This ICCV Workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

On-device Few-shot Personalization for Real-time Gaze Estimation

Junfeng He* Khoi Pham* Nachiappan Valliappan
Google Inc. University of Maryland at College Park Google Inc.
junfenghelgoogle.com khoi@cs.umd.edu naclgoogle.com
Pingmei Xu Chase Roberts Dmitry Lagun Vidhya Navalpakkam
Google Inc. Google Inc. Google Inc. Google Inc.

pingmeix@google.com

Abstract

Building fast and accurate gaze estimation models with-
out additional specialized hardware is a hard problem. In
this paper, we present on-device few-shot personalization
methods for 2D gaze estimation. The proposed supervised
method achieves better accuracy using as few as 2-5 cali-
bration points per user compared to prior methods that re-
quire more than 13 calibration points. In addition, we pro-
pose an unsupervised personalization method which uses
only unlabeled facial images to improve gaze estimation
accuracy. Our best personalized model achieves 24-26%
better accuracy (measured by mean error) on phones com-
pared to the state-of-the-art using <=5 calibration points
per user. It is also computationally efficient, requiring 20x
fewer FLOPS when compared to prior methods. This un-
locks a variety of important real world applications such as
using gaze for accessibility, gaming and human-computer
interaction while running entirely on-device in real-time.

1. Introduction

Eye tracking or automated gaze estimation to infer user’s
visual attention and behavior is a fundamental component in
numerous applications, including human-computer interac-
tion [16, 23, 24, 25], behavior monitoring [24, 3], vision-
systems [27, 32], Augmented Reality/Virtual Reality, med-
ical diagnoses [12], and gaming [7]. With the recent suc-
cess of deep models in computer vision tasks, convolutional
neural network (CNN) based approaches have become pop-
ular [1, 47, 19, 37, 46, 20, 2, 8, 44, 45, 40, 42] in gaze esti-
mation research.

High accuracy is a requirement for many gaze applica-
tions listed above. One popular approach to improving gaze
estimation accuracy is personalization [19, 46], where the
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model is customized for each user using personal labeled
data (known as calibration points in eye tracking research).
The calibration data is collected by asking users to look at
specific locations on the screen, and capturing the corre-
sponding front-facing camera frame as the input, and the
screen location as the gaze label.

One approach to personalizing deep models is to fine-
tune the model weights of the last few layers with addi-
tional calibration data from the user. There are two main
limitations with this approach: (a) effectively fine-tuning
the model requires a large amount of calibration data, and
(b) it is computationally difficult to update model parame-
ters on-device. In [19], the authors demonstrate improved
2D gaze estimation using a personalized support vector re-
gression (SVR) on top of a deep learning model. This ap-
proach works well with large number of calibration points,
however, the accuracy is poor if the number of calibration
points is < 5-9.

Building an accurate, personalized gaze-estimation
model that is fast, runs on-device, and uses few calibration
points is still an open problem in the field. On-device per-
sonalization is preferred over server-based solutions, as it
presents several benefits including low latency, fewer data
privacy/security concerns, and support for poor (or no) net-
work connectivity scenarios, thereby enabling a large num-
ber of applications in accessibility, gaming and human-
computer interaction.

In this paper, we propose an end-to-end CNN model for
on-device personalized gaze estimation that achieves signif-
icantly better accuracy than prior art while requiring only
few calibration points. The key contributions are:

e A supervised personalization method using very few
labeled calibration points (<= 5), with embedding
based few-shot learning.

o An unsupervised few-shot personalization method to
improve gaze estimation accuracy with a few unla-
beled images from the user, based on heterogeneous



teacher-student network.

o An improved CNN model architecture for calibration-
free 2D gaze estimation, SAGE (faSt Accurate Gaze
trackEr) which is more computationally efficient com-
pared to prior work in this area [19, 37, 13].

o Combining SAGE with our supervised few-shot per-
sonalization method offers a gaze-estimation model
that yields better accuracy (24-26%) using very few
calibration points (<=5) when compared to SOTA,
runs real-time on-device and is significantly faster
(~20x speedup in inference, 10ms on Pixel 2).

Our paper is organized as follows: Section 2 describes
related work on gaze estimation, few-shot learning, and
teacher-student network; Section 3 explains our proposed
methodology, where in Section 3.1, we introduce SAGE,
our calibration-free gaze estimation CNN model, and in
Sections 3.2 discuss our supervised personalization meth-
ods . In Section 4, we proposed a novel unsupervised per-
sonalization method. We conclude with experiments to sup-
port the proposed methods and compare them with the best
known baselines in Section 5.

2. Related Work

Gaze Estimation: The problem of estimating gaze from
an image has become an active research area. Broadly
speaking, the gaze estimation problem can be divided into
two categories: 2D gaze and 3D gaze, where the former
refers to estimating the (z,y) gaze location on the de-
vice’s screen [13, 19, 47] while the latter refers to esti-
mating the 3D gaze vector representing the gaze direc-
tion [47, 37, 46, 34, 6, 28, 39]. In this paper, we will focus
only on 2D gaze on screen estimation.

Gaze estimation approaches can be classified as either
model-based or appearance-based. Model-based methods
model the geometric structure of the eye region, e.g., iris
contour, while appearance-based methods directly estimate
the gaze position or direction from the input image. Early
research on gaze estimation often used model-based meth-
ods. For example, the methods in [10, 26, 5] use an infrared
light source or high-quality image sensor to separate the iris
from the rest of the image, while other methods try to fit a
geometric model to the entire face [15, 4] or occluded face
[43]. In contrast, appearance-based approaches estimate
the gaze position or direction using a regression procedure
based on the face or eye region images. Due to the lack of
training data, a common simplification is to introduce ad-
ditional knowledge, such as head pose into the regression
framework, or to train only shallow models [22, 33, 35, 14].
Recent work from [28] tries to map eye images to simplified
representations before regressing to a 3D prediction.

Krafka et. al. [19] proposed iTracker, a CNN for 2D gaze
estimation. In summary, the model takes four image inputs

that are all extracted from the camera frame: (1) left eye im-
age, (2) right eye image, (3) face image, and (4) face grid.
The eye images indicate the pose of eyes relative to the face,
while the face image and face grid describe the user’s head
pose relative to the camera and capture the user’s distance to
the camera. For more details, we refer the interested reader
to the paper [19]. They also collected and published Gaze-
Capture, a large public 2D gaze dataset with almost ~1500
subjects and ~2.5 million frames. Using the iTracker model
and the large dataset, Krafka et. al. showed that a deep
CNN-based network can perform reasonably well for 2D
gaze estimation. Recent work also discusses using genera-
tive adversarial networks (GAN) to create synthesized train-
ing data to improve 3D gaze estimation accuracy [34, 41].

Next, we discuss prior work on personalized gaze es-
timation. There exist some approaches for personalized
3D gaze estimation [39, 21, 20], however, in this paper,
we will mainly focus on personalized 2D gaze estimation
works. In [46], a person-specific model is proposed, where
person (or device) specific encoder and decoder layers are
trained with data from that person (or device), and the
shared feature extraction layers are trained with the full
dataset. It is worth noting that the encoder and decoder re-
quire fine-tuning in order to adapt the model to a new sub-
ject. Such personalization is computationally intensive, re-
quires a large amount of calibration data, and cannot be run
on-device. Krafka et. al. [19] proposed a personalized ver-
sion of iTracker, where a Support Vector Regression (SVR)
model is trained with a few labeled calibration points from
every subject. The input feature for the personalized-SVR is
the final FC layer representation of the input, in the iTracker
model. While this approach is amenable for on-device in-
ference, as shown in [19] and our experiments, it fails to
generalize when only few examples are available (< 5 la-
beled calibration points). In contrast, our proposed method
can improve the 2D gaze estimation accuracy while having
access to only a few labeled samples. o developed a person-
alized 3D gaze model.

Few-shot Learning: Up to now, few-shot learning based on
deep neural nets is mostly proposed for classification tasks,
where the classifier needs to be adapted to new classes with
just a few (labeled) examples of each class. Deep few-shot
classification can be grouped into two categories: meta-
learning-based methods [31, 30], and embedding-based
methods [17, 38, 36, 29, 18, 9]. With meta-learning, the
classifier itself still needs many data to train, on top of
which a meta-learner is learned with few examples, e.g.,
to update the parameters of the classifier [30]. As with
embedding-based methods, an embedding space is trained
on all examples (from both classes with many examples
and new classes with few examples) usually with a neu-
ral network consisting of convolution layers and FC layers.
Then examples of new classes are mapped to the embed-



ding space, and some kind of classification system, (e.g.
based on nearest neighbors or distance to class prototype
like class center, etc.), is applied on the embedding space so
that the classifier can learn the new classes with only a few
samples. For instance, the classifier in embedding space for
new classes can be computed from distance to the class cen-
ters (or its probability variation) [36], neighborhood com-
ponents analysis [29], attention mechanism [38].

Our proposed supervised personalization approach is in-

spired by embedding-based few-shot classification meth-
ods. However, there are substantial differences between our
work and previous few shot classification research: first,
our work is in the context of gaze estimation, a regres-
sion problem instead of classification problem; second, our
task, model personalization, is rarely discussed in previous
few-shot learning area; finally and more importantly, our
few-shot personalization model runs on-device in real-time,
which is seldom studied.
Teacher-Student Network: Most teacher-student network
architectures [11] assume input homogeneity, i.e., the
teacher and student network are in the same input space.
However, some recent research [49] shows that hetero-
geneous teacher-student network architecture, where the
teacher and student networks are in different spaces, also
works well. Our proposed unsupervised personalization ap-
proach is also a heterogeneous teacher-student network -
the first one designed with few-shot learning, to the best
of our knowledge. Moreover, instead of using conventional
L2 approximation, we proposed a novel random selection
method to force the student networks output to approximate
the teacher network’s output with the advantage of no addi-
tional hyper parameters.

3. Supervised Few-shot Personalization
3.1. SAGE Model Architecture

Before discussing about our supervised few-shot per-
sonalization method, we first introduce our unpersonalized
(calibration-free) model, which is named as SAGE (faSt
Accurate Gaze trackEr), a new CNN model architecture
that offers better accuracy, memory usage, and speed com-
pared to prior art of 2D gaze prediction model [19, 37]. Fig-
ure 1 illustrates the SAGE model architecture.

The inputs to the SAGE model are: left/right eye images,
eye landmark features, and a unique id to represent the de-
vice. The key changes in terms of the inputs and architec-
ture as compared to iTracker [19] are summarized below.

First, we replace a crude approximation of the head pose
represented by the binary face grid with more sensitive eye
corner landmark features. The landmark feature is com-
puted by concatenation of two dimensional eye corner land-
marks (z,y) that amounts to a R® vector for two eyes. To
make the landmark feature independent from the image res-
olution, we normalize x and y by dividing them by image
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Figure 1. SAGE: Our proposed network architecture for gaze esti-
mation.

width and height respectively.

Second, to reduce the amount of overfitting, we remove
face image from the inputs, making the model rely only on
the eyes and eye landmark features. Eye images exhibit
much less variability compared to face images which en-
ables better model fitting and improved generalization using
lesser data. We constrain parameters of the convolutional
layers to be same for both left and right eye streams similar
to the iTracker model. To simplify the network’s task, we
flipped the left eye image left-to-right so that the weights of
both eye streams can be shared more easily. Since eye im-
ages require lower resolution than the full face image, we
reduce the eye image resolution to 64 x 64, thereby greatly
improving the inference speed.

Third, to accommodate differences in the mobile phone
camera’s intrinsic parameters, we introduce a small set of
device specific parameters: wgo, € R? to reflect differ-
ences in the angle of view and wj,. € R* to reflect dif-
ferences in the camera’s location with respect to the screen
origin. These are applied as an affine transformation to the
landmark inputs and the gaze prediction output.

Lastly, we jitter the eye bounding box and eye corner
landmark locations during training. This dynamic crop-
ping of eye regions makes the model more robust to small
changes in lighting, camera movement, noise, or face/eye
landmark detection errors.

We use the following sizes for the convolutional layers:
CONV1(7x 7% 32),CONV2(5 x5 x 32), CONV3(3 x
3% 32). The FC layers have the following sizes: FC1(100),
FC2(16), FC3(16), FC4(16), FC5(2).

In section 5, we thoroughly evaluate the performance of
SAGE with and without the proposed personalization meth-
ods and show improvements in both accuracy and inference
speed of gaze estimation over current best known methods.

3.2. Supervised Few-shot Personalization

In this section, we propose a fully-supervised on-device
personalization framework that works well with only a few
calibration points per user (per device orientation) and sup-



ports real-time inference. Our personalization method con-
sists of three phases: on-server training phase to train the
base model; on-device calibration phase to apply person-
alization for a new user; and on-device inference phase to
produce gaze estimation on a new user query, as explained
below.

1. On-server training phase: The entire training process
happens offline. For each sample (query), a few la-
beled samples from the same person (calibration data)
are used for personalization. The weights of the model
is fixed after training is finished.

2. On-device calibration phase: Given a new user, the
trained model takes a set of images with correspond-
ing calibration point labels as input to extract user cal-
ibration features and store for later use in the inference
phase. Note that the calibration step is not necessary in
the inference phase and is required only once for every
new user or whenever the environment factors (e.g.,
lighting, reflection etc.) change significantly.

3. On-device inference phase: The personalized model
takes the query image and the cached calibration fea-
tures as input to make prediction.

We denote the number of calibration points per user as
K (K is a small number e.g., K = 3 or 5). Since the
training dataset [19] contains thousands of images per user
across multiple labels, we first construct a meta-dataset us-
ing randomly-generated training examples that consist of a
(query image, label) pair and K corresponding (calibration
point image, label) pairs belonging to the same user.

3.2.1 Model Architecture

The model architecture is illustrated in Figure 2. The query
image and calibration point images are first processed to ex-
tract a feature embedding (similar to feature extraction us-
ing pre-trained models). The output feature representations
are denoted by X, X.,, Xc,, ..., X¢, . Note that the feature
embedding block can be swapped for any image model. In
our study, we evaluate both the proposed SAGE architec-
ture ! (in Section 3.1) and iTracker [19] architecture after
discarding the final FC layer. A 2D regression estimator is
then used to compute the screen gaze location from the fea-
ture embeddings (i.e., X4, X, Xc,, ..., X¢p) extracted in
the previous step and gaze labels of the calibration points
(yc1 s Yegs ooes yCK)‘

Like most embedding based few-shot learning methods,
the embedding features X, and X, are used to find the re-
lationship between the query ¢ and few-shot examples c;
, then g, is predicted from g, based on the learned rela-
tionship. For example, [36] employs a nearest neighbor ap-
proach, where X, the sample that has closest distance to

"When SAGE architecture is used, the layer of output affine transfor-
mation is added after the final FC layer in Figure 2.
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Figure 2. The proposed supervised few-shot personalization
model. The figure illustrates the overall on-server training phase.
X denotes the extracted query feature vector, X.; and y; rep-
resent the extracted feature vector and gaze location label of the
4™ calibration point, and (ij represents the relative direction of the
query w.r.t. to the jM calibration point. The gray box shows the
components that can be pre-computed and cached for on-device
inference. Figure best viewed in color.

X, is first found 2, and its corresponding label Ye, is then
assigned to ¢. Unfortunately, this nearest neighbor approach
is unsuitable for our regression problem, therefore, we in-
put X4, X; and y., into FC layers to learn the appropriate
relationship.

Moreover, for better model robustness to noise in the la-
bels of the calibration points, we propose employing ad-
ditional information about the pairwise relative direction
between the query image and calibration points. The di-
rectional relationship between calibration points and query
point is robust to noise, i.e., even if there is a small noise
in the 2D position of labels, the directional relationship will
remain unchanged. Since labeling noise in gaze datasets is
almost unavoidable, this robust relationship is useful to help
train a better model.

More specifically, we first divide the screen centered at
the calibration point of interest into four regions (or equiv-
alently, four quadrants), then setup a pairwise loss for ev-
ery (query, calibration) image feature pair to minimize the
estimated relative gaze direction during training since we
know the ground-truth query label. Hence, in addition to
estimating the gaze location for the query image, we de-
sign the model to solve an additional task: given a (query,
calibration) image feature pair, classify the direction of the
query point with respect to the calibration point. We do this
by adding a direction classifier (DC) which is composed of
two FC layers with softmax, and takes pairs of (X, ch)

ZFor one-shot learning.



as inputs and outputs a probability vector in R*. To train
the direction classifier, we apply a cross entropy loss on the
probability output with the target being the one-hot encoded
vector of the ground-truth query point direction relative to
the calibration point. Feature embeddings, labels and direc-
tional outputs of all (query, calibration) pairs are concate-
nated and processed by the final FC layer to produce the
final gaze prediction.

3.2.2 Training and Inference

We train the model end-to-end (including the feature extrac-
tor CNNs) by minimizing the following loss function:

N
LOV) = llé(a' {c yitimrx | W) = yill?
i=1

AN (] = di log (P(d] | W),

i=1 j=1d=0

where N is the number of training examples, K is the num-
ber of calibration points, W are the trainable parameters in
the network, 1 is the indicator function. For the i-th training
example, ¢° represents the query inputs to the CNN model,
¢} is the j™ calibration point in this example, y}, is the query
ground-truth gaze location, y; is the groundtruth gaze loca-
tion for j™ calibration point, and ¢(-) is the output gaze
location of our network. d; is the ground-truth relative di-
rection of ¢* with respect to the j™ calibration point ¢, CZ§
is the corresponding estimated relative gaze direction, and
P(+) is the output probability of direction classifier. A is
standard weighting parameters.

Note that in a CNN-based model, computational cost of-
ten resides in the convolutional layer. To speed up on-device
inference, we propose to compute the feature embedding
from the calibration data on device once after data collec-
tion and then cache it for future inference.

4. Unsupervised Few-shot Personalization

Getting access to user’s labeled data is sometimes diffi-
cult due to users being reluctant to perform the calibration
step or not following the instructions correctly. On the other
hand, getting user’s unlabeled data (i.e., their facial images)
without asking them to perform the calibration task is much
easier. Our hypothesis is that even when gaze labels are un-
available, the facial images still contain valuable informa-
tion about the user that can be useful for gaze estimation.
We refer to this scenario as “unsupervised personalization”
since gaze labels are not provided for the facial images used
for personalization. To the best of our knowledge, unsuper-
vised personalization has not been discussed before in eye
tracking research.
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Figure 3. Our proposed unsupervised few-shot personalization
method based on teacher-student network. We use the following
notations: X, represents the query feature vector, UE represent
the user embedding from the teacher network, and UE is the ap-
proximated user embedding produced by the student network us-
ing a few unlabeled images. The gray box shows the components
that can be pre-computed and cached for on-device inference. The
blue box shows the components that are needed only during the
training phase, and hence unnecessary for inference. Figure best
viewed in color.

The key idea in our approach is to adopt a heterogeneous
teacher-student network architecture where the student net-
work uses few unlabeled images to learn from a teacher net-
work that has some personal information of the user from
other information sources (than unlabeled images). Figure 3
describes an overview of the unsupervised personalization
approach. Although different teacher networks are applica-
ble, in this work we focus on using a user embedding (in
our experiments, the vector is R'%) that represents a user’s
personal properties as the teacher network.

The user id embedding of the teacher network is similar
to the word embedding in language models except that it is
a supervised embedding learnt using the gaze labels. Like
in word embeddings, by providing user id as an input, the
teacher network outputs an embedding vector. We concate-
nate this user-specific embedding vector with the extracted
features from the query image, and then train the network
to predict the final gaze estimation. This allows the network
to learn a meaningful embedding vector to represent the pa-
rameters of each user which helps improve the prediction
accuracy. Note that on average each user has 1000 samples
in the training set which is large enough to learn a meaning-
ful embedding to represent personal gaze properties. Since
the user embedding is unavailable for new users, we attempt
to learn/approximate it via a student network using a few
unlabeled images from the user. The resulting student net-
work can then be applied to any new user. The underly-
ing assumption here is that some personal gaze properties
can be represented using (and hence learned from) facial
images. This assumption is reasonable, considering gaze
properties will be affected by glasses, eye shapes, etc.

For the student network, features are first extracted from



user images and mapped to an embedding space using the
penultimate FC layer of the SAGE CNN model (described
in Section 3.1). As each user image produces an approxi-
mate user embedding, these vectors are combined using a
simple averaging layer to make the embedding more ro-
bust. To make the student net approximate the teacher net,
we propose using a random uniform selection mechanism
during training by which in each training step the gradient
update uses either the student net or the teacher’s user em-
bedding with equal probability. This random selection tries
to force the student net’s output to be close to the teacher
net’s output. Ideally, when both teacher net and student
net converge, if the two provide exactly the same output
there will be no gradient penalization when switching from
teacher net to student net. We also experimented with Lo
loss between the outputs of the teacher and student net and
obtained similar results which is discussed in Section 5.6,
but Ly loss approach will need to tune one more hyper pa-
rameter of loss weights.

The user embedding and the extracted query features are
concatenated and passed through the final FC layers to pre-
dict the gaze location. The model is trained using a standard
mean squared error loss function between the estimated 2D
gaze location and ground-truth labels.

The proposed unsupervised approach can also benefit
from the caching technique described in Section 3.2.2 for
faster on-device inference. In the inference phase, the
teacher network is discarded and only the cached student
network output will be fed to the model along with the query
image features.

5. Experiments

In this section, we test the effectiveness of the proposed
personalization methods via comprehensive evaluation on a
large-scale gaze dataset.

5.1. Setup

Data preparation: We use GazeCapture dataset [19]
which has gaze data collected from 1474 subjects on
iPhones and iPads. The subjects were asked to look at dots
appearing at random locations on the screen while their face
images were recorded using the front facing camera. The
dataset consists of 1.5M frames with both face and two eyes
being visible. We adopted the same train/test split as [19]
which holds out 150 subjects for testing and the rest for
training. More details regarding the dataset can be found in
section 5.1 in [19].

For training our personalized model, each input image is
coupled with a set of labeled images from the same person
to mimic the calibration procedure. The calibration images
are chosen randomly from the set of all images that belong
to a person in the training partition. To reproduce the results
of the personalized-SVR method in [19], calibration images

are selected from a fixed gaze location.® We also run exper-
iments by randomly selecting calibration images for SVR
for further fair comparison.

Evaluation Metric: We report error by measuring the
mean Euclidean (ME) distance between the ground-truth
and the estimated gaze location and list results for phone
and tablet form-factor devices separately.

Implementation details: All of the models (including
baselines, SAGE and their personalized variants) are trained
from scratch up to 100K iterations using Adam optimizer.
We use a batch size 128 for iTracker and its personalized
models, 256 for the Full-face model and a batch size 512 for
SAGE and its variants. We initially set the learning rate to
0.006 and divide it by 3 every 20K iterations. The weighting
parameter )\ is empirically chosen as 1.0 in our experiments.
We implement all CNN models using TensorFlow.

5.2. SAGE vs. Prior art

We first evaluate the calibration-free base models (i.e.
models without personalization) and compare the proposed
SAGE architecture with approaches iTracker [19] and Full-
face model [37] as baselines.

Our proposed SAGE architecture outperforms the
iTracker and Full-face model on both phones and tablets.
For phones, the mean error is reduced from 1.94cm
(iTracker) and 2.14cm (Full-face) to 1.78 cm. For tablets, it
is reduced from 3.0cm (iTracker) and 3.51cm (Full-face) to
2.72cm.

5.3. Supervised Few-shot On-device Personaliza-
tion

We evaluate the proposed Supervised Few-shot On-
device (SFO) method by applying it to two different models.
Since iTracker performed better than the Full-face model
for the GazeCapture dataset, we focus remaining analyses
on comparing the effect of personalization on the SAGE and
iTracker models. We also compare the results with the exist-
ing personalization method based on SVR (iTracker-SVR)
[19].

Table 2 shows that applying SFO to the SAGE model
reduces error by 13% for phones and 10% for tablets by us-
ing as few as two calibration points. Using 3-9 calibration
points further improves the model performance by 17-23%
for phones. Similarly, applying SFO to the iTracker model
reduces the mean error by 8% for phones using only 2 cali-
bration points, 12% using 3 points, and 21% for 9 points.

We also compare SFO with SVR [19] 4. As shown in

3For example, 4-point calibration means sampling images when the
subject were looking at 4 corners on the screen; 5-point calibration means
4 corners plus the center; etc.

4Note that the accuracy of our implementation on personalized SVR is
different from what was reported in [19] because we removed test augmen-
tation which increases the inference time by ~20 times and hence is not
applicable for on-device applications.



Model

‘ # of pts ‘ Phone (ME in cm) ‘ Tablet (ME in cm)

iTracker 0

1.94

3.02

iTracker-SFO

2
3
5
9

1.78 (-8.25%)
1.70 (-12.37%)
1.58 (-18.56%)
1.53 (-21.13%)

2.88 (-4.64%)
2.69 (-10.93%)
2.61 (-13.58%)
2.48 (-17.88%)

Table 1. Results of applying the proposed supervised few-shot
on-device personalization (SFO) to the iTracker model. Error is
shown in cm, and the % reduction in error compared to the base
model (0 calibration points) is reported within parenthesis. “# of
pts” refers to the number of calibration points.

Model ‘ # of pts ‘ Phone (ME in cm) ‘ Tablet (ME in cm)
SAGE 0 1.78 2.72
SAGE-SFO | 2 1.55 (-12.92%) 2.44 (-10.29%)

3 1.47 (-17.42%) 2.31 (-15.07%)

5 1.43 (-19.66%) 2.25(-17.28%)

9 1.37 (-23.03%) 2.10 (-22.79%)

Table 2. Similar to Table 1. Shows results of applying the proposed
supervised few-shot on-device personalization (SFO) to the SAGE
model.

Model ‘ # of imgs ‘ Phone (ME in cm) ‘ Tablet (ME in cm) ‘
iTracker 0 1.94 3.02

iTracker-UFO | 9 1.84 (-5.15%) 2.79 (-7.62%)
SAGE 0 1.78 2.72

SAGE-UFO 9 1.72 (-3.37%) 2.57 (-5.51%)

Table 3. Results of applying the proposed unsupervised few-shot
on-device method (UFO) to the iTracker and SAGE models. Error
is shown in cm (and % reduction in error within parenthesis). “#
of imgs” represents number of facial images per user.

Figure 4, iTracker-SVR requires a large number of cali-
bration points to show a substantial improvement in accu-
racy over iTracker (13 points for ~8% error reduction for
phones). For <5 points, SVR actually performs worse than
the base model. This is due to the limited generalization
ability of SVR. In comparison, our proposed supervised
few-shot personalization approach can easily benefit from
only a few calibration points.

5.4. Unsupervised Few-shot On-device Personaliza-
tion

In this section, we evaluate the proposed Unsupervised
Few-shot On-device (UFO) method by applying it to the
SAGE (SAGE-UFO) and iTracker (iTracker-UFO) models
(note that iTracker-SVR 1is not applicable in an unsuper-
vised setting). As shown in Table 3, using 9 unlabeled fa-
cial images helped reduce the mean error by 5-8% for the
iTracker model (and 3-6% for the SAGE model) albeit to
a lesser extent than the supervised method. To the best of
our knowledge, this is the first attempt to use unsupervised
personalization in eye tracking research, hence there are no
prior baselines to compare against.

5.5. MPIIFaceGaze dataset evaluation

To further demonstrate the effectiveness of our pro-
posed personalization methods, we evaluate one of the mod-
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Figure 4. Performance comparison between SVR [19] and SFO.
We implement and evaluate SVR in 2 settings: calibration points
are collected (1) from 13 fixed locations (iTracker-SVR), the same
as in [19], or (2) at random locations (iTracker-SVR-random),
which is similar to our proposed approach. For any number of
calibration points, our method significantly outperforms personal-
ized SVR.

els (iTracker with and without personalization) on MPI-
IFaceGaze [37, 48], another benchmark dataset for uncon-
strained appearance-based gaze estimation in recent years.
MPIIFaceGaze dataset contains about 36000 images col-
lected using laptops from 15 participants. In our ex-
periments, we used the data from 10 (random) partici-
pants for training, and the rest for evaluation. We com-
pare the iTracker-SFO model with the iTracker-SVR and
calibration-free iTracker models and the results are shown
in Figure 5. We find similar improvements in the mean er-
ror on laptops as with the phone/tablet error reported on the
GazeCapture dataset (see Figure 4).

5.6. Ablation study

To further justify the design choices in our proposed net-
works, we conducted ablation studies for several network
components, including direction classifier, teacher net, and
random selection approach.

Ablating the direction classifier (for the iTracker-SFO
model) increases the mean error on phones from 1.82 to
1.88cm, 1.70 to 1.75cm, and 1.53 to 1.61cm with 1, 3, 9
calibration points respectively.

Ablating the teacher net increases model error from
1.84cm to 1.90cm for phones (from 2.79cm to 3.00cm for
tablets), using 9 calibration points with the iTracker-UFO
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Figure 5. Similar to Figure 4. Shows results of applying the base-
line SVR and our proposed SFO personalization methods on top of
iTracker[19] to the MPIIFaceGaze dataset [37, 48]. Both methods
choose calibration points randomly.

Model # of pts

 [3 9
iTracker 933 933 933
iTracker-SVR 933 933 933
iTracker-SFO (no cache) | 2,798 | 6,529 | 17,722
iTracker-SFO (cache) 933 933 932
SAGE 42 42 42

Table 4. Inference speed represented by the number of millions
of FLOPs for iTracker-SFO and SAGE-SFO models, compared
to baseline iTracker and iTracker-SVR. “# of pts” represents the
number of calibration points used.

model.

Additional experiments comparing the random selection
method for teacher-student network training to minimizing
the Ly loss between the teacher and student net outputs
showed similar results. For instance, using the SAGE-UFO
method and 9 unlabeled images, random selection achieves
a phone ME of 1.71cm (2.60cm for tablet) while the IL, loss
minimization strategy achieves 1.72cm (2.57cm for tablet).
However, note that the random selection method does not
need tune any hyper parameter, while Lo loss needs to tune
the loss weight hyper parameter.

5.7. Run-time Performance

We run the different models on a mobile device and com-
pare the computational cost during inference in millions of
floating point operations (FLOPs). Our SAGE-SFO method
runs significantly faster compared to iTracker-SVR [19] —
inference takes around 41.8 x 108 FLOPs (~20x faster than
iTracker), and takes 10ms on a Pixel 2 phone. Thus, the
proposed model is well suited for applications that require
real-time gaze. It is worth noting that pre-computing and
caching the calibration image embeddings ahead of time
significantly reduces the number of FLOPs during infer-
ence (e.g., assuming 9 calibration points, SAGE-SFO with-
out caching requires ~10x more FLOPs than with caching).

Model ‘ # of pts ‘ Phone (ME in cm) ‘ Tablet (ME in cm)
iTracker 0 1.94 3.02
iTracker-SVR | 13 1.77 (-8.76%) 2.66 (-11.92%)
iTracker-SFO | 3 1.70 (-12.37%) 2.69 (-10.93%)

iTracker-SFO | 9 1.53 (-21.13%) 2.48 (-17.88%)
iTracker-UFO | 9 1.84 (-5.15%) 2.79 (-7.62%)
SAGE 0 1.78 (-8.25%) 272 (-9.93%)
SAGE-SFO | 3 1.47 (-24.22%) 231 (-23.51%)
SAGE-SFO | 9 1.37 (-29.38%) | 2.10 (-30.5%)

SAGE-UFO | 9 1.72 (-11.34%) 2.57 (-14.9%)
Table 5. This table summarizes the performance of the different
personalized models, along with the number of calibration points
required.

5.8. Discussion

The proposed personalization methods, both supervised
and unsupervised, can be applied to any base model archi-
tecture as demonstrated here with the SAGE and iTracker
models. Table 5 summarizes the performance of the differ-
ent personalized models and their improvement compared
to the best calibration-free model (iTracker) as baseline.

Applying the proposed supervised few-shot personaliza-
tion method (SFO) to the iTracker model achieves better
accuracy with fewer calibration points as compared to us-
ing Support Vector Regression method (SVR) (12-21% er-
ror reduction using 3-9 calibration points for iTracker-SFO,
compared to lower error reduction of 8.7% using 13 points
for iTracker-SVR on phones). Even in the absence of gaze
labels, applying the unsupervised few-shot personalization
method (UFO), which only uses unlabeled facial images
from the user, to the iTracker model as base, improves the
accuracy compared to iTracker (5.15% error reduction for
phones, and 7.62% for tablets).

The SAGE model is an improved CNN architecture that
outperforms iTracker by 8.2% in terms of accuracy. When
the supervised SFO method is applied to the SAGE model,
it achieves large improvements in accuracy of 24.2% com-
pared to iTracker, using only 3 calibration points. Overall,
the best performance is achieved by the SAGE-SFO model
using 9 calibration points (29.4% lower error than iTracker,
and 22.6% lower error than iTracker-SVR).

6. Conclusion

In this paper, we proposed a novel few-shot personal-
ized gaze estimation model that is accurate, fast and can
run entirely on-device. In particular, the proposed CNN-
based model architecture, SAGE, combined with our su-
pervised few-shot personalization method yields bigger im-
provements in accuracy of ~24% using only 3 calibration
points per user and runs ~20x faster compared to the pre-
vious best models. We believe that the improved accuracy
and speed will enable real-time gaze applications for acces-
sibility, gaming and human-computer-interaction.
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