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Abstract

This work is devoted to scene understanding and motion

ability improvement for visually impaired and blind people.

We investigate how to exploit egocentric vision to provide

semantic labeling of scene from head-mounted depth cam-

era. More specifically, we propose a new method for locat-

ing ground from depth image whatever the camera’s pose.

The rest of planes of the scene are located using RANSAC

method, semantically coded by their attributes and mapped

as cylinders into a generated 3D scene which will serve as

a feedback to users. Experiments are conducted and the

obtained results are discussed.

1. Introduction

In daily activities, the human being takes advantage of

his six senses in order to accomplish these activities. If one

of these senses is lost, some remaining senses improve to

fill, relatively, the gap left by this absence and enhance the

life quality.

With the absence of the sense of seeing, the visually im-

paired will rely highly on the sense of hearing which be-

comes thus more important. In many visually impaired aid

systems, an audio feedback is used to transmit information

and instructions. It’s true that this latter enhance the life

quality but it prevents the hearing sense to accomplish its

usual tasks like detecting instant sound events that can make

the visually impaired life in danger.

An alternative solution is to use feedback based on vi-

bration. Although this latter liberates the hearing, it appears

less informative and provides only a modest number of pos-

sible instructions.

The visually impaired aid systems consist of a set of

techniques whose goal is to enhance the visually impaired

life in different activities like outdoor navigation [10], in-

door navigation [26] [6] [19] [4] [12] [1] [7] [3] [16], lo-

calization and grasping objects [22], obstacle avoidness and

many other applications [9]. These systems can be tradi-

tional like white cane, guide dog or personal assistant; so-

phisticated by involving advanced technologies and com-

puter science or hybrid by combining the two previous cat-

egories as implemented in [6].

From the data gathered from real world, the sophisticated

systems generate instructions and signs that can be under-

standable by the visually impaired people. In these systems,

depth or RGB sensors (or both) are often used as input de-

vice; and the input data is processed using either image pro-

cessing techniques [19][16][3], computer vision techniques

[22][27] or machine learning techniques [24].

In case of navigation and obstacle avoidness systems, the

main task is to detect objects considered as obstacles or the

ground that is considered as free space. The nature of output

and the way of transmitting it is another challenge. In fact,

delivering information or instructions is crucial, they have

to be clear, concise, simple to understand and don’t requiere

lot of concentration and efforts.

We believe, as human beings, that having an impression

or a description of our surroundings permit us to do a sig-

nificant number of tasks.

In this work, we propose an end-to-end system (see fig-

ure 1) that enable users to have an impression of their sur-

roundings and become more independent. Our main contri-

butions are: at first, we propose a new method for ground

detection from depth image. Secondly, after detecting hor-

izontal planes we propose a semantic labeling based on a

promising concept on obstacle classification. The semantic

labeling is depicted as cylinders inside a generated 3D scene

which will serve as an haptic feedback in order to facilitate

the immersion of people in the surrounding.

The rest of this paper is organized as follow: Section 2

is devoted to related works. In section 3, we present our

method for ground and planes detection. The semantic la-

beling and the generated scene are described in section 4.



Figure 1. Visually impaired aid system for scene understanding

and motion ability improvement. It receives a depth image as in-

put, detects the ground, extracts horizontal planes and generates a

3D scene as output based on the provided semantic labeling.

Conducted experiments are presented in the section 5. The

conclusion and future works terminate this paper.

2. Related works

Visually impaired systems based on image processing

techniques are simple to implement and efficient when deal-

ing with simple scenes. In general, these systems detect

object features like edges as in [19] using Canny filter or

corners as in [16] using Harris and Stephens corner detec-

tor on RGB image. As in [3], they used an adaptive sliding

window and thresholding on a line of depth image as re-

gion of interest to detect the optimal moving direction. For

complicated scenes, computer vision and machine learning

techniques are used. Thakoor et al. [22] proposed Atten-

tion Biased Speeded Up Robust Features (AB-SURF), an

algorithm to localize and recognize specific objects belong-

ing to the data-set in real-time. Wang et al. [24] proceed

differently, they distinguished free from occupied space by

detecting planes. They proposed scene segmentation based

on cascaded decision tree using RGB-D image to classify

segments whether plane is ground, walls or tables.

When the previous researches seek to detect objects,

others tried to detect free space (the ground) in order to

avoid obstacles. Zeineldin and El-Fishawy [27] proposed

an algorithm for obstacle detection based on clustering and

enhanced RANSAC algorithm on 3D point cloud. They

proposed an enhanced RANSAC algorithm based on not

only the computing distance between points but also com-

paring their normals for floor detection. After extracting the

floor, they applied Euclidean segmentation to detect objects.

Floor detection is a crucial step for obstacles detection.

Authors in [8] introduced two methods for ground detec-

tion based on depth information. The simplest one is robust

but assumes that the sensor pitch angle is fixed and has no

roll, whereas the second one can handle changes in pitch

and roll angles. They use the fact that if a pixel is from

the ground plane, its depth value must be on a rationally in-

creasing curve placed on its vertical position. However, this

solution causes problems if the floor has significant inclina-

tion or declination.

RANSAC algorithm has been used for ground detection

with different assumptions. In [5], the authors assumed that

the space position of the floor is within z-max value. In [2],

the authors distinguish the floor from obstacles and walls

based on hue, lighting and geometry image features. If a

pixel satisfies a defined criteria, it is labelled as floor-seed.

In [15], RANSAC plane fitting is used to determine the

ground plane in the 3D space. Because the sensor cannot

be fixed, the calculation of the ground information requires

an iterative approach. The ground’s height is determined

by using the V-disparity. In [13], ground plane is detected

assuming strong constraints: ground plane must be large

enough and Kinect is mounted on the human body such that

the distance between ground plane and Kinect (y-axis coor-

dinates) must be in a range of 0.8 to 1.2m. Authors in [23]

considered that ground plane since is located based on the

fact that it has a normal perpendicular to the xz plane. How-

ever, the scene may present other planes with greater area

and verifying this property. Also, in [18], RANSAC pro-

cedure is used to find planes, and the relative distance and

orientation of each plane with respect to the camera are then

tested to determine whether it is floor or not. If the floor is

not found with the first cloud, a new one will be captured

and the process will be repeated. In this work, as the pre-

sented method is devoted to staircases detection, it has not

evaluated.

Guo and Hoim [11] proposed and algorithm for support

surface (including the ground) prediction in indoor scenes

based on RANSAC procedure: after computing surface

normals from inpainted depth map and aligning them to

the real-world coordinates, they segmented the fitted planes

computed by RANSAC based on color and depth gradients.

Finally, they designed a hierarchical segmentation and

inferred the support structure based on initial estimates of

the support and the 3D scene structure. It scored a high

accuracy in ground detection on NYU Depth dataset v2

[21]. In this work, we will compare our obtained results

with theirs.

Another sensitive module in visually impaired aid sys-

tems is the feedback interface. In general, it can be audio

feedback [4][12][1][10][22][3][16], vibration-based feed-

back [17] or a combination of them [6][7]. The audio feed-

back can be stereo tone [3], beeps [3], recorded instructions

[3] and text-to-speech [6][7]. It can deliver some local in-

formation (like obstacle in front of you, etc) or instructions

to navigate (like go straight, etc), to grasp objects (like up,

down, left), etc.

Audio feedback is simple to understand and provides

clear and concise information or instructions if these latter

are well coded. However, it occupies ears and thus pre-

vent them from doing their job like detecting unsafe instant

events such ”a car passing by”. The vibration-based feed-

back is an alternative to audio feedback since it does not

occupy the sense of hearing. However, the number of pos-



sible instructions provided by vibration can be modest (4 or

8 possible instructions are usually used). Military code as

used in [7], enriches the possible directions to take but can

be ambiguous like distinction between 5 and 10 o’clock.

The discussed types can sometimes be annoying, dis-

tracting and can not be used in some locations as using au-

dio feedback in hospitals when silence is needed or super-

markets when there is huge noise. In these cases headphone

[1] [12] or earphone [4] [3] can be used but again, this holds

hearing and isolates it relatively from real-world. With a

simple informative semantic labeling, the navigation, the

grasping and other tasks can be done without dictating in-

structions. Furthermore, such a labeling allow the visually

impaired even blind people to have an impression about the

real world and their surroundings. Horne et al.[14] pro-

posed a semantic labeling for prosthetic vision for obstacle

avoidance and object localization. They proposed a 2D pat-

tern of phosphenes with different discrete level of intensity.

In case of navigation, the phosphenes are activated to repre-

sent potential obstacles locations thus, free space was rep-

resented by gaps. So the user can have an impression about

his surroundings and navigate without receiving audio in-

structions.

3. Ground and planes detection

3.1. Ground detection

Let (Oxyz) be the coordinate system attached to the

head-mounted depth camera performing any translation and

roll, pitch, yaw rotations allowed by head motion.

Let p(l, c) be the pixel located at row l and column c in

the depth image Id having n rows and m columns and let

Pl,c(x, y, z) be the associated 3D point in the scene where

the coordinates x, y, z are computed after camera calibra-

tion.

The first step of our method is to select for each depth zi
and for each column c in depth image Id, the pixel p∗(l, c)
such that its associated 3D point has the z − component
equal to zi and a minimal value of y − component for all

Pl,c(x, y, z), l = 1..n . This allows determining images of

all points P of the plane Πi parallel to the xy−plane such

that z = zi as indicated by figure 2. The set of located pix-

els p∗(l, c) for a given depth zi defines a curve noted (Gi)
whose allure depends on the orientation of the xz−plane

relatively to the ground (see figure 2).

The second step consists to remove pixels from (Gi) cor-

responding to objects. In order to facilitate the geometrical

illustration, we draw the curves Gi considering that the xz−
plane of the camera is parallel to the ground. The curve

(Gi) will contain many convex and concave parts as shown

by figure 3 due to the presence of objects on the ground.

By scanning a (Gi) from left to right, we associate a label

(cv for convex or cc for concave) to each part. All cv parts

Figure 2. The obtained curve (Gi) in case where: (Left) the

xz−plane is parallel to the ground, (right) the camera performs

yaw and roll rotations.

Figure 3. (a) The set of 3D points at given depth with minimal

y-coordinate (case where xz−plane is parallel to the ground) (col-

ored in green), (b) Pixels in depth image defining the curve (Gi).

Figure 4. Removing iteratively convex parts (in red color) from

Gi to keep only the ground corresponding to concave parts (green

color). In the left the input curve (Gi), in the right the output of

the algorithm which is used as a new input.

are removed. The labelling and convex parts removal are

repeated until there will be no convex parts (see figure 4).

The algorithm 1 summarizes the steps to be performed for

the computation of (Gi).
In general case, the camera may perform roll, pitch or

yaw rotations. We show by figure 5 an example of Gi com-

putation for three values of depth zi under roll and pitch

rotations of the camera.

3.2. Planes detection

Once the ground has been detected, the planes constitut-

ing the occupied space are detected using RANSAC and a

semantic labeling is affected (fig. 6). After breaking down

the depth image into free space (ground) point cloud and

occupied space point cloud (fig. 6 (a)), we first applied

down sampling on the occupied space point cloud (fig. 6

(b)) as mentioned in [26] to reduce the number of points

to be processed and thus decrease the computational com-

plexity of RANSAC. Secondly, we applied RANSAC (fig.



Figure 5. (Left) Acquired image with a roll and pitch rotations of

the camera. In this case, the cut plane (in green color) is not or-

thogonal to the ground. The blue parts correspond to 3D points

having the same depth and minimum value of y-coordinates.

(Right) The computed curves Gi for three values of zi. Note that

the second curve Gi passes by the bottom of the box but the con-

vex part is located on the high part of the box due to the inclination

of the cut plane.

Algorithm 1 Algorithm DCGD (Depth-cut based Ground

Detection

Input: Id(n×m) = {p(l, c), l = 1..n, c = 1..m},

The points cloud P = {Pl,c(x, y, z)}
Output: The set G of ground pixels p∗(l, c)

1: G ← ∅;

2: Determine Z = {zi/ ∃p(l, c) ∈ Id,
Pl,c(x, y, z) verify z = zi} ;

3: for each zi ∈ Z, i = 1..Card(Z) do

4: Gi ← ∅;

5: for each column c = 1..m do

6: for each p(l, c), l = 1..n do

7: Determine p(l, c) / Pl,c(x, y, z)
verify z = zi;

8: end for

9: Select p∗(l, c) associated to Pl,c(x, y
∗, z∗) /

(z∗ = zi) and (y∗ =
Min(ycoordinate) of Pl,c);

10: Gi ← Gi ∪ {p∗(l, c)};

11: end for

12: Remove from Gi convex parts and keep only concave

parts.

13: G ← G ∪Gi

14: end for

15: return G

6 (c)) for plane segmentation on the reduced occupied space

point cloud and we identified parallel planes to the ground

(fig. 6 (d). To reduce the RANSAC’s run time and the num-

ber of insignificant possible planes we set the distance error

threshold up to 2cm. This latter may affect the result by ac-

cepting some outliers but it will be proportionally handled

later when needed.

In order to get the occupied space, we extracted the con-

vex hull (fig. 6 (f)) encompassing each plane parallel to

ground. To enhance the RANSAC’s result and due to sen-

sibility of the convex hull technique toward noisy data, we

Figure 6. Planes detection and semantic labeling framework.

first projected the plane into its equation and then applied a

statistical outlier removal filter (fig. 6 (e)) to refine the pro-

jected plane boundaries before extracting the plane’s con-

vex hull. This filter provides a Gaussian distribution of the

point cloud with a given standard deviation by computing

the mean distance from a given point to all its K neighbors

and removing it if its mean distance is outside an interval

defined by the global distances mean.

At the end of planes detection process, parallel planes to

ground are represented by their convex hulls. These latter

are used later to extract occupied space characteristics that

will be used for our proposed semantic labeling.

4. Semantic labeling

In our first attempt, we seek to semantically label only

free space and horizontal planes. Since the ground repre-

sents the free and the safe space for the visually impaired

and blind people, we label it by considering the surface of

the proposed generated scene as the ground. In other words,

the lowest surfaces when touching will represent the free

space, and the other surfaces represent the planes parallel to

ground.

On the other hand, the parallel planes to ground are rep-

resented by a cylinder having a specific characteristics that

are related to the plane characteristics in the real world (fig.

6). Each cylinder has its position (the coordinates x and z

of its center), its height that represents the plane’s height

from the ground and its radius to represent the area occu-

pied by the plane in the real world . To conduct this, we

computed the centroid and the area of the concerned convex

hull; and the free space point cloud centroid. The center’s

position is represented by the plane’s centroid coordinates

(x and z coordinates). The height is found by subtracting

the y-coordinates of the plane’s centroid and the ground’s

centroid. As for the radius, we searched for the radius of a

circle having the same area as the area of the convex hull.

Furthermore, to transmit to the user how much a plane

is high and how large, we propose a new promising and

simple to obtain object classification for visually impaired

and blind people regarding the object height and the occu-

pied area. Regarding the height, the first level represents

the planes having less than 0.3m that can be traversed by

feet. The second level represents the planes having less than



1.6m that can be touched by hands. The planes with height

higher than 1.6m are represented by the third level. As for

area, the first degree represents the planes occupying small

area with a radius less than 20cm that can be explored only

by moving hands without effort. The second degree repre-

sents the planes occupying a medium area with radius less

than 35cm. This type of plane can be explored by hands

but may need stretching the arm. The third area represents

the planes with a huge area that can not be entirely explored

only by stretching arms but may also require moving around

the plane.

5. Experiments

5.1. Datasets

We used two datasets to evaluate the proposed frame-

work:

- NYU Depth dataset V2[21], is comprised of video se-

quences from a variety of indoor scenes as recorded by both

the RGB and Depth cameras from the Microsoft Kinect. It

features: 1449 densely labeled pairs of aligned RGB and

depth images. Each object in the image is labeled with a

class and an instance number. Figure 12 shows some im-

ages taken from NY U dataset.

- Our dataset of ground detection for indoor scenes (GDIS

dataset) [25] includes different depth and color images ac-

quired by an RGB-D sensor (Microsoft Kinect V1) for vari-

ous orientations and poses. The ground truth correspond-

ing to the floor is indicated in both images (depth and

color). Figures 7, 10, 11 show some examples of the GDIS
dataset.

5.2. Evaluation of DCGD Algorithm

5.2.1 Implementation details

The DCGD algorithm can be divided into two main steps

namely curves (Gi) construction (fig. 7) and ground de-

tection. The first step is done on one shot by browsing the

depth image only once. The complexity of this step hav-

ing as input a n × m depth image is O(n2). Furthermore,

a downsampling by depth step can be performed to reduce

the complexity and improve the detection quality. The sec-

ond step includes subdividing of a curve into sub-curves

(cv) or (cc) and finding floor from objects. The subdivi-

sion (fig. 7) can be performed according to certain criteria

such as the permitted error in height between elements in

same sub-curve h err or the distance from the mean. Set-

ting the value of these latter (height and downsampling step)

depends on the sensor nature. This step is applied for all the

obtained curves; so we need 2k iterations including curve

subdivision and floor finding from k curves. Thus, the pro-

posed algorithm’s complexity is O(n2).
Another step can be added to reduce noise: some sub-

curves can be generated due to noise and affect the floor

Figure 7. (Top) Color and depth image with located pixels (red

color) for a given depth zi. (Bottom) Curve reconstruction plot

and curve subdivision into sub-curves.

Figure 8. Floor detection: without reducing noise (top) and with

reducing noise (bottom). Note that with reducing noise we prevent

some false positive cases (circled by red). Note also, other noise

area (circled by black) was appeared at the object borders.

detection; thus, removing sub-curves having small size

size err can reduce noise as shown in figure 8.



Figure 9. Setting the parameters h err, step, size err.

5.2.2 Parametric analysis

To evaluate effectiveness of each discussed parameters

namely step, h err and size err, we plotted the algorithm

performance applied to NYU Depth dataset V2[21] by vary-

ing each parameter as shown in figure 9. For later evalua-

tion, we set step to 4, h err to 30 and size err to 15.

5.2.3 GDIS dataset

We applied our method on GDIS dataset [25]. The ground is

located in real time with accuracy. Different scenarios have

been tested with different orientations of the Kinect sensor.

Figure 10 shows qualitative results for a sample of scenes.

Note that some pixels of the ground are missing due to the

bad quality of depth image. In addition, as the color image

is larger than the depth image, the left and right of the color

image did not appear in depth image and thus not processed

(see figure 10).

First row of figure 11 gives details of computed curve

Figure 10. (Top) Color and depth image, (bottom) ground colored

with red color.

(Gi) for one value of depth by applying DCGD Algo-

rithm. The convex part corresponding to foot table in drawn

(Gi) contains is removed, the remaining parts constitute

the ground. Note that pixels defining the curve (Gi) aren’t

aligned because 3D points at the same depth zi have in ac-

quired data different values of depths. We selected then all

pixels having the value zi ± 10mm. We note that the area

under the seat is detected as ground, which corresponds to

the truth. However, if we search to locate obstacles, the

plane above this ground’s area will be taken into account.

In the second row of the same figure 11, three depths are

considered. Note that all (Gi) have the same slope corre-

sponding to the orientation of the Kinect sensor relatively

to z-axis.

The measures Precision, Recall and F-measure have

been computed considering that the ground truth of the

floor begins from the far pixel on the depth image. The

average of computed measures are: Precision = 0.98,

Recall = 0.93 and the F −measure = 0.96.

5.2.4 NYU Depth dataset V2

We evaluated DCGD Algorithm using NYU Depth dataset

V2[21]. The proposed algorithm scored a good perfor-

mance nonetheless, the algorithm fails in some cases where

depth images are noisy. Figure 12 shows different results

obtained with high, medium and low score of accuracy.

Our proposed algorithm scored a highest accuracy (91.84%)

for ground detection compared to proposed one in [11]

(80.3%). Thus, the DCGD Algorithm is more robust spe-

cially when dealing with noisy data compared to [11]. Fig-

ures 13 and 14 illustrate respectively the values distribution

of different metrics so as ROC curve and the confusion ma-

trix.



Figure 11. First row: Color and associated depth image of indoor

scene. The computed curve (Gi) for depth zi = 2000m is drawn

in red color. Note the presence of an obstacle (table foot) which

produces a convex part in (Gi) which is eliminate in the second

iteration of the algorithm. The discontinuity of (Gi) is due to

occlusion of the area located at the depth zi by the feet of the

seat. Second row: Located curves (Gi) for three depths zi equal to

1500mm, 1800mm, 2000mm drawn respectively in blue, green

and red color.

Figure 12. From left to right: Color image from NYU Depth

dataset V2 [21], depth image, ground pixels in green color. From

top to bottom: Case of high, intermediate and of low score

5.3. Planes detection and the semantic labeling

Once the ground has been detected, the occupied space

was segmented and parallel planes to floor are retrieved. It

should be noted that in this research, retrieving planes is not

our main focus; we have just used algorithms from the state

of the art. Planes are detected in nearly real time due to the

use of the basic RANSAC implemented by Point Cloud Li-

brary (PCL [20]). For experiments purposes, we have taken

two frames: with only one obstacle and with two obsta-

cles parallel to floor (fig. 15). Note that by using basic

Figure 13. (Top) Values distribution for different metrics: The

DCGD algorithm performs well for the majority of scenes (exceed

83%) in terms of the computed evaluation metrics. (Bottom) ROC

curve: DCGD performs well in both sensitivity and specificity.

Figure 14. Confusion matrix: DCGD performs well in ground de-

tection with a confusion does not go beyond 2.5%.

RANSAC, some outliers persist: points that do not belong

to obstacles but they were considered as part of the detected

planes as seen in Figure 15 surrounded by red circles. For-

tunately, the applied statistical outlier removal filter imple-

mented by PCL [20] reduced the noise and thus these latter

do not affect significantly the plane characteristics compu-

tation such as height and radius. The table was not detected

as plane parallel to floor, it was detected in fact as perpen-

dicular plane since the table’s perpendicular area is larger

than the parallel one.

In order to compute how much the obtained characteris-

tics are near to the real wold measurements, we have taken

obstacle’s measures and then compared them with the com-

puted characteristics. The Mean Absolute Error (MAE)

does not exceed 46mm for both characteristics, this latter

is generally insignificant in regards our proposed labeling.



Figure 15. From top to bottom: Color images, Occupied space

point cloud, Planes parallel to floor in green color.

Figure 16 illustrates the generated cylinders correspond-

ing to provided semantic labeling of three scenes. The first

scene was taken in our first position and second scene was

taken after few steps ahead. In the two scenes, the gener-

ated scene indicates that there is a free space followed by

an object having height less than 300mm and it can be ex-

plored by hands but may need stretching the arm (its radius

is less than 350mm). Note that in the second scene, the po-

sition of the cylinder changed to let the user understand that

the obstacle became closer. In other words, the area of free

space has became smaller. Concerning the third scene, the

generated scene indicates that there are two objects, after a

free space, having as height less than 300mm and they can

be explored by hands but may need stretching the arm.

6. Conclusion and future works

In this paper we proposed for ground detection, a new

algorithm running in real time and competing with the state

of the art in terms of accuracy. In addition, in order to offer

to visually impaired and blind people the ability to under-

stand with immersion the scene content, a semantic label-

ing of scene is proposed and coded in generated 3D scene.

The semantic labeling made in this paper concerned only

Figure 16. For each row: example of scene and the coding on gen-

erated scene.

the ground and horizontal planes corresponding to obsta-

cles. Once located from depth image, their attributes are

computed and coded on the generated scene using cylin-

ders with different heights and radius. The proposed coding

of scene content is elementary but efficient if we consider

that the targeted semantic is the space occupancy by ob-

jects. There is no difference between table, seat or suitcase.

Also, the produced coding is made from one frame and does

not address frames registration.

Our future works will be focused on three main tasks:

- By moving the depth camera, the generated cylinders must

move on the area of generated scene with new attributes.

Only new objects entering in the field of view of the camera

will be coded.

- Use the state of the art of object recognition and improve

it for labelling more object classes.

- Find the suitable coding, similar to the braille system, that

must offer to visually impaired and blind people sufficient

information about its surrounding.
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