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Abstract

Building fast and accurate gaze estimation models with-

out additional specialized hardware is a hard problem. In

this paper, we present on-device few-shot personalization

methods for 2D gaze estimation. The proposed supervised

method achieves better accuracy using as few as 2-5 cali-

bration points per user compared to prior methods that re-

quire more than 13 calibration points. In addition, we pro-

pose an unsupervised personalization method which uses

only unlabeled facial images to improve gaze estimation

accuracy. Our best personalized model achieves 24-26%
better accuracy (measured by mean error) on phones com-

pared to the state-of-the-art using <=5 calibration points

per user. It is also computationally efficient, requiring 20x

fewer FLOPS when compared to prior methods. This un-

locks a variety of important real world applications such as

using gaze for accessibility, gaming and human-computer

interaction while running entirely on-device in real-time.

1. Introduction

Eye tracking or automated gaze estimation to infer user’s

visual attention and behavior is a fundamental component in

numerous applications, including human-computer interac-

tion [16, 23, 24, 25], behavior monitoring [24, 3], vision-

systems [27, 32], Augmented Reality/Virtual Reality, med-

ical diagnoses [12], and gaming [7]. With the recent suc-

cess of deep models in computer vision tasks, convolutional

neural network (CNN) based approaches have become pop-

ular [1, 47, 19, 37, 46, 20, 2, 8, 44, 45, 40, 42] in gaze esti-

mation research.

High accuracy is a requirement for many gaze applica-

tions listed above. One popular approach to improving gaze

estimation accuracy is personalization [19, 46], where the
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model is customized for each user using personal labeled

data (known as calibration points in eye tracking research).

The calibration data is collected by asking users to look at

specific locations on the screen, and capturing the corre-

sponding front-facing camera frame as the input, and the

screen location as the gaze label.

One approach to personalizing deep models is to fine-

tune the model weights of the last few layers with addi-

tional calibration data from the user. There are two main

limitations with this approach: (a) effectively fine-tuning

the model requires a large amount of calibration data, and

(b) it is computationally difficult to update model parame-

ters on-device. In [19], the authors demonstrate improved

2D gaze estimation using a personalized support vector re-

gression (SVR) on top of a deep learning model. This ap-

proach works well with large number of calibration points,

however, the accuracy is poor if the number of calibration

points is < 5-9.

Building an accurate, personalized gaze-estimation

model that is fast, runs on-device, and uses few calibration

points is still an open problem in the field. On-device per-

sonalization is preferred over server-based solutions, as it

presents several benefits including low latency, fewer data

privacy/security concerns, and support for poor (or no) net-

work connectivity scenarios, thereby enabling a large num-

ber of applications in accessibility, gaming and human-

computer interaction.

In this paper, we propose an end-to-end CNN model for

on-device personalized gaze estimation that achieves signif-

icantly better accuracy than prior art while requiring only

few calibration points. The key contributions are:

• A supervised personalization method using very few

labeled calibration points (<= 5), with embedding

based few-shot learning.

• An unsupervised few-shot personalization method to

improve gaze estimation accuracy with a few unla-

beled images from the user, based on heterogeneous



teacher-student network.

• An improved CNN model architecture for calibration-

free 2D gaze estimation, SAGE (faSt Accurate Gaze

trackEr) which is more computationally efficient com-

pared to prior work in this area [19, 37, 13].

• Combining SAGE with our supervised few-shot per-

sonalization method offers a gaze-estimation model

that yields better accuracy (24-26%) using very few

calibration points (<=5) when compared to SOTA,

runs real-time on-device and is significantly faster

(∼20x speedup in inference, 10ms on Pixel 2).

Our paper is organized as follows: Section 2 describes

related work on gaze estimation, few-shot learning, and

teacher-student network; Section 3 explains our proposed

methodology, where in Section 3.1, we introduce SAGE,

our calibration-free gaze estimation CNN model, and in

Sections 3.2 discuss our supervised personalization meth-

ods . In Section 4, we proposed a novel unsupervised per-

sonalization method. We conclude with experiments to sup-

port the proposed methods and compare them with the best

known baselines in Section 5.

2. Related Work

Gaze Estimation: The problem of estimating gaze from

an image has become an active research area. Broadly

speaking, the gaze estimation problem can be divided into

two categories: 2D gaze and 3D gaze, where the former

refers to estimating the (x, y) gaze location on the de-

vice’s screen [13, 19, 47] while the latter refers to esti-

mating the 3D gaze vector representing the gaze direc-

tion [47, 37, 46, 34, 6, 28, 39]. In this paper, we will focus

only on 2D gaze on screen estimation.

Gaze estimation approaches can be classified as either

model-based or appearance-based. Model-based methods

model the geometric structure of the eye region, e.g., iris

contour, while appearance-based methods directly estimate

the gaze position or direction from the input image. Early

research on gaze estimation often used model-based meth-

ods. For example, the methods in [10, 26, 5] use an infrared

light source or high-quality image sensor to separate the iris

from the rest of the image, while other methods try to fit a

geometric model to the entire face [15, 4] or occluded face

[43]. In contrast, appearance-based approaches estimate

the gaze position or direction using a regression procedure

based on the face or eye region images. Due to the lack of

training data, a common simplification is to introduce ad-

ditional knowledge, such as head pose into the regression

framework, or to train only shallow models [22, 33, 35, 14].

Recent work from [28] tries to map eye images to simplified

representations before regressing to a 3D prediction.

Krafka et. al. [19] proposed iTracker, a CNN for 2D gaze

estimation. In summary, the model takes four image inputs

that are all extracted from the camera frame: (1) left eye im-

age, (2) right eye image, (3) face image, and (4) face grid.

The eye images indicate the pose of eyes relative to the face,

while the face image and face grid describe the user’s head

pose relative to the camera and capture the user’s distance to

the camera. For more details, we refer the interested reader

to the paper [19]. They also collected and published Gaze-

Capture, a large public 2D gaze dataset with almost ∼1500

subjects and ∼2.5 million frames. Using the iTracker model

and the large dataset, Krafka et. al. showed that a deep

CNN-based network can perform reasonably well for 2D

gaze estimation. Recent work also discusses using genera-

tive adversarial networks (GAN) to create synthesized train-

ing data to improve 3D gaze estimation accuracy [34, 41].

Next, we discuss prior work on personalized gaze es-

timation. There exist some approaches for personalized

3D gaze estimation [39, 21, 20], however, in this paper,

we will mainly focus on personalized 2D gaze estimation

works. In [46], a person-specific model is proposed, where

person (or device) specific encoder and decoder layers are

trained with data from that person (or device), and the

shared feature extraction layers are trained with the full

dataset. It is worth noting that the encoder and decoder re-

quire fine-tuning in order to adapt the model to a new sub-

ject. Such personalization is computationally intensive, re-

quires a large amount of calibration data, and cannot be run

on-device. Krafka et. al. [19] proposed a personalized ver-

sion of iTracker, where a Support Vector Regression (SVR)

model is trained with a few labeled calibration points from

every subject. The input feature for the personalized-SVR is

the final FC layer representation of the input, in the iTracker

model. While this approach is amenable for on-device in-

ference, as shown in [19] and our experiments, it fails to

generalize when only few examples are available (< 5 la-

beled calibration points). In contrast, our proposed method

can improve the 2D gaze estimation accuracy while having

access to only a few labeled samples. o developed a person-

alized 3D gaze model.

Few-shot Learning: Up to now, few-shot learning based on

deep neural nets is mostly proposed for classification tasks,

where the classifier needs to be adapted to new classes with

just a few (labeled) examples of each class. Deep few-shot

classification can be grouped into two categories: meta-

learning-based methods [31, 30], and embedding-based

methods [17, 38, 36, 29, 18, 9]. With meta-learning, the

classifier itself still needs many data to train, on top of

which a meta-learner is learned with few examples, e.g.,

to update the parameters of the classifier [30]. As with

embedding-based methods, an embedding space is trained

on all examples (from both classes with many examples

and new classes with few examples) usually with a neu-

ral network consisting of convolution layers and FC layers.

Then examples of new classes are mapped to the embed-



ding space, and some kind of classification system, (e.g.

based on nearest neighbors or distance to class prototype

like class center, etc.), is applied on the embedding space so

that the classifier can learn the new classes with only a few

samples. For instance, the classifier in embedding space for

new classes can be computed from distance to the class cen-

ters (or its probability variation) [36], neighborhood com-

ponents analysis [29], attention mechanism [38].

Our proposed supervised personalization approach is in-

spired by embedding-based few-shot classification meth-

ods. However, there are substantial differences between our

work and previous few shot classification research: first,

our work is in the context of gaze estimation, a regres-

sion problem instead of classification problem; second, our

task, model personalization, is rarely discussed in previous

few-shot learning area; finally and more importantly, our

few-shot personalization model runs on-device in real-time,

which is seldom studied.

Teacher-Student Network: Most teacher-student network

architectures [11] assume input homogeneity, i.e., the

teacher and student network are in the same input space.

However, some recent research [49] shows that hetero-

geneous teacher-student network architecture, where the

teacher and student networks are in different spaces, also

works well. Our proposed unsupervised personalization ap-

proach is also a heterogeneous teacher-student network -

the first one designed with few-shot learning, to the best

of our knowledge. Moreover, instead of using conventional

L2 approximation, we proposed a novel random selection

method to force the student networks output to approximate

the teacher network’s output with the advantage of no addi-

tional hyper parameters.

3. Supervised Few-shot Personalization

3.1. SAGE Model Architecture

Before discussing about our supervised few-shot per-

sonalization method, we first introduce our unpersonalized

(calibration-free) model, which is named as SAGE (faSt

Accurate Gaze trackEr), a new CNN model architecture

that offers better accuracy, memory usage, and speed com-

pared to prior art of 2D gaze prediction model [19, 37]. Fig-

ure 1 illustrates the SAGE model architecture.

The inputs to the SAGE model are: left/right eye images,

eye landmark features, and a unique id to represent the de-

vice. The key changes in terms of the inputs and architec-

ture as compared to iTracker [19] are summarized below.

First, we replace a crude approximation of the head pose

represented by the binary face grid with more sensitive eye

corner landmark features. The landmark feature is com-

puted by concatenation of two dimensional eye corner land-

marks (x, y) that amounts to a R
8 vector for two eyes. To

make the landmark feature independent from the image res-

olution, we normalize x and y by dividing them by image

Figure 1. SAGE: Our proposed network architecture for gaze esti-

mation.

width and height respectively.

Second, to reduce the amount of overfitting, we remove

face image from the inputs, making the model rely only on

the eyes and eye landmark features. Eye images exhibit

much less variability compared to face images which en-

ables better model fitting and improved generalization using

lesser data. We constrain parameters of the convolutional

layers to be same for both left and right eye streams similar

to the iTracker model. To simplify the network’s task, we

flipped the left eye image left-to-right so that the weights of

both eye streams can be shared more easily. Since eye im-

ages require lower resolution than the full face image, we

reduce the eye image resolution to 64× 64, thereby greatly

improving the inference speed.

Third, to accommodate differences in the mobile phone

camera’s intrinsic parameters, we introduce a small set of

device specific parameters: waov ∈ R
2 to reflect differ-

ences in the angle of view and wloc ∈ R
4 to reflect dif-

ferences in the camera’s location with respect to the screen

origin. These are applied as an affine transformation to the

landmark inputs and the gaze prediction output.

Lastly, we jitter the eye bounding box and eye corner

landmark locations during training. This dynamic crop-

ping of eye regions makes the model more robust to small

changes in lighting, camera movement, noise, or face/eye

landmark detection errors.

We use the following sizes for the convolutional layers:

CONV1(7× 7× 32), CONV2(5× 5× 32), CONV3(3×
3×32). The FC layers have the following sizes: FC1(100),
FC2(16), FC3(16), FC4(16), FC5(2).

In section 5, we thoroughly evaluate the performance of

SAGE with and without the proposed personalization meth-

ods and show improvements in both accuracy and inference

speed of gaze estimation over current best known methods.

3.2. Supervised Few-shot Personalization

In this section, we propose a fully-supervised on-device

personalization framework that works well with only a few

calibration points per user (per device orientation) and sup-



ports real-time inference. Our personalization method con-

sists of three phases: on-server training phase to train the

base model; on-device calibration phase to apply person-

alization for a new user; and on-device inference phase to

produce gaze estimation on a new user query, as explained

below.

1. On-server training phase: The entire training process

happens offline. For each sample (query), a few la-

beled samples from the same person (calibration data)

are used for personalization. The weights of the model

is fixed after training is finished.

2. On-device calibration phase: Given a new user, the

trained model takes a set of images with correspond-

ing calibration point labels as input to extract user cal-

ibration features and store for later use in the inference

phase. Note that the calibration step is not necessary in

the inference phase and is required only once for every

new user or whenever the environment factors (e.g.,

lighting, reflection etc.) change significantly.

3. On-device inference phase: The personalized model

takes the query image and the cached calibration fea-

tures as input to make prediction.

We denote the number of calibration points per user as

K (K is a small number e.g., K = 3 or 5). Since the

training dataset [19] contains thousands of images per user

across multiple labels, we first construct a meta-dataset us-

ing randomly-generated training examples that consist of a

(query image, label) pair and K corresponding (calibration

point image, label) pairs belonging to the same user.

3.2.1 Model Architecture

The model architecture is illustrated in Figure 2. The query

image and calibration point images are first processed to ex-

tract a feature embedding (similar to feature extraction us-

ing pre-trained models). The output feature representations

are denoted by Xq , Xc1 , Xc2 , ..., XcK . Note that the feature

embedding block can be swapped for any image model. In

our study, we evaluate both the proposed SAGE architec-

ture 1 (in Section 3.1) and iTracker [19] architecture after

discarding the final FC layer. A 2D regression estimator is

then used to compute the screen gaze location from the fea-

ture embeddings (i.e., Xq , Xc1 , Xc2 , ..., XcK ) extracted in

the previous step and gaze labels of the calibration points

(yc1 , yc2 , ..., ycK ).

Like most embedding based few-shot learning methods,

the embedding features Xq and Xcj are used to find the re-

lationship between the query q and few-shot examples cj
, then yq is predicted from ycj based on the learned rela-

tionship. For example, [36] employs a nearest neighbor ap-

proach, where Xcj , the sample that has closest distance to

1When SAGE architecture is used, the layer of output affine transfor-

mation is added after the final FC layer in Figure 2.

Figure 2. The proposed supervised few-shot personalization

model. The figure illustrates the overall on-server training phase.

Xq denotes the extracted query feature vector, Xcj and yj rep-

resent the extracted feature vector and gaze location label of the

j th calibration point, and d̂j represents the relative direction of the

query w.r.t. to the j th calibration point. The gray box shows the

components that can be pre-computed and cached for on-device

inference. Figure best viewed in color.

Xq is first found 2, and its corresponding label ycj is then

assigned to q. Unfortunately, this nearest neighbor approach

is unsuitable for our regression problem, therefore, we in-

put Xq , Xcj and ycj into FC layers to learn the appropriate

relationship.

Moreover, for better model robustness to noise in the la-

bels of the calibration points, we propose employing ad-

ditional information about the pairwise relative direction

between the query image and calibration points. The di-

rectional relationship between calibration points and query

point is robust to noise, i.e., even if there is a small noise

in the 2D position of labels, the directional relationship will

remain unchanged. Since labeling noise in gaze datasets is

almost unavoidable, this robust relationship is useful to help

train a better model.

More specifically, we first divide the screen centered at

the calibration point of interest into four regions (or equiv-

alently, four quadrants), then setup a pairwise loss for ev-

ery (query, calibration) image feature pair to minimize the

estimated relative gaze direction during training since we

know the ground-truth query label. Hence, in addition to

estimating the gaze location for the query image, we de-

sign the model to solve an additional task: given a (query,

calibration) image feature pair, classify the direction of the

query point with respect to the calibration point. We do this

by adding a direction classifier (DC) which is composed of

two FC layers with softmax, and takes pairs of (Xq , Xcj )

2For one-shot learning.



as inputs and outputs a probability vector in R
4. To train

the direction classifier, we apply a cross entropy loss on the

probability output with the target being the one-hot encoded

vector of the ground-truth query point direction relative to

the calibration point. Feature embeddings, labels and direc-

tional outputs of all (query, calibration) pairs are concate-

nated and processed by the final FC layer to produce the

final gaze prediction.

3.2.2 Training and Inference

We train the model end-to-end (including the feature extrac-

tor CNNs) by minimizing the following loss function:

L(W ) =

N∑

i=1

‖φ(qi, {cij , y
i
j}j=1...K | W )− yiq‖

2

−λ

N∑

i=1

K∑

j=1

3∑

d=0

1(d̂ij = dij) log (P (d̂ij | W )),

where N is the number of training examples, K is the num-

ber of calibration points, W are the trainable parameters in

the network, 1 is the indicator function. For the i-th training

example, qi represents the query inputs to the CNN model,

cij is the jth calibration point in this example, yiq is the query

ground-truth gaze location, yij is the groundtruth gaze loca-

tion for j th calibration point, and φ(·) is the output gaze

location of our network. dij is the ground-truth relative di-

rection of qi with respect to the j th calibration point cij , d̂ij
is the corresponding estimated relative gaze direction, and

P (·) is the output probability of direction classifier. λ is

standard weighting parameters.

Note that in a CNN-based model, computational cost of-

ten resides in the convolutional layer. To speed up on-device

inference, we propose to compute the feature embedding

from the calibration data on device once after data collec-

tion and then cache it for future inference.

4. Unsupervised Few-shot Personalization

Getting access to user’s labeled data is sometimes diffi-

cult due to users being reluctant to perform the calibration

step or not following the instructions correctly. On the other

hand, getting user’s unlabeled data (i.e., their facial images)

without asking them to perform the calibration task is much

easier. Our hypothesis is that even when gaze labels are un-

available, the facial images still contain valuable informa-

tion about the user that can be useful for gaze estimation.

We refer to this scenario as “unsupervised personalization”

since gaze labels are not provided for the facial images used

for personalization. To the best of our knowledge, unsuper-

vised personalization has not been discussed before in eye

tracking research.

Figure 3. Our proposed unsupervised few-shot personalization

method based on teacher-student network. We use the following

notations: Xq represents the query feature vector, UE represent

the user embedding from the teacher network, and ÛE is the ap-

proximated user embedding produced by the student network us-

ing a few unlabeled images. The gray box shows the components

that can be pre-computed and cached for on-device inference. The

blue box shows the components that are needed only during the

training phase, and hence unnecessary for inference. Figure best

viewed in color.

The key idea in our approach is to adopt a heterogeneous

teacher-student network architecture where the student net-

work uses few unlabeled images to learn from a teacher net-

work that has some personal information of the user from

other information sources (than unlabeled images). Figure 3

describes an overview of the unsupervised personalization

approach. Although different teacher networks are applica-

ble, in this work we focus on using a user embedding (in

our experiments, the vector is R16) that represents a user’s

personal properties as the teacher network.

The user id embedding of the teacher network is similar

to the word embedding in language models except that it is

a supervised embedding learnt using the gaze labels. Like

in word embeddings, by providing user id as an input, the

teacher network outputs an embedding vector. We concate-

nate this user-specific embedding vector with the extracted

features from the query image, and then train the network

to predict the final gaze estimation. This allows the network

to learn a meaningful embedding vector to represent the pa-

rameters of each user which helps improve the prediction

accuracy. Note that on average each user has 1000 samples

in the training set which is large enough to learn a meaning-

ful embedding to represent personal gaze properties. Since

the user embedding is unavailable for new users, we attempt

to learn/approximate it via a student network using a few

unlabeled images from the user. The resulting student net-

work can then be applied to any new user. The underly-

ing assumption here is that some personal gaze properties

can be represented using (and hence learned from) facial

images. This assumption is reasonable, considering gaze

properties will be affected by glasses, eye shapes, etc.

For the student network, features are first extracted from



user images and mapped to an embedding space using the

penultimate FC layer of the SAGE CNN model (described

in Section 3.1). As each user image produces an approxi-

mate user embedding, these vectors are combined using a

simple averaging layer to make the embedding more ro-

bust. To make the student net approximate the teacher net,

we propose using a random uniform selection mechanism

during training by which in each training step the gradient

update uses either the student net or the teacher’s user em-

bedding with equal probability. This random selection tries

to force the student net’s output to be close to the teacher

net’s output. Ideally, when both teacher net and student

net converge, if the two provide exactly the same output

there will be no gradient penalization when switching from

teacher net to student net. We also experimented with L2

loss between the outputs of the teacher and student net and

obtained similar results which is discussed in Section 5.6,

but L2 loss approach will need to tune one more hyper pa-

rameter of loss weights.

The user embedding and the extracted query features are

concatenated and passed through the final FC layers to pre-

dict the gaze location. The model is trained using a standard

mean squared error loss function between the estimated 2D

gaze location and ground-truth labels.

The proposed unsupervised approach can also benefit

from the caching technique described in Section 3.2.2 for

faster on-device inference. In the inference phase, the

teacher network is discarded and only the cached student

network output will be fed to the model along with the query

image features.

5. Experiments

In this section, we test the effectiveness of the proposed

personalization methods via comprehensive evaluation on a

large-scale gaze dataset.

5.1. Setup

Data preparation: We use GazeCapture dataset [19]

which has gaze data collected from 1474 subjects on

iPhones and iPads. The subjects were asked to look at dots

appearing at random locations on the screen while their face

images were recorded using the front facing camera. The

dataset consists of 1.5M frames with both face and two eyes

being visible. We adopted the same train/test split as [19]

which holds out 150 subjects for testing and the rest for

training. More details regarding the dataset can be found in

section 5.1 in [19].

For training our personalized model, each input image is

coupled with a set of labeled images from the same person

to mimic the calibration procedure. The calibration images

are chosen randomly from the set of all images that belong

to a person in the training partition. To reproduce the results

of the personalized-SVR method in [19], calibration images

are selected from a fixed gaze location.3 We also run exper-

iments by randomly selecting calibration images for SVR

for further fair comparison.

Evaluation Metric: We report error by measuring the

mean Euclidean (ME) distance between the ground-truth

and the estimated gaze location and list results for phone

and tablet form-factor devices separately.

Implementation details: All of the models (including

baselines, SAGE and their personalized variants) are trained

from scratch up to 100K iterations using Adam optimizer.

We use a batch size 128 for iTracker and its personalized

models, 256 for the Full-face model and a batch size 512 for

SAGE and its variants. We initially set the learning rate to

0.006 and divide it by 3 every 20K iterations. The weighting

parameter λ is empirically chosen as 1.0 in our experiments.

We implement all CNN models using TensorFlow.

5.2. SAGE vs. Prior art

We first evaluate the calibration-free base models (i.e.

models without personalization) and compare the proposed

SAGE architecture with approaches iTracker [19] and Full-

face model [37] as baselines.

Our proposed SAGE architecture outperforms the

iTracker and Full-face model on both phones and tablets.

For phones, the mean error is reduced from 1.94cm

(iTracker) and 2.14cm (Full-face) to 1.78 cm. For tablets, it

is reduced from 3.0cm (iTracker) and 3.51cm (Full-face) to

2.72cm.

5.3. Supervised Few-shot On-device Personaliza-
tion

We evaluate the proposed Supervised Few-shot On-

device (SFO) method by applying it to two different models.

Since iTracker performed better than the Full-face model

for the GazeCapture dataset, we focus remaining analyses

on comparing the effect of personalization on the SAGE and

iTracker models. We also compare the results with the exist-

ing personalization method based on SVR (iTracker-SVR)

[19].

Table 2 shows that applying SFO to the SAGE model

reduces error by 13% for phones and 10% for tablets by us-

ing as few as two calibration points. Using 3-9 calibration

points further improves the model performance by 17-23%
for phones. Similarly, applying SFO to the iTracker model

reduces the mean error by 8% for phones using only 2 cali-

bration points, 12% using 3 points, and 21% for 9 points.

We also compare SFO with SVR [19] 4. As shown in

3For example, 4-point calibration means sampling images when the

subject were looking at 4 corners on the screen; 5-point calibration means

4 corners plus the center; etc.
4Note that the accuracy of our implementation on personalized SVR is

different from what was reported in [19] because we removed test augmen-

tation which increases the inference time by ∼20 times and hence is not

applicable for on-device applications.



Model # of pts Phone (ME in cm) Tablet (ME in cm)

iTracker 0 1.94 3.02

iTracker-SFO 2 1.78 (-8.25%) 2.88 (-4.64%)

3 1.70 (-12.37%) 2.69 (-10.93%)

5 1.58 (-18.56%) 2.61 (-13.58%)

9 1.53 (-21.13%) 2.48 (-17.88%)

Table 1. Results of applying the proposed supervised few-shot

on-device personalization (SFO) to the iTracker model. Error is

shown in cm, and the % reduction in error compared to the base

model (0 calibration points) is reported within parenthesis. “# of

pts” refers to the number of calibration points.

Model # of pts Phone (ME in cm) Tablet (ME in cm)

SAGE 0 1.78 2.72

SAGE-SFO 2 1.55 (-12.92%) 2.44 (-10.29%)

3 1.47 (-17.42%) 2.31 (-15.07%)

5 1.43 (-19.66%) 2.25 (-17.28%)

9 1.37 (-23.03%) 2.10 (-22.79%)

Table 2. Similar to Table 1. Shows results of applying the proposed

supervised few-shot on-device personalization (SFO) to the SAGE

model.

Model # of imgs Phone (ME in cm) Tablet (ME in cm)

iTracker 0 1.94 3.02

iTracker-UFO 9 1.84 (-5.15%) 2.79 (-7.62%)

SAGE 0 1.78 2.72

SAGE-UFO 9 1.72 (-3.37%) 2.57 (-5.51%)

Table 3. Results of applying the proposed unsupervised few-shot

on-device method (UFO) to the iTracker and SAGE models. Error

is shown in cm (and % reduction in error within parenthesis). “#

of imgs” represents number of facial images per user.

Figure 4, iTracker-SVR requires a large number of cali-

bration points to show a substantial improvement in accu-

racy over iTracker (13 points for ∼8% error reduction for

phones). For <5 points, SVR actually performs worse than

the base model. This is due to the limited generalization

ability of SVR. In comparison, our proposed supervised

few-shot personalization approach can easily benefit from

only a few calibration points.

5.4. Unsupervised Few-shot On-device Personaliza-
tion

In this section, we evaluate the proposed Unsupervised

Few-shot On-device (UFO) method by applying it to the

SAGE (SAGE-UFO) and iTracker (iTracker-UFO) models

(note that iTracker-SVR is not applicable in an unsuper-

vised setting). As shown in Table 3, using 9 unlabeled fa-

cial images helped reduce the mean error by 5-8% for the

iTracker model (and 3-6% for the SAGE model) albeit to

a lesser extent than the supervised method. To the best of

our knowledge, this is the first attempt to use unsupervised

personalization in eye tracking research, hence there are no

prior baselines to compare against.

5.5. MPIIFaceGaze dataset evaluation

To further demonstrate the effectiveness of our pro-

posed personalization methods, we evaluate one of the mod-

Figure 4. Performance comparison between SVR [19] and SFO.

We implement and evaluate SVR in 2 settings: calibration points

are collected (1) from 13 fixed locations (iTracker-SVR), the same

as in [19], or (2) at random locations (iTracker-SVR-random),

which is similar to our proposed approach. For any number of

calibration points, our method significantly outperforms personal-

ized SVR.

els (iTracker with and without personalization) on MPI-

IFaceGaze [37, 48], another benchmark dataset for uncon-

strained appearance-based gaze estimation in recent years.

MPIIFaceGaze dataset contains about 36000 images col-

lected using laptops from 15 participants. In our ex-

periments, we used the data from 10 (random) partici-

pants for training, and the rest for evaluation. We com-

pare the iTracker-SFO model with the iTracker-SVR and

calibration-free iTracker models and the results are shown

in Figure 5. We find similar improvements in the mean er-

ror on laptops as with the phone/tablet error reported on the

GazeCapture dataset (see Figure 4).

5.6. Ablation study

To further justify the design choices in our proposed net-

works, we conducted ablation studies for several network

components, including direction classifier, teacher net, and

random selection approach.

Ablating the direction classifier (for the iTracker-SFO

model) increases the mean error on phones from 1.82 to

1.88cm, 1.70 to 1.75cm, and 1.53 to 1.61cm with 1, 3, 9

calibration points respectively.

Ablating the teacher net increases model error from

1.84cm to 1.90cm for phones (from 2.79cm to 3.00cm for

tablets), using 9 calibration points with the iTracker-UFO



Figure 5. Similar to Figure 4. Shows results of applying the base-

line SVR and our proposed SFO personalization methods on top of

iTracker[19] to the MPIIFaceGaze dataset [37, 48]. Both methods

choose calibration points randomly.

Model # of pts

1 3 9

iTracker 933 933 933

iTracker-SVR 933 933 933

iTracker-SFO (no cache) 2,798 6,529 17,722

iTracker-SFO (cache) 933 933 932

SAGE 42 42 42
Table 4. Inference speed represented by the number of millions

of FLOPs for iTracker-SFO and SAGE-SFO models, compared

to baseline iTracker and iTracker-SVR. “# of pts” represents the

number of calibration points used.

model.

Additional experiments comparing the random selection

method for teacher-student network training to minimizing

the L2 loss between the teacher and student net outputs

showed similar results. For instance, using the SAGE-UFO

method and 9 unlabeled images, random selection achieves

a phone ME of 1.71cm (2.60cm for tablet) while the L2 loss

minimization strategy achieves 1.72cm (2.57cm for tablet).

However, note that the random selection method does not

need tune any hyper parameter, while L2 loss needs to tune

the loss weight hyper parameter.

5.7. Run-time Performance

We run the different models on a mobile device and com-

pare the computational cost during inference in millions of

floating point operations (FLOPs). Our SAGE-SFO method

runs significantly faster compared to iTracker-SVR [19] –

inference takes around 41.8×106 FLOPs (∼20x faster than

iTracker), and takes 10ms on a Pixel 2 phone. Thus, the

proposed model is well suited for applications that require

real-time gaze. It is worth noting that pre-computing and

caching the calibration image embeddings ahead of time

significantly reduces the number of FLOPs during infer-

ence (e.g., assuming 9 calibration points, SAGE-SFO with-

out caching requires ∼10x more FLOPs than with caching).

Model # of pts Phone (ME in cm) Tablet (ME in cm)

iTracker 0 1.94 3.02

iTracker-SVR 13 1.77 (-8.76%) 2.66 (-11.92%)

iTracker-SFO 3 1.70 (-12.37%) 2.69 (-10.93%)

iTracker-SFO 9 1.53 (-21.13%) 2.48 (-17.88%)

iTracker-UFO 9 1.84 (-5.15%) 2.79 (-7.62%)

SAGE 0 1.78 (-8.25%) 2.72 (-9.93%)

SAGE-SFO 3 1.47 (-24.22%) 2.31 (-23.51%)

SAGE-SFO 9 1.37 (-29.38%) 2.10 (-30.5%)

SAGE-UFO 9 1.72 (-11.34%) 2.57 (-14.9%)

Table 5. This table summarizes the performance of the different

personalized models, along with the number of calibration points

required.

5.8. Discussion

The proposed personalization methods, both supervised

and unsupervised, can be applied to any base model archi-

tecture as demonstrated here with the SAGE and iTracker

models. Table 5 summarizes the performance of the differ-

ent personalized models and their improvement compared

to the best calibration-free model (iTracker) as baseline.

Applying the proposed supervised few-shot personaliza-

tion method (SFO) to the iTracker model achieves better

accuracy with fewer calibration points as compared to us-

ing Support Vector Regression method (SVR) (12-21% er-

ror reduction using 3-9 calibration points for iTracker-SFO,

compared to lower error reduction of 8.7% using 13 points

for iTracker-SVR on phones). Even in the absence of gaze

labels, applying the unsupervised few-shot personalization

method (UFO), which only uses unlabeled facial images

from the user, to the iTracker model as base, improves the

accuracy compared to iTracker (5.15% error reduction for

phones, and 7.62% for tablets).

The SAGE model is an improved CNN architecture that

outperforms iTracker by 8.2% in terms of accuracy. When

the supervised SFO method is applied to the SAGE model,

it achieves large improvements in accuracy of 24.2% com-

pared to iTracker, using only 3 calibration points. Overall,

the best performance is achieved by the SAGE-SFO model

using 9 calibration points (29.4% lower error than iTracker,

and 22.6% lower error than iTracker-SVR).

6. Conclusion

In this paper, we proposed a novel few-shot personal-

ized gaze estimation model that is accurate, fast and can

run entirely on-device. In particular, the proposed CNN-

based model architecture, SAGE, combined with our su-

pervised few-shot personalization method yields bigger im-

provements in accuracy of ∼24% using only 3 calibration

points per user and runs ∼20x faster compared to the pre-

vious best models. We believe that the improved accuracy

and speed will enable real-time gaze applications for acces-

sibility, gaming and human-computer-interaction.
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