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Abstract

Recognizing camera wearers’ actions from videos cap-

tured by the head-mounted camera is a challenging task.

Previous methods often utilize attention models to charac-

terize the relevant spatial regions to facilitate egocentric

action recognition. Inspired by the recent advances of spa-

tiotemporal feature learning using 3D convolutions, we pro-

pose a simple yet efficient module for learning spatiotem-

poral attention in egocentric videos with human gaze as su-

pervision. Our model employs a two-stream architecture

which consists of an appearance-based stream and motion-

based stream. Each stream has the spatiotemporal atten-

tion module (STAM) to produce an attention map, which

helps our model to focus on the relevant spatiotemporal re-

gions of the video for action recognition. The experimental

results demonstrate that our model is able to outperform the

state-of-the-art methods by a large margin on the standard

EGTEA Gaze+ dataset and produce attention maps that are

consistent with human gaze.

1. Introduction

With the increasing popularity of wearable cameras,

there is a growing interest in recognizing actions using the

first-person/egocentric videos, which has potential applica-

tions including remote assistance, health monitoring and

human-robot interaction. The wearable camera is usually

mounted on the person’s head with its optical axis aligned

with the wearer’s field of view. Action recognition for the

camera wearer using the first-person videos is different from

that in third-person setting. First, unlike in the third-person

video, the camera wearer’s pose are mostly unavailable in

egocentric videos. The recognition of egocentric actions of-

ten requires more fine-grained discrimination of the objects

being manipulated and their locations. Second, strong ego-

motions are often present in egocentric videos due to the

head motion of the person, whereas the third-person videos

are usually static or more stable. These aspects make action

recognition in egocentric videos very challenging.

Figure 1. Sample frames and gaze locations from EGTEA Gaze+

dataset. The gaze locations are drawn as blue dots. It is sufficient

to recognize the actions (cut lettuce, operate stove), by only look-

ing at the region around the gaze point within the blue circle.

Egocentric actions are usually defined as verb-object

pairs (e.g. take bread) and recognized from trimmed videos.

Traditional models explore a variety of hand-crafted fea-

tures for egocentric action recognition, such as object-

centric features [21] and egocentric cues [15], which are

shown to be complementary. Recent works incorporate ad-

vances in deep neural networks for egocentric action recog-

nition [17, 23, 16, 14]. Information such as hand masks [23]

and localized objects [17] are employed in these models to

facilitate action recognition.

Attention mechanism is also utilized to guide the net-

works to focus on the relevant regions for egocentric ac-

tion recognition [16, 14, 24, 25]. These models usually

predict an attention distribution, based on which they either

re-weight the features or select the features with highest at-

tention. Some of these attention models are trained in a

goal-oriented manner, by attempting to minimize the final

prediction error of the task [24, 25]. Therefore these mod-

els implicitly learn an attention mechanism in favor of the

final prediction. Other attention models are trained using

human gaze as direct supervision. The motivation is that

eye movements reflect a person’s thinking process and rep-

resent human attention [37]. It is demonstrated in [13] that

during object manipulation tasks a substantial percentage

of fixations fall on the task-relevant regions. Examples are
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Figure 2. Our model employs a two-stream architecture. Each

stream has a spatiotemporal attention module (STAM) for atten-

tion prediction, which helps the model identify relevant spatiotem-

poral regions for action recognition.

shown in Figure 1, where only a small region around the

gaze point is sufficient for recognizing the action. Focusing

on these regions may even reduce the potential misleading

from the clutter background. Therefore, training attention

models with gaze supervision enables the learning of the

task-dependent top-down attention [3, 11], and results in

better attention predictions [16, 14].

Based on these insights, we propose a spatiotempo-

ral attention module (STAM) which contains inception

blocks [26] with 3D convolutions to learn spatiotemporal

attention with human gaze as supervision. Our STAM is

incorporated in a two-stream architecture for egocentric ac-

tion recognition. Inspired by the recent advances of spa-

tiotemporal feature learning in videos using 3D CNNs [28,

4], we adopt the I3D model [4] as our two-stream back-

bone network. Each stream of I3D is augmented with a spa-

tiotemporal attention module (STAM) for attention predic-

tion, which helps the model to identify relevant spatiotem-

poral regions for action recognition. Our model shares the

similar idea as the model proposed in [16], which uses gaze

supervision to train a spatial attention network and achieve

good performance. The shortcoming of the method in [16]

is that its attention prediction is restricted in the spatial do-

main, where the attention map is generated by convolution-

al layers solely based on the current frame. We believe that

both the video data and the human gaze are usually tem-

porally consistent. It would be beneficial to consider the

information in the nearby frames when predicting attention

for the current frame. Our model can be considered as a

generalization of [16] by extending both the feature learn-

ing and attention prediction to spatiotemporal domain. The

overview of our model is shown in Figure 2.

Our contribution can be summarized as follows: (1) We

propose a spatiotemporal attention module (STAM), which

is incorporated in a two-stream model for egocentric action

recognition. This model is able to outperform the state-of-

the-art methods by a large margin on the EGTEA Gaze+

dataset. (2) We provide detailed ablation analysis to demon-

strate how the proposed spatiotemporal attention module

contributes to the performance. (3) We compare our STAM

to a goal-oriented attention model and demonstrate both

quantitatively and qualitatively that our model is capable of

learning better attention mechanism for egocentric action

recognition.

2. Related Work

2.1. Action Recognition and Egocentric Vision

Action recognition has been one of the key problems

in computer vision. The majority of research focuses on

recognizing human actions in third-person videos. A large

number of features have been designed for action recogni-

tion, such as histogram of oriented gradients (HOG) [6] and

motion boundary histograms (MBH) [30]. Deep neural net-

works are also widely used for action recognition. The idea

of two-stream architecture is proposed in [22], which feeds

RGB frames and optical flow images into separate CNN

streams and fuse the scores to recognize actions. Recurrent

networks are used on top of the CNNs for modeling tempo-

ral dependencies for action recognition [8, 31]. The convo-

lution and pooling operations of CNNs are extended to 3D

in models such as C3D [28] and I3D [4], which enables the

spatiotemporal feature learning from video inputs. The 3D

operations can be factorized into separate spatial and tem-

poral components to facilitate optimization [29, 34].

With the advent of various wearable cameras, the re-

search on egocentric vision topics has attracted a lot at-

tention, such as video summarization [35], object recogni-

tion [27], as well as action recognition [12, 21]. Researchers

have designed object-centric features [21] and egocentric

cues [15], and also use motion compensation [15] to rec-

ognize egocentric actions. Recent works have attempted to

employ CNNs to tackle this problem [17, 23, 9]. Stacked

input of hand mask, homography image, and saliency maps

are used as input of the Ego convnet model [23]. In [17],

networks are trained to segment hand and localize object,

and then use the information to facilitate the recognition of

actions, which have “verb+object” form. The information

used in these models often requires additional annotations

which are expensive to obtain. Using eye-tracking devices,

the gaze or eye fixation of the person can be recorded dur-

ing object manipulation tasks, which is relatively easier to

acquire. Human gaze is often utilized together with the at-

tention mechanism and is shown to be helpful in egocentric

action recognition [9, 14, 16].

2.2. Visual Attention Model

Attention models have been used in tasks such as ma-

chine translation [2], speech recognition [5], and are also



proved successful in variant vision tasks [32], such as ob-

ject recognition [1], image captioning [36], as well as action

recognition [39]. The visual attention models aim at iden-

tifying relevant spatial regions in the visual input and high-

light these regions to facilitate the task, which mimics the

human perception and thinking process. These models usu-

ally predict a probability distribution over a grid of features,

which represents the level of attention on each region. Then

the attention distribution is used to either re-weight the fea-

tures or select the features with highest attention [36]. The

spatial transformer networks [10] allows to attend to arbi-

trary regions of the data by introducing affine transforma-

tions to the feature maps. Attention is applied both spatially

and channel-wise in [33]. Attention mechanism can be gen-

eralized to the temporal domain, where the models learn to

assign different weights to the video segments for action

recognition [20].

Similar ideas has been employed and extended in ego-

centric action recognition [25, 24, 9, 14, 16]. A spatial at-

tention is learned for each frame using class activation maps

in [25]. The Long short-term attention model [24] further

incorporated attention into convLSTM to track the attention

temporally. Like other attention models in third-person ac-

tion recognition, these models are trained in a goal-oriented

manner by minimizing the final prediction error. Therefore

the attention mechanism is learned implicitly to favor action

recognition.

It has been shown that gaze represents human atten-

tion and is highly coordinated with actions [37, 13]. Gaze

information has been utilized to guide the training of at-

tention prediction and facilitate egocentric action recogni-

tion [16, 14, 9]. A spatial attention network is proposed

in [16], which is incorporated in a two-stream network to

produce attention maps. Gaze behavior and actions can be

jointly modeled [14, 9], where the two tasks benefit each

other because of their underlying correlation. Gaze is de-

scribed as probabilistic variable to model the uncertainty

in [14]. The attention map in [9] is produced by several

convolutional kernels based on predicted actions. Training

attention models with gaze supervision enables the learn-

ing of the task-dependent top-down attention [3, 11], and

can produce better action recognition performance [16, 14].

Our model shares similar idea as [16] while we extend both

the feature learning and attention prediction to spatiotem-

poral domain and achieve significant performance boost.

3. The Proposed Method

In this work, we propose a spatiotemporal attention mod-

ule (STAM), which employs inception blocks [26] with 3D

convolutions to learn the spatiotemporal attention directly

from the feature volume with gaze as ground truth. The at-

tention map is used to help our model to selectively focus on

the relevant part of the data to recognize actions. The STAM
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Figure 3. Our spatiotemporal attention module (STAM) employs

a 3D inception module (3D inc.) and a 3D convolution layer to

predict attention map.

is incorporated in a two-stream architecture, which can be

considered as a generalization of [16] by extending both the

feature learning and attention prediction to spatiotemporal

domain. In this section, we will describe our spatiotempo-

ral attention module and provide detailed framework of our

two-stream architecture.

3.1. Spatiotemporal Attention Module

Our spatiotemporal attention module consists of a 3D

inception module [26, 4] and a 3D convolution layer,

as shown in Figure 3. It takes the feature map X ∈

R
C×T×H×W as input and output an attention map A ∈

R
T×H×W as follows:

b0 = conv1 0(X)

b1 = conv3 1(conv1 1(X))

b2 = conv3 2(conv1 2(X))

b3 = conv1 3(max pool(X))

b = concat([b0; b1; b2; b3])

A = f(conv1 a(b)),

(1)

where C denotes number of input channels and T,H,W
is the resolution of the spatiotemporal feature volume,

conv3 i denotes 3D convolution with 3 × 3 × 3 kernel,

conv1 i denotes 3D convolution with 1 × 1 × 1 kernel,

and f represents a linear function that scales the input to

[0, 1]. The 3D inception module has 4 convolutional branch-

es, which take X as input and produce intermediate feature

maps bi ∈ R
Ci×T×H×W , i = 0, 1, 2, 3. These intermedi-

ate feature maps are concatenated channel-wise to produce

b ∈ R
Cb×T×H×W , with Cb =

∑
3

i=0
Ci. The feature b is

then process by conv1 a and the scale function f to produce

the spatiotemporal attention map A. The feature map A is
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Figure 4. Framework details of our two-stream model. Each stream takes RGB/flow video as input and incorporates our spatiotemporal

attention module (STAM) to prediction attention map. Inc. represents 3D inception module which is shown in Figure 3.

a 3D volume with resolution T,H,W , which indicates a s-

patial attention At ∈ R
H×W for each time stamp t. Unlike

previous spatial attention models [16, 25] which generate

At solely based on the frame It, our model takes the advan-

tage of 3D convolutions and uses spatiotemporal features of

consecutive frames to predict A simultaneously. This sim-

ple idea models both spatial and temporal information for

attention prediction, without the need of recurrent tracking

of the attention maps in [24].

In this work, we utilize the human gaze information as

ground-truth to guide the training of our spatiotemporal at-

tention module (STAM). This is motivated by the coordi-

nation of gaze behavior and human action [13] and shown

to be effective in previous attention models [16, 14]. The

gaze or eye fixation can be obtained by first tracking the eye

movement using wearable tracking device (e.g. Tobii eye

tracking glasses), and then synchronize and project it onto

the image plane, which is represented as the gaze location

(x, y) in each frame. We generate the ground-truth atten-

tion map Agt
∈ R

T×H×W by applying a Gaussian bump

around the gaze points. This simple process is able to han-

dle the uncertainty of gaze to certain extent and facilitate

attention training. The attention weight agtijt of Agt at time

t and spatial location i, j is computed by:

agtijt = e−
(i−x′

t)
2+(j−y′

t)
2

2σ2 , (2)

where x′

t, y
′

t are the scaled gaze coordinates in the spatial

resolution at time t and σ is set to be H/2. We use Mean

Square Error to measure the difference between the pre-

dicted attention A and ground-truth attention Agt, which

is used during back-propagation to train the attention learn-

ing. Note that the ground-truth attention is only used in the

training phase. The MSE loss is computed and averaged

over all aijt in A as:

La =
1

THW

T∑

t=1

H∑

i=1

W∑

j=1

(aijt − agtijt)
2. (3)

We combine the predicted attention map A with the fea-

ture map X to produce a more informative feature map X ′

as follows:

X ′

c = A⊙Xc. (4)

where X ′

c, Xc ∈ R
T×H×W , c = 1...C is one channel of

the feature map, ⊙ represents element-wise multiplication

of corresponding entries aijt and Xc,ijt. In this attention

process, the more relevant spatiotemporal feature in X ′ is

assigned higher weights, which is then processed by fol-

lowing layers to recognize actions.

3.2. The Two-Stream Architecture

The two-stream idea is first proposed in [22] and has

been widely used in action recognition models for both

third-person and first-person videos [16, 8, 4, 29]. The two

streams learn appearance and motion features from RGB

and flow inputs separately, which are shown to be comple-

mentary for action recognition. Even when each stream

uses 3D convolution network with spatiotemporal feature

learning ability, the two stream idea is still beneficial [4, 29].

In this work, we employ the two-stream I3D model [4]

as our backbone network, which extend Inception-V1 [26]

to be 3D convolution network. Our two-stream model con-

tains a RGB stream and a flow stream, which takes RGB

and flow video segments as input. Each stream incorporates

our STAM to predict a spatiotemporal attention map, which

is then used to weighted average pool the feature map. The

scores of the two streams are fused for the final action pre-

diction, as shown in Figure 4.

4. Experiments

4.1. Dataset and Experimental Setup

Dataset. We evaluate our proposed model on the Ex-

tended GTEA Gaze+ dataset (EGTEA Gaze+) [14], which

is currently the standard and largest egocentric dataset that

contains gaze data. This dataset is collected with a head-

mounted camera and the actions involve hand-object inter-

actions. Each action is represented by a verb and a set of

nouns, for example “put bread (on) container”. The human

gaze is tracked using SMI eye tracking glasses and project-

ed to an image coordinate in each frame, indicating the loca-



tion where the person is looking at. EGTEA Gaze+ contains

28 hours of videos with frame rate 24fps, which is from 86

unique sessions performed by 32 subjects. There are 106

action categories and a total of 10321 action instances. Each

action instance is a trimmed video segment during which

the camera wearer completes one action. Each instance and

all the frames in it have a single action label.

Some previous methods use GTEA Gaze and GTEA

Gaze+ datasets, which are not used in this work. The reason

is that GTEA Gaze+ is a subset of EGTEA Gaze+ dataset,

and GTEA Gaze dataset is too small (total 331 instances)

and suffers from limited and imbalanced data problem as

discussed in [15, 16]. The largest dataset in egocentric vi-

sion is the EPIC-Kitchens dataset [7], which contains 55

hours of videos and 39594 action instances. This dataset

does not have gaze information, therefore we are not able to

evaluate our model on this dataset.

Evaluation Metric. The egocentric action recognition

is tackled as a classification problem for trimmed video

segments. There are two metrics used in the previous

methods to evaluate egocentric action recognition perfor-

mance: micro-average accuracy and macro-average accura-

cy, which are sometimes referred to as accuracy and mean

class accuracy in the literatures, respectively. We would

like to give a clarification in case there is any confusion.

These two metrics are defined as follows:

Micro =

∑K

i=1
ci∑K

i=1
ni

, Macro =
1

K

K∑

i=1

ci
ni

, (5)

where K is the total number of classes, ci denotes the num-

ber of instances of class i that are correctly recognized, ni

denotes the total instance number of class i. The micro

and macro accuracy will be equal when all classes have the

same number of instances ni. While for imbalanced data,

they can be different. For example, a 2-class classification

problem with 98% samples belonging to class 1. Simply

predicting all samples with label 1 will have an micro ac-

curacy of 98%. In comparison, the macro accuracy is 50%.

The macro accuracy or mean class accuracy is similar to the

idea of confusion matrix, which provides additional insight

about the action recognition performance. In our experi-

ments, we use micro accuracy, macro accuracy as well as

confusion matrix to evaluate our model.

Implementation Details. Our model is implemented us-

ing Pytorch [19] based on the I3D model [4]. All the video

frames are resized to the resolution of 320× 240. We com-

pute optical flow using TV-L1 algorithm [38], and we trun-

cate the flow values to the range of [-20, 20] and scale them

to [-1, 1]. The pixel values of the RGB frames are also

scaled to [-1, 1]. The optical flow images have 2 channels.

The first channel is x-component of the flow vector and the

second channel is the y-component. During training, we

perform data augmentation by randomly cropping 224×224

patches of the input video clips and randomly flipping hor-

izontally. The gaze location are refined according to the

augmentation performed to the frames. During test, we per-

form center crop to the videos and do not flip the data.

The input video length to each stream is chosen to be

16 frames, which is the number of frames of the shortest

action instance. For optical flow videos of such instances,

which has only 15 frames, we repeat the last flow image.

At training time, we randomly select a start frame for an in-

stance and use the consecutive 16 frames as a training sam-

ple. At test time, we extract 16 frame clips with a stride of

8 frames from each testing instance and compute the frame

scores, and the scores of the overlapped 8 frames are aver-

aged. After evaluating all the 16 frame clips of an instance,

the scores of all the frames are averaged for predicting the

instance label.

Similar to the training procedure in [4], we train each

stream using stochastic gradient descent with momentum

set to 0.9 and weight decay set to 10−7. We use batch

size 12 and an initial learning rate of 0.1. The learning

rate is decreased by a factor of 0.1 after 1.2k and 4k it-

erations, and the model is trained for 64k iterations. The

dropout rate is set to 0.5 and is performed after average

pool and before the final prediction layer, which is a 3D

convolution with kernel size 1 as [4]. The models are first

pretrained on imagenet and kinetics dataset [4], and then

trained on the target EGTEA Gaze+ dataset. Using this

training scheme, we are able to produce better egocentric

action recognition performance of I3D than some previous

reproductions. Base on this backbone model, we add our

spatiotemporal attention module (STAM) and use the same

training scheme with the loss weight of the attention predic-

tion set to 0.1. Please refer to our code for all the details.

(https://github.com/ymlml/STAM)

4.2. Comparison with Previous Methods

We evaluate our model on the split1 of EGTEA Gaze+

dataset (8299 training and 2022 testing instances), which

follows previous methods [14, 9]. We report both micro

and macro average accuracy of our methods, as shown in

Table 1. It can be seen that our two-stream fusion model

achieves a large improvement over the individual RGB and

flow stream. This demonstrates that the two-stream idea is

still effective with 3D CNNs and can learn complementary

information for action recognition. The spatial attention

network (SAN) model proposed in [16] uses VGG net as the

backbone network. In our experiments we implement this

model using Inception V1 [26], which is better performing

than VGG net. Therefore, this model is the reduced version

of our model by learning feature and attention only spatial-

ly. Our model achieves significantly better results than the

SAN model, which demonstrates the effectiveness of spa-

tiotemporal feature learning and attention modeling.



Table 1. Comparison of our method with previous methods on the

split1 of EGTEA Gaze+ dataset.

Methods Micro (%) Macro (%)

MCN [9] 55.63 -

SAN-RGB [16] 52.91 42.72

SAN [16] 57.10 46.84

TSN [31] 58.01 -

Ego-RNN [25] 62.17 -

Li et al. [14] - 53.30

EleAttG [39] 57.01 -

LSTA-RGB [24] 57.94 -

LSTA [24] 61.86 -

Ours: RGB stream 63.56 56.34

Ours: flow stream 60.09 50.99

Ours: two-stream 68.60 60.54

‘-’ denotes that the model did not provide result in this metric.

Figure 5. Confusion matrix of our model for all 106 action classes

on EGTEA Gaze+ dataset. Please see Figure 6 for the color bar.

We also compare our method with other well-performing

methods, as shown in Table 1. The TSN [31] was pro-

posed for action recognition from third-person videos and

adapted for egocentric recognition. The EleAttG [39] is

a generic method for employing attention mechanism into

RNN models. The MCN [9], Li et al. [14], Ego-RNN [25],

and LSTA [24] were proposed for egocentric action recog-

nition. The accuracy of TSN is from [25] and the accuracy

of EleAttG is from [24]. The results of MCN, Li et al.,

Ego-RNN, and LSTA are from their original papers. Our

model is able to outperform all other methods by a large

margin and achieves state-of-the-art results in terms of both

micro and macro accuracy. The confusion matrices of our

two-stream model are shown in Figure 5 and Figure 6. The

action categories are sorted based on decreasing number of

instances. Figure 5 includes the results of all 106 action

categories of EGTEA Gaze+ dataset, while Figure 6 is the

Figure 6. The enlarged confusion matrix of Figure 5, which shows

the results for the first 30 action categories.

enlarged version showing the first 30 actions. It is demon-

strated that our method is able to get most of the categories

correctly recognized.

Figure 7 demonstrates sample frames from 9 action in-

stances from the testing set and their corresponding atten-

tion maps produced by our model. We choose to show two

frames for each instance and draw the ground truth gaze lo-

cations as a blue dot in each frame. We visualize the atten-

tion map by first scaling the values to the range of [0, 255].

Then the attention maps are resized to the same resolution

as the frames and shown as black-white images. The atten-

tion maps illustrate the regions where our model actually

focuses on. It can be found that these regions are relevant to

the current actions and are consistent with human gaze and

attention. Take the last action instance in Figure 7 as an ex-

ample, which has ground truth action label “take bowl”. Al-

though there seems to be a more salient object (towel with

flowers patterns) on the right of the frames, our model is

able to produce high attention weights around the object be-

ing manipulated (bowl) and recognize the action correctly.

This demonstrates that with the help of gaze/human atten-

tion during training, our model learns the task-dependent

action and predict correct attention map during testing time.

4.3. Ablation Study

To analyze the performance of the spatiotemporal atten-

tion module (STAM) and how it contributes to the recog-

nition accuracies in our two-stream model, we conduct a

detailed ablation study by testing the performance of each

stream with and without the STAM. The ablation study is

conducted on all the 3 splits of the EGTEA Gaze+ dataset.

The models evaluated in this study are listed below:

1. RGB-o: this model contains only 3D CNN inception

V1, which is the RGB stream of I3D.

2. RGB-a: this model is our RGB stream which contains

the 3D CNN and our STAM.



Figure 7. The sample frames and corresponding visualized attention maps from 9 action instances from the testing set of EGTEA Gaze+

dataset. The ground truth gaze locations are drawn as a blue dot in each frame. The ground truth action labels for each instance from left to

right are: open drawer, close condiment container, mix egg (top), move around pot, pull apart paper towel, cut pepper (middle), compress

sandwich, pull apart lettuce, take bowl (bottom). Our model is able to attend to the image regions that are relevant to the actions and is

consistent with the human attention (gaze).

3. Flow-o: this model contains only 3D CNN inception

V1, which is the flow stream of I3D.

4. Flow-a: this model is our flow stream which contains

the 3D CNN and our STAM.

5. Fuse-o: the score fusion from RGB-o and Flow-o,

which is the two-stream I3D.

6. Fuse-a: the score fusion from RGB-a and Flow-a,

which is our two-stream model.

The detailed results of these models are listed in Table 2.

We can see that the “-a” models are able to outperform the



Table 2. Detailed ablation study of our method on EGTEA Gaze+ dataset. There are 3 splits of this dataset and we produce micro and

macro accuracy on each split and compute the average. The numbers are in percentage.

Methods RGB-o RGB-a Flow-o Flow-a Fuse-o Fuse-a

Micro: Split 1 62.51 63.65 57.86 60.09 67.56 68.60

Micro: Split 2 59.69 61.08 54.15 55.79 64.09 65.33

Micro: Split 3 58.39 59.03 53.19 55.02 63.09 63.98

Micro: Average 60.20 61.25 55.07 56.97 64.91 65.97

Macro: Split 1 54.89 56.34 46.96 50.99 59.26 60.54

Macro: Split 2 50.48 51.28 42.05 44.67 53.74 55.21

Macro: Split 3 50.02 50.81 42.08 45.07 53.36 55.32

Macro: Average 51.80 52.81 43.70 46.91 55.45 57.02

Table 3. The performance of the models without using gaze su-

pervision for STAM.

Methods RGB-v Flow-v Fuse-v

Micro (%): Split 1 62.66 59.30 67.70

Macro (%): Split 1 55.30 49.70 59.73

“-o” models, which demonstrates that our STAM is able

to use the attention mechanism to facilitate action recogni-

tion. The best performance is achieved by the Fuse-a model,

which fuses the scores of our RGB stream and flow stream.

4.4. Analysis of the Gaze Supervision

Our spatiotemporal attention module is trained using

ground truth attention map generated using human gaze. In

order to analyze the beneficial of the gaze supervision, we

design a variant of our model by removing the gaze super-

vision during training. Therefore, this model learns the at-

tention prediction implicitly in the goal-oriented manner by

minimizing the final action recognition loss. We use RGB-

v, Flow-v, and Fuse-v to represent the RGB stream, flow

stream and the two-stream model without gaze supervision.

The performance of these models are shown in Table 3.

The “-v” models achieve slightly better results than the

corresponding “-o” models models, which indicates that

learning attention mechanism implicitly can facilitate ego-

centric action recognition. The performance of our “-a”

models is better than the “-v” models, which demonstrates

that using the human gaze to explicitly train the network can

result in a better attention mechanism. This is also verified

from previous works [14, 16].

Besides the quantitative evaluation, we attempt to quali-

tatively evaluate the “-v” and “-a” models by visualizing the

feature vectors of the average pooling layer, which has a di-

mension of 1024. We extract the feature vectors of the test-

ing instances using the Flow-v and Flow-a models, which

are then projected to 2-dimensional space using t-SNE [18].

We only show the feature vectors of the top 10 frequent

action classes in order to make the figure more compact.

The separability of these feature vectors in their respective

Figure 8. The visualized feature vectors of Flow-v (left) and Flow-

a (right) models using t-SNE [18]. Each action instance is visual-

ized as a point and instances belonging to the same class have the

same color.

spaces seems similar for the “-a” and “-v” models. This is

justifiable since the improvement of the “-a” model over the

“-v” model is not large enough to show visually.

5. Conclusion

In this work, we propose a spatiotemporal attention mod-

ule (STAM), which is incorporated in a two-stream mod-

el for egocentric action recognition. Our STAM learns to

predict spatiotemporal attention by using human gaze as

ground truth. The STAM is able to identify the relevant

regions and help our model to recognize actions more accu-

rately. The visualized results demonstrate that the attention

maps are consistent with human gaze and are good for ac-

tion recognition. Our model outperforms the state-of-the-art

methods by a large margin on the standard EGTEA Gaze+

dataset.
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