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Abstract

Traditional gaze estimation methods typically require

explicit user calibration to achieve high accuracy. This

process is cumbersome and recalibration is often required

when there are changes in factors such as illumination and

pose. To address this challenge, we introduce SalGaze, a

framework that utilizes saliency information in the visual

content to transparently adapt the gaze estimation algo-

rithm to the user without explicit user calibration. We de-

sign an algorithm to transform a saliency map into a differ-

entiable loss map that can be used for the optimization of

CNN-based models. SalGaze is also able to greatly aug-

ment standard point calibration data with implicit video

saliency calibration data using a unified framework. We

show accuracy improvements over 24% using our technique

on existing methods.

1. Introduction

Gaze estimation is the problem of estimating a person’s

line of sight. It is important as eye gaze reflects a person’s

underlying cognitive process [11] which can be used in a

wide array of applications including digital content market-

ing [50], diagnosing psychiatric conditions such as autism

[23], and automated driving [2].

Due to differences in the structure and appearance of the

eye, calibration is typically required to learn the parame-

ters that are intrinsic to the user in order for gaze estima-

tion algorithms to achieve high precision. This calibration

process is typically in the form of having the user look at

certain points on the target screen. One main issue with this

process is that a one-time calibration typically only works

in the same environment setting. Changes in factors such

as illumination, head position, and facial appearance can

drastically affect the estimation accuracy and recalibrating

for each scenario is not feasible. Active gaze calibration

can also be too restrictive in some scenarios. For instance,

gaze is an important biomarker for autism risk assessment

in toddlers [38], however, it is very challenging to require a

toddler to perform active calibration as well as get feedback

on the calibration performance. The same challenges also

appear for elderly populations with neurodegenerative dis-

orders [3]. Due to these reasons, having a way to passively

calibrate for the user is critical for making gaze estimation

a more pervasive technology, in particular when using off-

the-shelf devices, such as cameras embedded on mobile de-

vices, and deploying in general in-the-wild scenarios.

With recent advances in machine learning, the combina-

tion of appearance-based gaze estimation and deep learn-

ing has become a popular method for remote estimation

of gaze [53, 7, 54, 48, 13, 55]. Appearance-based algo-

rithms have the advantage of only using an image of the per-

son’s face or eyes as input, therefore eliminating the need

of any specialized hardware other than a regular camera.

Deep learning algorithms have been shown to be power-

ful tools for gaze estimation due to its ability to incorpo-

rate factors including illumination, head pose, appearance,

etc., using end-to-end learning. The biggest challenge with

this approach is the need for a huge amount of data with

ground truth gaze labels to train the network. Recent works,

[1, 44, 14, 18, 56, 24, 51], have made great efforts on cre-

ating such large datasets, showing promising results. How-

ever, the process of collecting labeled gaze data is still a

tedious task, and without powerful domain transfer tech-

niques, which have yet to be demonstrated for gaze esti-

mation, such data is limited to the devices, and scenarios

for which it was collected. The lack of data as well as an

efficient process for collecting data is one of the major bot-

tlenecks of deep learning methods for gaze estimation. Ad-

dressing this challenge is the goal of this paper.

Cognitive science has shown that the human visual sys-

tem has a strong tendency to focus on highly salient regions

in the visual field. There has been extensive work in the area

of computational saliency to emulate this behavior. While

conventional research in this field leverages ground truth

gaze data for visual saliency estimation, in this work we

propose to invert the process and utilize visual saliency in-

formation for gaze estimation. We argue and demonstrate

that saliency information within the scene can be used for

calibration purposes without active participation from the

user.



In this paper, we present SalGaze, a novel framework

that leverages visual saliency information, properly pro-

cessed as here introduced, for personalized gaze estimation

using deep learning models. Calibration is transparently

performed while the user watches a few short video clips.

By using a here proposed differentiable loss map, SalGaze

is also able to combine standard point-based calibration data

with free-viewing video data under a unified framework,

further improving performance if more accuracy is desired.

We experiment with both empirical saliency data collected

from eye trackers, and saliency data generated from two

state-of-the-art saliency algorithms. We show accuracy im-

provements of more than 24% using our technique.

2. Related work

Gaze Estimation. One of the pioneering works in

appearance-based gaze estimation was done by Tan et al.

[45]. They used over 200 calibration samples to achieve

very high accuracy under fixed head pose and illumination

setting. Lu et al. [30] improved on this by drastically lower-

ing the amount of calibration samples required while main-

taining high accuracy. However, their method still required

the person’s head to be completely still. Sugano et al. [44]

and Chang et al. [5] used a multi-camera setup and a depth

camera respectively to acquire 3D information and synthe-

size images of the eye under various head poses. An ex-

tensive survey of gaze estimation methods can be found in

[15].

Many deep learning based algorithms for gaze estima-

tion have been proposed over the last couple of years.

Zhang et al. [56, 57] trained a convolutional neural network

(CNN) on over 200,000 images collected from 15 partici-

pants over a 3 months period. Wood et al. [52, 51] used

advanced computer graphics to synthesize large amounts of

eye images to train CNN models. Shrivastava et al. [39]

used a generative adversarial network (GAN) to produce

more realistic synthesized eye images. Krafka et al. [24]

used Amazon Turk to collect over 2 million images of peo-

ple using iPhones and iPads. Park et al. [35, 34] trained a

deep network to regress to intermediate eye landmarks and

pictorial representations of the eyeball before estimating

the gaze. These contributions have made significant break-

throughs in the area of calibration-free person-independent

gaze estimation which shows the importance of having large

amounts of data. Our work aims to extend these methods by

allowing the use of personalized data that can be collected

at scale.

Gaze Personalization. Appearance-based algorithms

have mostly been focused on person-independent gaze

estimation. To the best of our knowledge, only a couple of

works have tried to address the challenge of personalizing

the algorithm to a specific user. Krafka et al. [24] used the

CNN features of a few calibration samples to train a Sup-

port Vector Regression model. Several methods [28, 7, 53]

have tried to explicitly incorporate person-dependent

parameters in the model. These parameters are estimated

with a few samples during testing. Others [55, 43] use

synthesis techniques to augment the number of samples for

a specific user to train a person-specific model or fine-tune

a generic model. The above methods all require explicit

calibration to collect limited samples of the user. Due to

the transparent nature of our data collection process, we

are not limited to collecting only a few samples from a new

user, therefore allowing for better personalization.

Saliency Prediction. Seminal work in this area was done

by Itti et al. [19]. They presented a computational model

that extracted low-level features such as color and orien-

tation to predict a global saliency map. More recently, a

plethora of deep learning based methods have been pro-

posed for static saliency prediction. Kümmerer et al.

[26, 27] proposed two deep saliency prediction networks,

DeepGaze I and DeepGaze II, that was built on the AlexNet

[25] and VGG-19 [40] models respectively. Pan et al. [33]

used a GAN to generate saliency maps. Cornia et al. [9]

and Liu and Han [29] combines Long Short-Term Memory

networks (LSTM) [17] with ResNet [16] to infer saliency

by incorporating global and scene contexts. The problem

of saliency prediction is not the focus of this work, we use

saliency as a tool for gaze estimation. Further progress on

computational saliency estimation can potentially further

improve the results we obtain in this paper.

Gaze and Saliency. While the problem of gaze estima-

tion and saliency prediction have received a lot of atten-

tion in each of their own respective areas, there are only a

handful of works, to date, that make a connection between

them. Sugano et al. [42] were the first to utilize saliency

as a probability map for gaze estimation. They use Gaus-

sian process regression to establish a mapping between eye

images and gaze positions on a monitor under a fixed head

pose setting. Chen et al. [6] used a model-based approach

where the parameters of the eyeball are estimated in a prob-

abilistic manner using saliency information of the stimuli.

Their method is based on the pupil center corneal reflec-

tion (PCCR) which requires the use of an infrared camera

in order to locate the pupil position. Many other works

[36, 37, 12, 41, 8] uses the saliency information of an image

to determine if a person in the same image is looking at a

salient object. Our work differs from them as we use the

saliency information of an out-of-frame target for precise

gaze estimation. Contrary to these works, our method is de-

signed for deep learning algorithms that utilize a loss func-

tion, and as such we design a new saliency-informed differ-

entiable cost function which is also capable of combining



saliency information with point-wise calibration. The abil-

ity of transparently collecting large amounts of gaze data

using saliency information further enhances the potential of

our method.

3. Personalized Gaze Estimation from Saliency

In Section 3.1, we mathematically formulate the prob-

lem of 2D gaze estimation for standard point-wise calibra-

tion data. Then in Section 3.2, we extend the formulation

to using saliency information and derive a solution by de-

signing a differentiable loss map. We show that traditional

point-based calibration is a special case of our solution and

therefore can be combined with it. Implementation details

of our CNN model are provided in Section 3.3.

3.1. Point Loss

Let Ω ⊂ R
2 denote an open set where a person’s gaze

is tracked, e.g. a computer monitor or a phone screen, I
the input, typically the face or eye image of the person or a

combination of them, and f a model capable of estimating

the person’s gaze p̂ from this image, i.e., p̂ = f(I) (p̂ ∈ Ω).

The standard calibration procedure consists of collecting

images I1, ..., In of users looking at pre-specified locations

p1, ..., pn (pi ∈ Ω) on the screen. The parameters of the

model f are denoted as θ = (θ1, ..., θm). We can optimize

these parameters such that the empirical error on the col-

lected data is minimized,

θopt = argmin
θ

n∑

i=1

d(fθ(Ii), pi)
2 , (1)

where d represents some distance between the predicted

gaze p̂ = f(I) and the ground truth gaze p, e.g., the

one induced by the L2 norm d(u, v) = ‖u − v‖2 =
√∑

k(uk − vk)2. Equation (1) can be solved, for exam-

ple, using stochastic gradient descent, as the loss L(θ) =
∑n

i=1
d(fθ(Ii), pi)

2 is differentiable,

∂Li

∂θj
= 2(fθ(Ii)− pi)

T ∂fθ(Ii)

∂θj
. (2)

Since f is implemented using differentiable CNN mod-

els in this work, ∂fθ
∂θ

is well defined and can be computed

numerically. Gradient descent leads to the updating rule,

θt+1 = θt − δ (fθ(I)
︸ ︷︷ ︸

p̂

−p)T
∂fθ(I)

∂θ
, (3)

where δ represents the gradient descent step size. Essen-

tially, the parameters of the model are slowly modified such

that p̂ → p. As shown in Eq. (3), the term proportional to

−(p̂− p) pushes the prediction of the model in the opposite

direction of the error vector, therefore improving the accu-

racy. This simple optimization technique has been shown to

be very robust in the context of gaze estimation [24].

3.2. Probability Map Loss

We extend the ideas in the previous section to the sce-

nario where, instead of precise point calibration data, we

have, for each input image Ii, saliency information si :
Ω → [0, 1] of the content the user is watching. s(x, y) can

be interpreted as a measure of the likelihood that the user is

looking at the point (x, y) ∈ Ω.

A naive way to adapt Eq. (1) to exploit the new calibra-

tion data {si} would be,

θopt = argmin
θ

n∑

i=1

g(si(fθ(Ii))), (4)

where g is defined as some smooth monotonic decreasing

function, e.g., g(u) = −u or g(u) = 1/u. This for-

mulation makes sense in regions where s(x, y) �= 0 since

if the model predicts a position fθ(I) of high probability,

s(fθ(I)) would be large, and the loss g(s(fθ(I))) would

be small. However, for regions where s(x, y) = 0, which

could often occur in saliency maps, ‖∇s‖ is zero and a gra-

dient descent-like optimization technique will fail.

In order to obtain a well-posed and robust optimization

scheme, we propose to compute a loss map l(s) with the

following properties:

• l(s) should be continuous, differentiable and have

properties described in 3.1;

• it should encourage predictions to occur at regions

with large saliency values;

• for point data, l(s) should represent the distance to this

point as in Eq. (1).

To that end, we adapt ideas from [4] and implement a

Reinitialization-like equation as we detail next.

First we set a threshold λ and compute a binary map l0 :
Ω → {0, 1}, l0(x, y) = 1 if s(x, y) < λ and 0 otherwise.

Then we use this binary image as the initial condition of the

Partial Differential Equation (PDE)

⎧

⎨

⎩

∂u((x, y), t)

∂t
+ l0(x, y)(‖∇u((x, y), t)‖ − 1) = 0,

u((x, y), 0) = l0(x, y).
(5)

Figure 1 illustrates the evolution of u((x, y), t). Algo-

rithm 1 describes the numerical implementation of the reini-

tialization scheme described in Eq. (5). A robust implemen-

tation of the gradient computation step in Algorithm 1 is

given in Algorithm 2.

Definition 3.1. Let Γ be a close set in Ω and dist (p, Γ ) the

distance of a point p to the set Γ defined as

dist (p, Γ ) = inf
q∈Γ

‖q − p‖2. (6)



(a) Iteration 0 (b) Iteration 100 (c) Iteration 500 (d) Iteration 1000

Figure 1: Evolution from binary map to loss map. (a), (b), (c), and (d) shows the loss map at different iterations of the

reinitialization algorithm.

Definition 3.2. The skeleton of Γ , denoted by SΓ , is the set

of points x ∈ R
2 such that there exist at least two distinct

points y and z in Γ satisfying

|x− y| = |x− z| = dist (x, Γ ) .

Proposition 3.1. If Γ is a closed subset of Ω, u(p) =
dist (p, Γ ), and S̄Γ denotes the closure of the skeleton of

Γ ,

1. u is 1-Lipschitz for all p ∈ Ω,

2. ‖∇u‖ = 1 for all p ∈ Ω\S̄Γ .

Proposition 3.2. Let Γ = {q ∈ Ω/l0(q) = 0}. The func-

tion u : Ω × R+ → R defined by,

u(p, t) =

{
inf|q|≤t(l0(p+ q) + t) if t ≤ tp,

dist (p, Γ ) if t > tp,
(7)

where

tp = inf
{
t ∈ R+/inf|q|≤t(l0(p+ q)) = 0

}

is the unique solution of (5) uniformly continuous on Ω ×
[0, T ], ∀T > 0 and vanishing on Γ ∀t ∈ [0, T ].

Proposition 3.1 is similar to the Proposition 4.3.1 pre-

sented in [4] in that we define a positive distance function

instead of a signed distance function, and Γ as a closed sub-

set of Ω instead of a closed curve in R
2. In addition, Propo-

sition 3.2 can be proved with a straightforward adaptation

of the proof of Theorem 4.3.4 presented in [4].

We define l(x, y) as the solution of Eq. (5) with initial

condition l0(x, y), i.e., l(x, y) = u((x, y), t∗) for any t∗

larger than the longest straight line contained in Ω, there-

fore, l(x, y) is the distance of (x, y) to the set defined by

{q ∈ Ω / l0(p) = 0}. Finally, given the data {Ii, si}, we

compute the corresponding loss maps {li}, and adapt the

gaze model by,

θopt = argmin
θ

n∑

i=1

li(fθ(Ii))
w. (8)

We can chose w = 1 or w = 2 to minimize the distance

or the squared distance respectively. We refer to the former

as the map loss and the latter as the squared map loss. When

the prediction p̂ is outside the valid set l0 = 0, the gradient

of our defined loss will update the model to predict towards

the closest point in the set. The norm of the gradient is

proportional to the distance to the set when w = 2, or a

unitary vector when w = 1. As we will show in Section

4.4, w = 2 leads to a faster convergence rate, while w = 1
is more robust to outliers.

It is important to mention that point calibration data can

be seen as a special case where for a given calibration point

p, its equivalent saliency map is s(x, y) = 0, ∀(x, y) ∈
Ω\{p} and s(p) = 1. Therefore our formulation allows the

use of both point and saliency data sources for gaze estima-

tion.

Algorithm 1 Reinitialization Equation. Implementation of

the solution of the PDE described in Eq. (5).

Input: binary loss map l0 : [1...H]× [1...W ] → {0, 1}
1: Set iteration parameters:

2: tol = 0.01 stop criteria

3: δ = .1 step size

4: Initialize variables.

5: diff = tol +1
6: u0 = l0
7: while diff > tol do

8: u0x, u0y = computeGradient(u0) (see Alg. 2)

9: u1 = u0− δ l0

(√

u2
0x + u2

0y − 1
)

10: diff = ‖u1 − u0‖2
11: u0 = u1

12: end while

13: return u1

3.3. Implementation Details

Our model architecture is based on iTracker [24], a CNN

that predicts the user’s gaze position on an iPhone or iPad.



Algorithm 2 computeGradient (robust implementation).

Input: u : [1...H]× [1...W ] → [0, 1].
1: Initialize

2: δ+x = zeros(H,W )
3: δ+y = zeros(H,W )
4: δ−x = zeros(H,W )
5: δ−y = zeros(H,W )
6: Compute the nonoscillatory upwind scheme (see [4] ap-

pendix A.3 for details).

7: δ+x [:, 2 : −2] = max(u[:, 2 : −2]− u[:, 1 : −3], 0)
8: δ+y [2 : −2, :] = max(u[2 : −2, :]− u[1 : −3, :], 0)
9: δ−x [:, 2 : −2] = −min(u[:, 3 : −1]− u[:, 2 : −2], 0)

10: δ−x [:, 2 : −2] = −min(u[3 : −1, :]− u[2 : −2, :], 0)
11:

12: ux = max(δ+x , δ
−
x )

13: uy = max(δ+y , δ
−
y )

14: return ux, uy

The network uses images of the user’s face collected from

the front facing camera of the device as input, and outputs

the position on the screen of where the user is looking at.

Specifically, the face and two eye regions of the image as

well as the face grid, a binary matrix representing the spa-

cial position of the face inside the image, are used as 4 in-

puts to the network. The output is the 2D gaze position

relative to the camera. This technique allows for pooling

data from different device models and device orientations

to train a relatively robust model, although its performance

still degrades when extrapolating to new conditions (e.g.,

different devices or acquisition scenarios).

We modify the iTracker architecture in the following

way: (1) The size of the input face and eye images is re-

duced from 224 × 224 to 64 × 64 to reduce training time.

(2) An extra fully connected layer is added at the end of the

network for fine-tuning purposes. (3) The local response

normalization layer after each convolutional block is re-

placed with the superior batch normalization layer. (4) The

mean squared loss is replaced with our custom map loss de-

fined in Section 3.2. The final model architecture is shown

in Figure 2. Adapting a known architecture to the new per-

sonalized formulation helps to illustrate the plug-and-play

style of our proposed framework.

Our model is implemented in Python using Tensorflow.

The optimization is performed using the Adam [22].

4. Experiments

In this section, we perform experiments to evaluate how

different hyperparameters, data quantity, and different types

of saliency computations affect the performance of our

method.
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Figure 2: Network architecture

4.1. Data Collection

We asked 9 participants (7 male, 2 female) to each record

10 sessions of data using an iPad Air 2 in landscape orien-

tation. Each session is composed of 2 phases: a point phase

and a video phase. The point phase is similar to a traditional

calibration procedure where 20 points sequentially appear

at random locations on the screen for 2 seconds each. In the

video phase, several short 15 to 20 second video clips are

played with rest intervals between them. The 10 sessions

of data for each participant are collected in different loca-

tions across several days to encourage variability in pose,

illumination, and general acquisition environments.

The videos we show to participants come from two pub-

lic saliency databases: SAVAM [31] and Coutrot Database

1 [10]. SAVAM contains 41 fragments of 1920 × 1080 mo-

tion video from various feature movies, commercial clips,

and stereo video databases. Coutrot Database 1 contains 60

videos of people or faces, moving objects, and landscapes at

720 × 576 resolution. We use the set of videos with original

soundtracks for Coutrot Database 1. Ground truth saliency

data collected with commercial eye trackers are provided

for each video. From these videos, we manually selected 33

that we found relatively more engaging. The videos we used

are {2, 5, 6, 11, 12, 22, 24, 29, 30, 34, 38} from SAVAM

and {6, 8, 15, 17, 18, 21, 23, 24, 25, 26, 28, 46, 47, 48, 50,

51, 52, 53, 54, 56, 57, 59} from Coutrot Database 1. Partic-

ipants view each video only once across the 10 sessions.



4.2. Data Preprocessing

We compute the loss map for each video frame by first

mapping the saliency maps from the pixel coordinate space

to the camera coordinate space defined in [24] based on the

device specifications and device orientation. We use a 101

× 101 grid to represent the square area between -25cm and

25cm in the camera coordinate space. The loss map is then

computed using the method described Section 3.2. We set

λ equal to the 95th percentile of the saliency map for gen-

erating the binary map. This process is shown in Figure 3.

(a) (b)

(c) (d) (e)

Figure 3: Loss map generation process. The saliency image

(b) of a particular video frame (a) is mapped to a 101 × 101

grid representing the camera coordinate space (the predic-

tion space) from -25cm to 25cm. The mapped saliency im-

age (c) is then converted into binary image (d) after which

the reinitialization algorithm is used to generate the differ-

entiable loss map (e).

The recorded videos are synced to the presented videos

such that each recorded frame in the point phase is asso-

ciated with the presented point location and each recorded

frame in the video phase is associated with the loss map of

the corresponding presented video frame. Due to high sim-

ilarity between consecutive frames, we sample the recorded

video and loss maps at 1 frame per second. We also discard

any frame within the first 0.5 seconds of a point appearing to

allow for participants to focus their gaze. Dlib [21] is then

used to detect the face and facial landmarks in each frame.

We use the face region given by Dlib to crop out the face im-

age and compute the face grid defined in [24]. We define the

eye region as the square area centered at the midpoint of the

eye corner landmarks with a side length equal to 1.8 times

the horizontal distance between the eye corner landmarks.

We found this results in similar eye images to [24] which

uses a native iOS algorithm to generate the croppings.

4.3. Baseline Model

Our baseline model is trained using the same training

and validation data from GazeCapture [24]. We resize the

input images to 64 × 64 and train for 75,000 iterations with

a batch size of 256. A comparison of our baseline model

to iTracker [24] on 3 subsets of the GazeCapture test data

is shown in Table 1. Due to decreasing the resolution of

the input images, which we did for computational purposes,

our baseline model performs slightly worse than iTracker.

However, our goal here is to not to outperform iTracker but

rather to set a baseline for indirect comparison with our per-

sonalized models in the following sections. While they do

not report the performance on the set of test data collected

on the iPad Air 2 in landscape orientation, if we extrapolate

based on the trend of our baseline model, the error is ap-

proximately 3.6cm. We show, in the next section, that our

low-resolution personalized model can achieve an error of

3.3cm.

Model

Test Data Partition

All Phones All Tablets
iPad Air 2

(Landscape)

iTracker [24] 2.04 3.32 N/A

Baseline 2.26 3.76 4.07

Table 1: Mean error (cm) of our baseline model and

iTracker on different test sets of GazeCapture.

4.4. Calibration with Saliency

We validate the usefulness of saliency data for personal-

ized gaze estimation by fine-tuning the last two fully con-

nected layers of our baseline model described in Section

4.3. For each participant, we use data from the video phase

and their corresponding loss maps for fine-tuning and test

on data from the point phase. We compare the effect of

using the map loss with the squared map loss described in

Section 3.2. As the user is not constrained or guided to

look at specific locations during the video phase, we expect

the collected data to present outliers where the input image

does not coincide with the saliency map. Therefore, we also

explore the effect of an iterative outlier removal (IOR) tech-

nique where we remove the top 5% of data with the largest

loss from training every 2 epochs. Appropriate filtering of

the input videos and saliency data is important for the pro-

posed framework, and this simple approach has been found

sufficient; we discuss more on this in the Section 5. For each

participant, the baseline model is fine-tuned for 10 epochs

per configuration.

Figure 4 shows the average gaze error across all partici-

pants for each epoch. It can be seen that the error stabilizes

after 4 epochs. Therefore, we decide to fix the fine-tuning

procedure to 4 epochs for this and subsequent experiments.



Quantitative results are shown in Table 2. It can be seen

that all 4 configurations improve over the baseline and IOR

helps with reducing the error. As expected and commented

in Section 3.2, the squared loss leads to a faster convergence

but is more susceptible to outliers with which IOR helps to

mitigate. For the experiments in sections 4.5 and 4.6, we

use the map loss with IOR configuration.

Figure 4: Average gaze error using different training con-

figurations.

Configuration Error (cm) Improvement (%)

Baseline 4.38 ± 1.18 0

Map Loss 3.44 ± 0.74 21.46

Map Loss w/ IOR 3.32 ± 0.77 24.20

Squared Map Loss 3.38 ± 0.73 22.83

Squared Map Loss
3.30 ± 0.78 24.66

w/ IOR

Table 2: Average gaze error using different training config-

urations.

4.5. Scalability with Data Quantity

Contrary to standard point-wise calibration, using visual

saliency for calibration is transparent and therefore pro-

vide a means for collecting large amounts of data in a non-

intrusive way. To examine how the performance of our ap-

proach scales with the amount of data, we use data from 1,

2, 4, and 8 of the 10 sessions to fine-tune the baseline model

for each participant. Similar to Section 4.3, fine-tuning is

performed on data from the video phase of the selected ses-

sions, and testing is performed on data from the point phase

of all 10 sessions. Quantitative results are shown in Table

3. It can be seen that the estimation error decreases with the

increase of training data.

Sessions of data
Error (cm) Improvement (%)

used for training

Baseline 4.38 ± 1.18 0

1 3.73 ± 0.77 14.84

2 3.62 ± 0.77 17.35

4 3.46 ± 0.78 21.00

8 3.38 ± 0.71 22.83

Table 3: Gaze estimation error using different amounts of

training data.

4.6. Generated vs. Empirical Saliency

In the above experiments, the saliency data we use for

fine-tuning were collected by [10, 31] using commercial

eye trackers. While this gives us reliable data, it also limits

us to using videos of which ground truth saliency is avail-

able. Having the capability to use arbitrary videos would

greatly broaden the applicability of our method. In this ex-

periment, we explore the potential of using saliency predic-

tion algorithms to generate saliency maps for gaze estima-

tion. Specifically, we examine two state-of-the-art saliency

prediction algorithms: SAM [9], an image saliency pre-

diction algorithm; and ACL [49], a video saliency predic-

tion algorithm. We use the ResNet version of SAM that

is trained on the 2015 SALICON [20] dataset. ACL is

trained on Hollywood-2 [32], UCF sports [32], and DHF1K

[49] datasets. Both SAM and ACL models are publicly

available. We independently run SAM and ACL on the

video clips to generate their saliency data. We refer to

the saliency data collected from eye trackers as empirical

saliency data. Examples of some video frames and their

respective saliency maps are shown in Figure 5.

For each type of saliency data, we personalize the base-

line model in the same way as sections 4.4 and 4.5 where,

for each participant, the data from the video phase is used

for fine-tuning and data from the point phase is used for

testing. Essentially, the network is seeing the same in-

puts but with different loss map labels. Quantitative re-

sults are shown in Table 4. We can see that in terms of

performance, Empirical > ACL > SAM. This is consistent

with the assumption that empirical saliency from eye track-

ers is more accurate than their generated counterpart. Fur-

thermore, since we use video content for data collection,

it makes sense that using the video-based algorithm ACL

performs better than the image-based algorithm SAM. Nev-

ertheless, using any of the three types of saliency data show

clear improvement over the baseline.

5. Discussion

In this section we discuss two main challenges of using

saliency data for gaze calibration.
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Figure 5: Examples of videos frames and their empirical

and generated saliency maps.

Saliency Type Error (cm) Improvement (%)

Baseline 4.38 ± 1.18 0

Empirical 3.32 ± 0.77 24.20

SAM 3.99 ± 0.58 8.90

ACL 3.70 ± 0.54 15.53

Table 4: Gaze estimation error using different types of

saliency computations.

5.1. Imprecise Labels

One of the biggest differences between our approach and

traditional gaze estimation methods is that we do not have

precise ground truth gaze labels. Since there is no con-

straint on where the user is looking, there is a portion of

data where the input image is not consistent with the associ-

ated saliency map. This portion of data can be interpreted as

mislabelled data which will hinder the network from learn-

ing the correct parameters. In this paper, we tried to address

this issue using an iterative outlier removal technique. How-

ever, we believe that using a more sophisticated method to

filter the training data such that there is higher correlation

between the input images and saliency labels as well as se-

lecting genres of videos with clearer saliency regions (e.g.,

sports) will further improve the performance.

5.2. Unbalanced Data

In the study of visual saliency, the center bias is a well

known phenomenon where objects of interest appear more

often near the center of the scene [47, 46]. Figure 6 shows

the average distribution of the empirical and generated

saliency maps across all videos for SAVAM and Coutrot

Database 1. This non-uniformity skews the prediction to

favor the center region which results in larger errors at the

boundaries. We think one area of future work could be di-

rected at correcting or compensating for this bias, e.g., sam-

ple the training data to have a more uniform distribution, or

use a spatially weighted loss.
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Figure 6: Average saliency distributions of all videos from

SAVAM and Coutrot Database 1.

6. Conclusion

In this paper, we proposed SalGaze, a novel framework

for gaze estimation using visual saliency information. We

designed an algorithm to transform a saliency map into a

differentiable loss map that is well suited for the optimiza-

tion of CNN-based models. SalGaze is able to combine im-

plicit video calibration data with explicit point calibration

data using a unified framework. Our technique does not

require explicit attention from the user and can run in the

background while the user uses the device. This lack of con-

straints may lead to outliers in the training data. We show

that we are able to partially overcome this issue by means

of an iterative outlier removal procedure. Our method also

enables the collection of large amounts of gaze data which

is critical for deep learning based algorithms. We show ac-

curacy improvements over 24% after adapting a state-of-

the-art gaze estimation algorithm with saliency information

using SalGaze.
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