal of camera relocalization is to es-

timate the six degree of freedom (6DoF) pose of the camera

w.r.t. to a fixed world coordinate frame given an RGB image

(or augmented with depth image if a range sensor is avail-

able). This is also known as single-shot absolute camera

pose estimation, which is different from accumulating rela-

tive camera motions between consecutive frames in a Visual

Odometry system.

The mapping from the image space to the 6DoF trans-

formation space can be found via geometric constraints

Figure 1. The projections of scene coordinates predicted by

models trained with (reprojection loss only) and (reprojection

loss + reconstruction loss) on a pair of test images. In the left

image we show some sample points (colored circles) for which

we predict the 3D coordinates using two models: one trained with

single-view reprojection loss and the other trained with the multi-

view geometry-based reconstruction loss as the additional supervi-

sion. In the right view, whose relative pose to the left is known, we

show the projections of the regressed coordinates from left image

as squares (reprojection loss) and as stars (geometry loss). Ob-

serve that the geometry loss (i.e. with feature consistency con-

straints), produces a model that produces better coordinates, as

seen by the better match locations of the star points compared with

the squares. Best viewed in color.

based on correspondence matches between the query im-

age and the pre-built map, or directly through a parametric

model, e.g., Convolution Neural Networks (CNNs). While

achieving highly accurate pose estimates, the methods in

the first group usually need to define a handcrafted feature

with limited generalization ability. When correspondence

matching fails (insufficient or erroneous matches), these

methods likewise fail. To overcome this problem, meth-

ods in the second group use deep learning models to di-

rectly regress the pose of the camera from the image, e.g.,

the well-known PoseNet [15]. Although PoseNet and its

derivatives (e.g., [14, 26]) can handle a variety of dynamic

effects in the images such as lighting changes and motion

blur, there is still a wide gap between the accuracies, with

deep regression methods being significantly less accurate

than those that rely on explicit correspondence and geomet-

ric constraints.

As a combination of the advantages of both categories,



DSAC++ (LessIsMore) [4] and its predecessor DSAC [2]

apply a deep neural network over the image to establish

the dense correspondences between 2D and 3D space by

regressing each image pixel directly to its scene coordi-

nates (i.e., its 3D coordinates in the global reference frame).

Pose is then obtained using standard RANSAC [6] plus PnP

solvers. In that sense, this model can also be interpreted as

a network that performs 3D scene reconstruction from an

single image, and then estimates the pose as a post process.

Because of the robustness of the CNN coordinate regressor

and the strong geometric constraints of the PnP solver, this

line of methods achieves great accuracy for pose estimation,

and even outperforms the traditional approaches [23].

The key to these methods working well is the ability of

the deep model to map to the fixed 3D location of any given

scene point from an image of that point. Since the viewpoint

can be anywhere, the appearance of the scene point may

vary, but the network should still regress to the same global

3D coordinates. It is not clear if such a network is capturing

the invariance of features to different viewpoints and there-

fore implicitly encoding multi-view geometric constraints,

or if it is acting as a huge look-up table that simply memo-

rizes all possible appearances and corresponding mappings.

Regardless, in our work we aim to make the multi-view con-

straints more explicit during training.

To that end, the main innovation in this paper is to ex-

ploit constraints from multi-view geometry to supervise the

learning of a model for scene coordinate regression. We

aim to retain the advantages of the training for single view

reconstruction, but to incorporate the additional informa-

tion available from viewpoint invariant image features un-

der motion parallax. Specifically, after predicting the scene

coordinates from one image in the database during training,

we project the predictions to another image that shares an

intersection of the camera frustum with the query image,

using the ground truth pose of the target image. We then

compare local image feature descriptors – any difference

that we assume arises from an error in the predicted scene

coordinates – and use this error for back-propagation. In

this work we explore two types of local image features: (i)

simple RGB values (which are invariant to viewpoint under

the common lambertian reflection assumption); (ii) high di-

mensional features that are learned to be good for matching

[27, 28].

The advantage of our method is that it produces more ac-

curate scene coordinates compared to the single-view train-

ing approaches. Therefore it yields better 2D-3D correspon-

dence for single view pose estimation using RANSAC dur-

ing test. On top of this accuracy improvement, our system

also avoids the scale issue that the methods with single view

training may suffer. The reason for the first stage – train-

ing with pseudo depth in the RGB-only case (See section 2

for details) – is needed in DSAC++ [4] is that it assigns an

initial scale to the scene coordinates. A good guess of the

scale helps the next learning stages and vice versa. This

makes it heavily reliant on the heuristic. In contrast, experi-

ments show that our method relaxes the requirement for this

strong prior through the use of multi-view geometry. One

should bear in mind that our training pipeline also requires

the initialization stage, but only a rough guess for depth is

needed to avoid the case when all the photometric/feature

construction losses are meaningless.

A similar technique has been applied to the topic of self-

supervised depth estimation such as [8, 28, 29]. The differ-

ences between these works and ours are twofold. First, the

objectives are different. Depth estimation focuses on purely

recovering the geometric structure of each frame. However

in our task, the scene coordinates inferred from the network

are intermediate values whose purpose is ultimately to en-

able camera pose estimation.

Second, the label consistency of these two representa-

tions is different, and this has a significant effect on learn-

ing. In the case of depth estimation, the labels are the depth

values of each pixel. As the camera moves these depth val-

ues change even for the same part of the scene because they

are camera position dependent. In contrast, for the scene

coordinate estimation task, the scene coordinates are de-

scribed in a fixed world coordinate frame – the label for

a scene point is its 3D coordinates and this label is consis-

tent across all viewing locations and appearances, i.e., inde-

pendent of camera location. We believe this makes the 3D

scene coordinates easier to regress than depth values in the

known environments.

Our main contribution can be summarized as:

• We explicitly introduce the multi-view geometric con-

straints of temporal image pairs to the learning of the

scene coordinate regression model.

• We design a multi-component loss function as the

main supervision in our system. It contains two types

of image feature reconstruction errors and a structural

smoothness penalty over the featureless regions of the

scene. The effect of each component to the model is

investigated via a detailed ablation study.

• We achieve state-of-the-art results for pose estimation

on both indoor and outdoor datasets with only RGB

images, while requiring less training steps compared to

the prior art. In addition, we observe that our method

obtains consistent performance regardless of varying

scene-dependent factors, e.g., depth range.

2. Related Work

The classic solutions for camera relocalization are

mainly based on extraction of (handcrafted) sparse image

features (e.g., [19, 22]), establishing feature correspon-

dences, followed by well-studied geometric methods to

solve for pose using the correspondences. Having the cor-



respondences established between an image and the map

database which is built beforehand, the pose of the camera

can be estimated using the PnP algorithm and its variants

[17, 7]. To further improve the robustness of the pose pre-

diction, RANSAC has been widely applied to 1) generate

a pool of pose hypotheses; 2) then score them according

to the number of compatible inliers; and 3) iteratively re-

fine the best hypothesis based on the consensus of inliers.

This three-stage pose estimation pipeline is continuously

acting as the cornerstone of the state-of-the-art methods in

this area, which will be discussed shortly.

PoseNet was introduced in Kendall et al. [15] which pi-

oneered the idea of applying a deep learning model to the

problem of camera pose estimation. A CNN is used to ex-

tract high-dimensional features directly from the RGB im-

age, followed by two fully connected layers to regress the

translation vector and the rotation quaternion. Although

the model is robust to dynamic changes of the scene due

to its high-level generalization ability, the performance of

PoseNet [15] and its variants [13, 14, 26] do not perform

sufficiently well for accurate localization. Nevertheless, the

most notable improvement comes from the subsequent ge-

ometric loss based PoseNet [14]. It leverages the physi-

cal model of the scene and supervises the learning of the

pose regression model by minimizing the reprojection er-

ror of the 3D points, eliminating the dependence on the

choice of hyperparameters between translational and rota-

tional losses. Moreover, a homoscedastic task loss is also

used to learn the model, which relies on RGB information

only and achieve on-par performance to the RGB-D ver-

sion. The need of the 3D model however means that this

method is inapplicable when only RGB images are at hand.

Recently, Balntas et al. [1] proposed RelocNet that relies on

evaluating the similarity between the query image and im-

ages in the training database. The pose of the query image

is then recovered based on the absolute pose of its near-

est neighbour and the estimated relative transformation be-

tween them. Despite the progress, there is much room for

improvement in accuracy for these methods.

The idea of using scene coordinates to obtain dense 2D-

3D correspondences was initially proposed by Shotton et

al. in [24]. A Random Forest was trained to infer the 3D

scene (world) coordinate for the image pixels with RGB-D

data. The RANSAC pipeline is then revisited to estimate

the camera pose accurately. Valentin et al. [25] exploits the

uncertainty in the estimate from the Random Forest to bene-

fit the pose optimization. This work is then further extended

to the object-centered scenario in [3], where they used only

the RGB image as input for object pose estimation.

DSAC [2] and DSAC++ [4] deploy two versions of an

end-to-end scene coordinate regressor based on CNNs, and

are devoted to make all the steps in the traditional RANSAC

differentiable to enable an end-to-end training pipeline. In

DSAC [2], the CNN for scene coordinate regression takes

a small patch of the image as the input, and its output is

the 3D coordinate associated to the central pixel of the in-

put patch. As an ameliorator, DSAC++ [4] was upgraded

to a fully convolutional network (FCN) [18] to improve the

efficiency of training and to preserve the image-patch-to-

coordinate property. To perform the three-step RANSAC

algorithm, they start by sampling a pool of pose hypothe-

ses using the PnP solver over the dense 2D-3D correspon-

dences given by the scene coordinate prediction. In the sec-

ond stage of ranking the hypotheses, DSAC [2] scores them

with another CNN whose input is the reprojection error map

of the predicted scene coordinates given each pose hypoth-

esis and the camera intrinsics. On the other hand, to over-

come the overfitting issue of the scoring CNN in DSAC [2],

DSAC++ [4] simply uses a soft inliers counting scheme to

evaluate the merits of the hypotheses. The difference also

exists in the last refinement step. To make this iterative pro-

cedure differentiable, DSAC [2] approximates the gradient

via finite differences, and DSAC++ [4] uses the iterative

Gauss-Newton algorithm to linearize the model. Combin-

ing these techniques, they achieve the state-of-the-art result

for camera relocalization in both indoor and outdoor scenes,

even without the 3D model of scene.

A multi-step scheme is also adopted in the training phase

of DSAC++ [4]. The training of the scene coordinate re-

gression CNN consists of three stages and the performance

of the model progressively increases with additional train-

ing. Since they will be repetitively mentioned hereinafter,

we give a brief introduction to them. The scene coordinate

regression model is initially trained with either ground truth

scene coordinates or a heuristic assuming a constant dis-

tance of the scene, depending on the availability of depth

images or the 3D scene model. In the second stage, the

model is enhanced by the supervision from the distance

between the 2D projection of predicted scene coordinates

(given the ground truth camera pose) and the ideal image

pixel position, namely the reprojection error. In the third

step, DSAC++ [4] refines the model with an end-to-end

scheme that combines the inlier soft counting based hy-

potheses scoring and differentiable refinement that is men-

tioned above, resulting in superior performance.

Along with scene coordinates, Bui et al. [5] also esti-

mate the confidence/uncertainty of the scene coordinates

as an auxiliary prediction from the network, and then run

RANSAC using those inferred coordinates that have high

confidence, which improves the robustness of the system.

3. Our Method

The overall objective of our work is to efficiently train a

FCN-based scene coordinate regression model using multi-

view geometric constraints, and then apply this model to a

single view RGB image to infer dense 2D-3D correspon-
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Figure 2. The training pipeline of our framework with photometric loss and feature reconstruction loss. The spatial size of all

variables are specific for 7Scenes dataset. The reprojection loss and smoothness prior loss are omitted for simplicity.

dences for pose estimation in a RANSAC pipeline. We

start by describing the network architecture in Section 3.1.

In addition to the single view reprojection loss, we intro-

duce three more supervisions that come from the multi-

view geometry induced by camera motion. The photomet-

ric warp error based image reconstruction loss is introduced

in Section 3.2. An additional deep feature reconstruction

loss which takes contextual information into consideration

rather than per pixel color alone is introduced in Section 3.3.

We propose a smoothness prior in 3D space to regularize

training in Section 3.4, in order to mitigate the effect of fea-

tureless, ambiguous-to-match scene regions. Fig. 2 shows

our framework in the training phase. The overall training

loss and inference procedure are summarized in Section 3.5

and Section 3.6, respectively.

3.1. Scene Coordinate Regression

The FCN model of DSAC++ [4] is inherited into our sys-

tem for scene coordinate regression. We denote this model

as w. The output of this network is the scene coordinate

map Y(w, I) of an input image I . Every element of this

map is a 3D vector yi,j ∈ R
3, which represents the coor-

dinates in the world reference frame of the point that corre-

sponds to an image pixel. This FCN comprises of 12 convo-

lutional layers, 3 of which have stride size 2. Thus, Y(w, I)
is one-eighth the size of the input image I . This means that

the 3D scene coordinates predicted by the model represent

that of the center of 8 × 8 pixel tiles in I . Note that how-

ever each output corresponds to an overall receptive field of

41× 41 pixels.

3.2. Photometric Reconstruction

The main supervision for learning the scene coordinate

regression model in our framework comes from the recon-

struction of two types of features: (i) RGB color; (ii) deep

features trained to be good for matching [27] (used “off-the-

shelf” in our work). We begin by introducing the photomet-

ric (RGB) constraint in this section.

Given an image pair {I1, I2} from the pair selection

stage, firstly I1 is fed into the regressor w for predicting

the map of the scene coordinates Y1(w, I1). Then, they

are projected onto the image plane of I2 with the ground

truth pose of second frame T2 and camera intrinsics K, for

computing the projected pixel positions p2←1(w, I1). Us-

ing the RGB values of I2 at p2←1(w, I1), a warped image

I1←2 is formed to synthesize image I1. The procedure can

be formulated as Eq. (1),

I1←2 = f(Y1(w, I1), I2,T2,K), (1)

where the function f(·) is the reconstruction function based

on image warping. This operation is fully differentiable

when using the bilinear interpolation reconstruction method

proposed in Spatial Transformer Networks (STN) [12],

which guarantees differentiability in the whole system.

The loss based on photometric difference between the

real image I1 and the synthetic image I1←2 is defined as

Lrgb =
1

H ×W

H,W
∑

m,n

∥

∥I1m,n − I1←2

m,n

∥

∥

1
, (2)



where H and W are the spatial dimensions of the output

scene coordinate map Y1(w, I1).

3.3. Dense Deep Feature Reconstruction

Since the RGB values of an image are sensitive to change

in the lighting condition, the consistency of the light/color

intensity of a 3D point across two images cannot always be

assured, especially in uncontrolled environments. There are

also cases in both indoor and outdoor scenes where a large

patch of the image is filled with same RGB value due to lack

of texture on the objects and surfaces in the scene. Photo-

metric reconstruction loss is only useful in regions where

intensity gradient is large. Hence, a robust dense image fea-

ture, which contains more contextual information, can be

used for dealing with these issues. In this work, we exploit

the deep CNN features for dense matching proposed in [27].

While any dense visual descriptor such as dense SIFT

may be suitable for the dense matching task, the learned

deep visual descriptor in [27] is light-weight allowing for

efficient training, and has been proven to be successful

for dense monocular reconstruction. To extract the deep

features for each pixel in the image, the whole image is

passed into a fully convolutional neural network which is

pre-trained using the method in [27] on the raw NYU-D

v2 dataset [20]. A 32-dimensional feature map F with the

same spatial dimensions as the input image is regressed by

the network which can be subsequently used for dense im-

age alignment. We then downsize it to one-eighth of the

image size to match the scene coordinate map. Given the

feature map F 2 regressed for I2, we can warp it into I1’s

frame of reference as follows,

F 1←2 = f(Y1(w, I1), F 2,T2,K). (3)

Similar to Eq. (2), the deep dense feature reconstruction

loss is defined as

Lfeat =
1

H ×W

H,W
∑

m,n

∥

∥F 1

m,n − F 1←2

m,n

∥

∥

1
. (4)

3.4. 3D Smoothness Prior

The predicted scene coordinates from a single view im-

age can be considered as the reconstruction of the scene. So

far, the learning of our model for coordinate prediction only

considers the input(image)-output(3D points) relationship.

The correlation between the predicted 3D points is also im-

portant to recover the geometry of the scene. In particular,

we utilize the intensity consistency within the image to con-

strain a smooth prediction in the coordinate map. A similar

idea has been applied in [8, 9, 10, 28] in the depth estima-

tion topic. We extend this mechanism to the 3D space.

The idea behind this smoothness prior is that a large 3D

Euclidean distance between predicted neighbouring scene

coordinates should be penalized if there is no image evi-

dence to support this (e.g. if the image is uniform). Specifi-

cally, it is formulated as

Ls =

H,W
∑

m,n

e−|∂xIm,n| ‖∂xYm,n‖2+e−|∂yIm,n| ‖∂yYm,n‖2 ,

(5)

where Y is the predicted coordinate map, ∂x(·) and ∂y(·)
are the horizontal and vertical gradient operators.

3.5. Training Loss

Apart from the three losses previously mentioned, we

also use the single view reprojection error of I1 as the base

loss to train our model, since the ground truth pose T1 is

available. The reprojection error loss is defined as

Lrepro =
1

H ×W

H,W
∑

m,n

∥

∥P (Y1,T1,K)− p1
∥

∥

2
, (6)

where P (·) is the projection function that projects a 3D

point and computes its pixel position in the image plane.

Note that this is the loss that DSAC++ used in the training

of the second stage of their system.

Hence, the total loss that we use to train our model is

L = wrLrepro + wpLrgb + wfLfeat + wsLs, (7)

where wr, wp, wf and wr are the loss weights hyper-

parameters.

3.6. Single View Inference

Although our system is trained with image pairs, it only

requires a single view image to perform inference. Once

the model for scene coordinate prediction is trained, we can

establish the dense correspondences between image pixel

positions and the 3D points and then use RANSAC+PnP to

estimate the pose of the camera.

Similar to DSAC++ [4], we first sample N sets of four

2D-3D correspondences using the predicted coordinate map

(i.e. each sample contains four image points and corre-

sponding 3D scene coordinates). After solving the PnP

problems independently, a pool of N pose hypotheses is

built for the best candidate selection. To rank the hypothe-

ses, we compute the reprojection error map for each hypoth-

esis using all predicted 3D coordinates. The best hypothesis

is selected depending on the number of inliers, which is de-

fined as the points whose reprojection error is less than a

threshold τ . Finally, the best hypothesis is refined with up-

dated inliers iteratively to produce the final pose estimate.

4. Experiments

4.1. Datasets

To verify the effectiveness of the multi-view photo

or/and feature reconstruction loss and smoothness prior, we



repro(baseline) repro+rgb repro+feat repro+rgb+feat w/ smooth

Chess
5.03cm, 1.36◦

49.6%

4.58cm, 1.56◦

54.7%

3.63cm, 1.21◦

70.75%

3.59cm, 1.23◦

71.1%

3.59cm, 1.23◦

69.9%

Fire
9.41cm, 3.00◦

26.8%

7.94cm, 2.99◦

38.9%

5.28cm, 1.92◦

47.9%

5.05cm, 1.87◦

49.75%

5.32cm, 2.04◦

48.25%

Heads
24.9cm, 10.0◦

6.4%

6.05cm, 3.67◦

46.5%

13.2cm, 7.45◦

21.1%

5.02cm, 3.22◦

48.9%

4.99cm, 2.98◦

50.1%

Office
6.21cm, 1.43◦

36.25%

6.00cm, 1.48◦

39.28%

5.71cm, 1.35◦

42.18%

5.62cm, 1.34◦

42.78%

5.71cm, 1.36◦

41.83%

Pumpkin
7.26cm, 1.77◦

32%

6.23cm, 1.60◦

36.8%

5.60cm, 1.48◦

44.33%

5.56cm, 1.47◦

44.55%

5.58cm, 1.48◦

43.7%

Kitchen
11.0cm, 2.23◦

12.04%

8.62cm, 1.95◦

22.54%

9.07cm, 1.99◦

22.16%

8.67cm, 1.93◦

23.32%

8.73cm, 1.93◦

23.48%

Stairs
62.9cm, 11.6◦

0.2%

35.6cm, 6.94◦

0.3%

35.6cm, 7.27◦

1.6%

35.9cm, 7.33◦

1.5%

36.0cm, 7.25◦

1.9%

Table 1. The median pose errors and accuracy for 7Scene of models using different losses. The number ending with cm (resp. ◦) is

the median translation (rotation) error for test set. The percentage is the proportion of test frames with both translation and rotation error is

below (5cm, 5◦). The overall performance of the model is significantly improved with the additional constraints provided by the multi-view

consistency of the features.

apply the proposed method to two of the most widely used

datasets for camera relocalization task: 7Scenes [24] and

Cambridge Landmarks [15]. 7Scenes has 7 indoor scenes

that are captured using a Kinect camera, provided with

RGB-D images and ground truth poses. We only use the

RGB images and ground truth poses to train our models.

Note that the depth images can be very helpful to supervise

the learning of the model (as shown in DSAC++ [4]), how-

ever our work focuses on the case when the 3D model of

the scene is not available. Hence we omit the ground truth

depth in our experiments.

Training images are selected following the official split

of the datasets. Since the images are taken from a monocu-

lar camera, it is important to select proper target frames for

each training image to enable multi-view geometry based

supervision. To that end, we randomly select 3 images from

its nearest [-100, +100] neighbours as the pair candidates

(thanks to to the fact that the images are from a continuous

sequence). Then we use an off-the-self optical flow estima-

tion method (FlowNet2.0 [11] and its implementation [21])

to compute the overlap between the current frame and its

pair candidates. We choose the candidate as the final pair

image if the ratio of their overlap area to the image spatial

area is within the range of [0.4, 0.9]. On average, a training

image has ∼2 pairs to build multi-view constraints. We also

use the overlap as the mask to zero out the meaningless re-

construction loss caused by the pixels that are projected out

of frame on the target images.

4.2. Training and Test Regime

We use a two-stage scheme for our training pipeline.

Firstly, we train the model with the heuristic suggested in

DSAC++ [4] since only RGB images are used for train-

ing, which means the actual scales of the scenes are miss-

ing. This heuristic assumes a constant distance between the

camera plane and the scene surface for every image. The

distance is set to 3m and 10m for 7Scenes and Cambridge

Landmarks respectively, which are the approximate scales

of the indoor and outdoor scenes.

We apply our proposed multi-view geometry based

losses in the second stage of training, which is initialized

by the model from the previous heuristic. To conduct a de-

tailed ablation study, we train the model with five different

combinations of losses for the 7Scenes respectively:

1. repro: the model is trained with only single view

reprojection loss Eq. (6). This is our baseline model.

2. repro+rgb: the model is trained with photometric

reconstruction loss Eq. (1) along with repro.

3. repro+feat: the model is trained with deep feature

reconstruction loss Eq. (3) along with repro.

4. repro+rgb+feat: the model is trained with pho-

tometric reconstruction loss Eq. (1) and deep feature

reconstruction loss Eq. (3) along with repro.

5. w/ smooth: the smoothness prior Eq. (5) is added to

repro+rgb+feat.

All five models are optimized in an end-to-end fashion with

ADAM [16] for 30k iterations in total. The initial learning

rate is set to 1e-4 and decreased to half at 10k step and the

next every 5k step. The training samples for repro model

are also pairs of images to ensure an identical training envi-

ronment. The hyper-parameters in (7) are not highly tuned

and are kept identical between scenes.

We use the PnP solver plus RANSAC to estimate the 6D

pose for the test images after predicting the scene coordinate

from these 5 trained models. For RANSAC, N = 256 pose

hypotheses are generated as the pool, and the reprojection



Figure 3. Localization accuracy of position and orientation as a cumulated histogram of errors. The horizontal axis is the threshold

for transnational error (left, in cm) and rotational error (right, in degree). The vertical axis is the proportion of the test images of which

transnational or rotational error is smaller than the thresholds on the horizontal axis.

error threshold τ is set to 10 pixels for inliers selection. The

final pose refinement step runs up to 100 iterations.

4.3. Results Analysis

Table 1 and Fig. 3 shows the pose estimation perfor-

mance of the models trained with different combinations of

the losses introduced in previous sections. The pose for a

test image is considered as correct if the pose error is below

5cm and 5◦.

Multi-view vs. Single-view. One can see from Table 1

that the addition of photometric loss supervised by multi-

view constraint in training always improves the accuracy of

the estimated pose than purely training with single-view re-

projection loss (Column repro and repro+rgb). The

deep feature reconstruction loss also helps the reprojection

loss and the effect is even more obvious generally (Column

repro and repro+feat), due to the more informative

(both fine and course) features that are extracted from a deep

model, especially when the scene contains textrueless re-

gions. The accuracy of the pose estimation is furthermore,

slightly though, improved by using the photometric and fea-

ture reconstruction loss together as the additional supervi-

sion for the coordinate regression model.

The reason behind this gain of pose estimation perfor-

mance is that the model predicts more accurate scene coor-

dinates if it is supervised with multi-view constraints during

training. We show one set of 4 points used by hypothesis

generation in PnP algorithm for a test image in Fig. 1. The

predicted 3D points for the left image are projected to the

right image using the ground truth pose to show the quality

of these points. The projections of points from the model

with reconstruction loss on the right image are closer to the

pixels that share the similar surrounding pattern on the left

one, compared to the model trained with only single view

reprojection loss. This behavior affirms the usage of pho-

tometric/feature reconstruction consistency in the training.

Smoothness prior. The best pose estimation perfor-

mance of scene heads comes from the model trained with

all components of the final loss, which suggests the best 3D

reconstruction. See Fig. 4 for visualization. As can be seen,

(a) (b) (c)

(d) (e) (f)

Figure 4. Reconstructed point clouds of one sample image from

the test set of scene heads using different models. We visu-

alize the point cloud reconstruction from our model trained with

(a) repro, (b) repro+rgb, (c) repro+rgb+feat, (d) w/

smooth. The ground truth point cloud and the reconstruction

from DSAC++ [4] is showed in (e) and (f) respectively. All point

clouds are visualized from the same viewpoint.

the point cloud reconstructed from the models trained with

the first three (a, b c) losses are not visually good enough

to recover the actual geometry of the scene (e). In this

case, the smoothness prior (d) helps to produce an improved

model for the 3D reconstruction, especially by reducing the

noise in the bottom part of the point cloud. As for other

scenes, we found the usefulness of the smoothness prior is

limited (Column repro+rgb+feat and w/ smooth in

Table 1). When the pose estimate is accurate enough from

the model trained without the smoothness prior, for instance

in scenes fire and office, the use of the smoothness

penalty does not help, with the effect even being negative.

We presume the negative effect is caused by the smoothness

loss pushing inlier 3D scene points towards the outliers that

would otherwise have been ignored by RANSAC.

4.4. Comparison with Single-view Based Work

To establish a fair comparison between our model and

other work, we increase the training iteration number of the
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Figure 5. The distribution of depth value of 7Scenes. We ran-

domly select 10 depth images from the training set of each scene,

and show the distributions of all the valid depth values of them.

One can see that the depth distribution of scene heads has the

mean value around 0.7m, which does not follow the distributions

of other scenes.

model repro+rgb+feat to 300k (which is used in [4]),

likewise for the steps for learning rate decay. Table 2 shows

the results of this model for 7Scenes and Cambridge Land-

marks [15]. Except for the relatively poor performance in

the stairs scene due to the self-similarity of the RGB

images, our method achieves a consistently good result for

all of the indoor scenes. The percentage of the correct test

frames of all scenes in 7Scenes of our model is 70.1%, com-

pared to 76.1% and 60.4% of DSAC++ [4]’s model that is

trained with and without ground truth scene coordinate re-

spectively. The gap of training without and with the 3D

model of the scene is closed by our method.

The conclusions from previous ablation study Table 1

and this Table 2 together are: 1) our losses help the coordi-

nate regression model converge faster than the single-view

baseline (Table 1), and 2) when converged it performs better

than the state-of-the-art single-view method [4] (Table 2).

A noticeable point is that the median error of scene

heads is relatively large for DSAC++ [4] compared to

other indoor scenes when trained without 3D model, which

is 12cm and 6.7◦. We observe that this is presumably due

to the misused heuristic for scene heads, which assumes

a constant distance between the image plane and the scene

surface for every frame that is used to initialize the model

in the first stage of training. To support our hypothesis, we

plot the distributions of the ground truth depth samples from

training images of each scene in Fig. 5. The heuristic con-

stant distance we (as well as DSAC++ [4]) used for 7Scenes

is 3m, which properly simulate the substantial depth of most

of the scenes, except for heads, whose true depth is around

0.7m. We therefore train another model for heads with

the heuristic set to 0.7m. The result of the new model

is increased to 0.02m and 1.3◦. This backs our specula-

tion. Nonetheless, our training scheme eliminates the nega-

DSAC++ [4] ours

Scene w/ 3D w/o 3D

Chess 0.02m, 0.5◦ 0.02m, 0.7◦ 0.02m, 0.8◦

Fire 0.02m, 0.9◦ 0.03m, 1.1◦ 0.02m, 1.0◦

Heads 0.01m, 0.8◦ 0.12m, 6.7◦ 0.04m, 2.7◦

Office 0.03m, 0.7◦ 0.03m, 0.8◦ 0.03m, 0.8◦

Pumpkin 0.04m, 1.1◦ 0.05m, 1.1◦ 0.04m, 1.1◦

Kitchen 0.04m, 1.1◦ 0.05m, 1.3◦ 0.04m, 1.1◦

Stairs 0.09m, 2.6◦ 0.29m, 5.1◦ 0.18m, 3.9◦

Acc. 76.1% 60.4% 70.1%

K. Col. 0.18m, 0.3◦ 0.23m, 0.4◦ 0.20m, 0.3◦

Old Hos. 0.20m, 0.3◦ 0.24m, 0.5◦ 0.19m, 0.4◦

Shop Fac. 0.06m, 0.3◦ 0.09m, 0.4◦ 0.07m, 0.3◦

St M. Ch. 0.13m, 0.4◦ 0.20m, 0.7◦ 0.20m, 0.6◦

G. Court 0.40m, 0.2◦ 0.66m, 0.4◦ 0.62m, 0.4◦

Table 2. Comparison between our method and DSAC++ [4].

The gap between model trained with and without is closed us-

ing our multi-view geometry-based training method. Numbers are

boldened only among the w/o 3D methods.

tive effect of the inappropriate heuristic, and achieves better

reconstruction when the poor prior is applied to both our

method and [4] (we still use 3m for 7Scenes as the approxi-

mate depth for the first stage in our experiment). From this

standpoint, our method based on multi-view consistency re-

duces the dependence on the initialization of the model.

Since the performance of pose estimation heavily relies

on the quality of the scene coordinate prediction, we also

show the quantitative comparison of the scene coordinate

regressed by our model trained with multi-view constrains

(repro+rgb+feat) and the single-view method [4] in

Table 3. This shows that our model predicts more accurate

scene coordinates for the geometrical task.

*For all test images in 7Scenes DSAC++[4] Ours

Average No. of inliers per image 245 319
Table 3. We project the predicted scene coordinates from the mod-

els in DSAC++[4] and ours using ground truth poses. The repro-

jection error threshold for inlier is set to 2 pixel.

5. Conclusion

We have proposed an efficient learning method for scene

coordinate regression to carry out accurate 6DoF camera re-

localization in a known scene from a single RGB image.

Our learning method explicitly enforces multi-view geo-

metric constraints to learn the regression model in a self-

supervised manner in the absence of the ground truth 3D

model. The constraints imposed by our proposed loss im-

prove the efficiency of training. Additionally, the regression

model learned via our method allows for more reliable 2D-

3D correspondences which in turn lead to consistent and

accurate camera relocalization performance.
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