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Abstract

The objective of this paper is to rectify any monocular

image by computing a homography matrix that transforms

it to a geometrically correct bird’s eye (overhead) view.

We make the following contributions: (i) we show that

the homography matrix can be parameterised with only four

geometric parameters that specify the horizon line and the

vertical vanishing point, or only two if the field of view or

focal length is known; (ii) We introduce a novel represen-

tation for the geometry of a line or point (which can be at

infinity) that is suitable for regression with a convolutional

neural network (CNN); (iii) We introduce a large synthetic

image dataset with ground truth for the orthogonal vanish-

ing points, that can be used for training a CNN to predict

these geometric entities; and finally (iv) We achieve state-

of-the-art results on horizon detection, with 74.52% AUC

on the Horizon Lines in the Wild dataset. Our method is

fast and robust, and can be used to remove perspective dis-

tortion from videos in real time.

1. Introduction

Understanding the 3D layout of a scene from a single

perspective image is one of the fundamental problems in

computer vision. Generating a bird’s eye (or overhead, or

orthographic) view of the scene plays a part in this under-

standing as it allows the perspective distortion of the ground

plane to be removed. This rectification of the ground plane

allows the scene geometry on the ground plane to be mea-

sured directly from an image. It can be used as a pre-

processing step for many other computer vision tasks like

object detection [19, 29] and tracking [10], and has applica-

tions in video surveillance and traffic control. For example,

in crowd counting, where perspective distortion affects the

crowd density in the image, the crowd density can instead

be predicted in the world [24].

*The author is now at Latent Logic, Oxford

Figure 1: An overview of our method for obtaining the bird’s eye

view of a scene from a single perspective image. A CNN is used to

estimate the vertical vanishing point and ground plane vanishing

line (horizon) in the image, as shown by the red dot and line in the

example. This point and line in turn determine the homography

matrix, H, that maps the image to the overhead view with perspec-

tive distortion removed. Measurements on the ground plane (up to

an overall scale) can then be made directly on the rectified image.

Since obtaining a bird’s eye view from an image in-

volves computing a rectifying planar homography, it might

be thought that the most direct way to obtain this transfor-

mation would be to regress the eight parameters that specify

the homography matrix. Instead, we show that this homog-

raphy can be parametrised with only four parameters corre-

sponding to the vertical vanishing point and ground plane



vanishing line (horizon) in the image, and that these ge-

ometric entities can be regressed directly using a Convo-

lutional Neural Network (CNN). Furthermore if the focal

length of the camera is known (or equivalently the field of

view) from the EXIF data of the image, then only two fur-

ther parameters are required (corresponding to the vanish-

ing line). We show that given these minimal parameters,

the homography matrix that transforms the source image

into the desired bird’s eye view can be composed through

a sequence of simple transformations. Furthermore, the ge-

ometric entities can also be used directly for scene under-

standing [16].

For the purpose of training a CNN, we introduce and

release 1 the largest up-to date dataset which contains the

ground truth values for all the three orthogonal vanishing

points with the corresponding internal camera matrices, and

tilt and roll of the camera for each image. We also propose

a novel representation for the geometry of vanishing lines

and points in image space, which handles the standard chal-

lenge that these entities can lie within the image but also can

be very distant from the image, making this representation

a good choice for the network prediction.

In summary, we make the following four contributions:

(i) we propose a minimal parametrisation for the homogra-

phy that maps to the bird’s eye view. This requires only four

parameters to be specified (the vanishing point and vanish-

ing line), or only two if the focal length of the camera is

known (the vanishing line); (ii) we propose a new geometric

representation for encoding vanishing points and lines that

is suitable for neural network computation; (iii) we gener-

ate and release a large synthetic dataset, CARLA-VP, that

can be used for training a CNN model to predict vanish-

ing points and lines from a single image; and (iv) we show

that a CNN trained using our four scalar parameterisation

exceeds the performance of the state of the art on standard

real image benchmarks for horizon detection [36].

We also show that current methods [18, 22] can fail for

horizon prediction when the actual horizon line lies outside

of the image. This failure is due to the parameterization

used, as well as to the training data used (which mostly

contains horizon lines inside the image since it is easier to

annotate them). We avoid this annotation problem by using

synthetic data for training, where images can be generated

following any desired distribution and the annotations are

more precise as well. We compare to results on a bench-

mark dataset [30] in section 6.4.

2. Related Work

Estimating homographies: Bruls et al. [7] use GANs

to estimate the bird’s eye view; however, since they don’t

1https://drive.google.com/open?id=

1o9ydKCnh0oyIMFAw7oNxQohFa0XM4V-g

enforce a pixel-wise loss, the geometry of the scene may

not be correctly recovered as they mention in failure cases.

Moreover, they train and test only on first person car driver

views [26] where some assumptions can be made (pitch≈0,

roll≈0). Liu et al. [23] pass an additional relative pose to a

CNN for view synthesis which contains information about

the relative 3D rotation, translation and camera internal pa-

rameters.

Estimating the focal length of the camera: One of the

ways to calculate focal length is by estimating the field of

view from the image. The focal length f is inversely related

to the field of view γ of the camera given constant image

width w as:

tan(
γ

2
) =

w
2

f
(1)

Workman et al. [35] use this approach to predict a camera’s

focal length by estimating the field of view directly from

an image using a CNN. However, since they only predict

horizontal field of view, they assume that the camera has

equal focal length on both the axes which may not be true.

In addition, based on the findings in [20], we know that

predicting the field of view directly from an image can be

a challenging task since two similar looking images may

have large differences in field of view. We estimate the focal

length of the camera from the horizon line and the vertical

vanishing point (and describe the advantages in section 6.3).

Computing vanishing points and lines: One simple way

to estimate the horizon line or the vertical vanishing point

is by finding the intersection point of the lines in the im-

age which belong to the orthogonal directions in the im-

age. More specifically, this could involve using a Hough

transform on the detected lines to vote among the candi-

date vanishing points [34], and many other voting schemes

have been investigated [9], including weighted voting [31]

and expectation maximization [3]. More recently, Lezama

et al. [22] vote both in the image domain and PClines dual

spaces [14]. The above methods have a limitation as they

rely on line detection as the core step and may fail when

the image does not have lines in the major directions. For-

tunately, there are other important cues in an image which

help us to estimate the horizon line or the vanishing points

such as colour shifts, distortion in objects’ shapes, change

in texture density or size of objects around the image etc.

and that is where deep learning methods can help us.

Datasets: There are a few existing datasets which contain

the ground truth for the three orthogonal vanishing points in

the scene namely, Eurasian Cities dataset [5], York Urban

dataset [12] and the Toulouse Vanishing Points dataset [2].

However, these datasets contain only around 100 images

in total. Borji [6] propose a CNN based method which is

trained by annotating vanishing points in YouTube frames.

Recently, Workman et al. [36] collected a new dataset called
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Figure 2: Side view of a camera viewing a scene. (a) The camera

is tilted with an angle θx. Its centre is represented by c and f is

the focal length. ab is the image plane, p the principal point, and

vz the vertical vanishing point. (b) The camera is rotated to look

directly vertically down on the scene – the bird’s eye view.

Horizon Lines in the Wild (HLW) which contains around

100K images with ground truth for the horizon line. How-

ever, their dataset mostly contains images where the horizon

line lies within the image, and does not contain explicit la-

beling for the orthogonal vanishing points. Because of the

unavailability of a large dataset which contains the orthog-

onal vanishing points, we generate a large-scale synthetic

dataset that contains the required ground truth. This allows

us to train a CNN to predict these geometric entities. We

discuss this in detail in section 5

3. Predicting a homography from the horizon

line and the vertical vanishing point

In the following we assume that we know the vertical

vanishing point and horizon line in the image, and show ge-

ometrically how these are used to compute the rectifying

homography matrix. In section 4 we describe how to esti-

mate these geometric entities using a CNN.

The method involves applying a sequence of projective

transformations to the image that are equivalent to rotating

the camera and translating the image in order to obtain the

desired bird’s eye view. As shown in figure 2 the key step

is to use the horizon line to determine the rotation required,

but in order to know the rotation angle from the horizon we

require the camera internal calibration matrix. Assuming

that the camera has square pixels (zero skew) and that the

principal point is at the centre of the image, then the only

unknown parameter of the internal calibration matrix is the

focal length, and this can be determined once both the ver-

tical vanishing point and horizon are known as described

below.

Preliminaries. We will use the following relation-

ship [17] between image coordinates before and after a ro-

tation of the camera about its centre:

x
′ = KRK

−1
x (2)

where x represents image pixels for scene coordinates X

before the camera rotation, and x
′ are the resultant image

pixels for the same scene coordinates X after the rotation,

and the internal calibration matrix K is given by

K =

⎡

⎣

f 0 w/2
0 f h/2
0 0 1

⎤

⎦ (3)

where f is the focal length of the camera, w is the width

of the image, and h the height of the image.

To compute the matrix K, we only need to find the focal

length f of the camera. As explained in [17] the focal length

can be obtained directly from the relationship

h = ωv (4)

where h is the horizon line and v the vertical vanish-

ing point, and ω is known as the image of absolute conic

which is unaffected by the camera rotation and is given by

ω = (KKT )−1.

The rotation matrix R in equation (2) can be composed of

rotations about different axes. We use this property to first

rotate the camera about its principal axes to correct for the

roll of the camera, and then about the x-axis of the camera

to reach an overhead view of the scene. We next describe

the sequence of projective transformations.

Step A: removing camera roll. The first step is to apply a

rotation about the principal axis to remove any camera roll,

so that the camera’s x-axis is parallel to the X-axis of the

world. See step A in figure 3 for its effect. The roll of the

camera is computed from the horizon line. Given a horizon

line of the form ax+ by + c = 0, the roll of the camera θz
is given by θz = tan−1(−a

b
). The rotation matrix Rroll for

rotating about the principal axis is computed using θz .

Step B: removing camera tilt. The next step is to rotate

about the camera x-axis to remove the camera tilt. See step

B in figure 3 for its effect. The rotation matrix for rotation

about the camera x-axis requires only one parameter which

is the camera tilt θx. The camera tilt can be found from the

focal length and one of the geometrical entities, either the

horizon line or the vertical vanishing point. Given the focal

length of the camera f and the perpendicular distance from

the vertical vanishing point to the principal point ‖vz‖, we

can find tilt θx of the camera as θx = π
2
− tan−1(‖vz‖

f
).

See figure 2 for the corresponding notation. At this point,

the homography matrix Hrot is given as:

Hrot = KRtiltK
−1

Rroll (5)



Original Image Step A Step B Step C Step D

Figure 3: Step-by-step transformations of the first image to obtain the desired bird’s eye view. The different sub-figures correspond to

images obtained after performing the steps described in section 3 for predicting the homography matrix.

where Rtilt is the rotation matrix for rotating about the x-

axis to recover the camera tilt.

Step C: image translation. Once we have the effect of

camera rotation, we also need to translate the camera so that

it is directly above the scene and captures the desired bird’s

eye view. We achieve this by applying Hrot to the four cor-

ners of the source image which returns the corresponding

corners for the destination image. We define a translation

matrix which maps the returned corners to the corners of

our final canvas, thereby giving us the full view of the scene

from above. See step C in figure 3.

Step D: optional rotation. We also have an optional step

which can be seen in step D in figure 3. It deals with align-

ing the major directions in the image with the axes in the

Cartesian coordinate system by rotating the final image by

an angle θalign. This angle can be obtained from one of the

principal horizontal vanishing points that relates to one of

the major directions in the image. We show in section 4.1

how to represent this vanishing point by a single scalar.

In summary, the steps of the algorithm are:

• Calculate the focal length of the camera using the pre-

dicted horizon line and the vertical vanishing point

from a single image.

• Calculate the camera roll from the horizon line which

gives us Rroll.

• Calculate the camera tilt from the focal length and the

vertical vanishing point which in turn is used to calcu-

late Rtilt

• Calculate the translation matrix Tscene using the ho-

mography matrix Hrot from eq. 5 to map the corners

of the image to the destination image.

• (Optional) Calculate Ralign from the principal hori-

zontal vanishing point in the scene.

• Compose all above transformation matrices together to

calculate the final homography matrix which is given

as follows:

H = RalignTsceneKRtiltK
−1

Rroll (6)

4. Predicting the horizon line and the vertical

vanishing point

In this section we describe how the geometric entities are

represented in a form suitable for regression with a CNN.

The key point is that the entities can be at infinity in the

image plane (e.g. if the camera is facing down then the van-

ishing line is at infinity) and so a representation is needed

to map these entities to finite points for the CNN prediction.

To achieve this we borrow ideas from the standard stereo-

graphic projection used to obtain a map of the earth [32].

4.1. Representing the geometry of the horizon line
and the vanishing points

We first describe the representation method for a point.

See figure 4 for the notation introduced ahead. Suppose

there is a sphere of radius r which is located at point

(0, 0, r), and let the image plane be at z = 0. Then we

can draw a line connecting any point P on the image plane

to the sphere centre. The point s on sphere where this line

intersects the sphere is given by s = r v

‖v‖ where v is a

vector from the sphere centre to P and s is a 3-D point on

sphere. Finally, we project the point s onto the image plane

at Q using orthogonal projection. This effectively allows us

to represent any 2D point P on the image by a point Q in

a finite domain (within a circle of radius r), irrespective of

whether the original point P is finite or at infinity.

For a line l, we take a slightly different approach to repre-

sent its geometry. We draw a plane which connects the line

l to the centre of the sphere. There is a one-to-one mapping

between the line l and the plane drawn corresponding to it.

The normal n to the plane from the sphere centre intersects

the surface of the sphere in the lower hemisphere at a point

s. Once again, we orthogonally project this point s onto the

plane. This gives a unique finite point representation for any

line l in the infinite plane. In this way, we can represent the

horizon line and the vertical vanishing point in the image by

a total of four scalars which lie in the range [−r, r].

The optional principal horizontal vanishing point can be

represented by a single scalar. We know that the horizontal

vanishing points lie on the horizon line, so we only need to
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Figure 4: Representation of the geometry of a vanishing point and

a horizon line. (a) A point P (which could be a point at infinity) is

represented by a finite point Q on the 2D plane. As the point Q is

projected from the intersection point s on the lower hemisphere, it

is constrained to lie within a circle of radius r on the image plane.

(b) A line l is represented by a finite point Q on the image plane.

The plane connects the centre of the sphere with the line l. Point

s is the intersection of the plane normal with the sphere boundary,

and Q is the projection of s on the image plane.

Dataset Training Validation Test

HLW [36] 100553 525 2018

VIRAT Video [30] - - 11 videos

CARLA-VP 12000 1000 1000

Table 1: Comparison of the number of examples in training, val-

idation, and test set for different datasets. Note: The videos for

VIRAT dataset aren’t divided into different training, validation or

test sets by the publishers.

measure its position on the horizon line. We do so by mea-

suring the angle between two vectors: a vector v1 which

goes from the sphere centre C to the required horizontal

vanishing point and another vector v2 which is normal to

the horizon from C.

5. The CARLA-VP Dataset

There is no large scale dataset with ground truth for the

horizon line and the vertical vanishing point available for

training a CNN, so here we generate a synthetic training

dataset. Table 1 gives statistics on relevant datasets.

5.1. Synthetic dataset

We use CARLA [13] which is an open-source simulator

built over the Unreal Engine 4 to create our dataset. It gen-

erates photo-realistic images with varying focal length, roll,

tilt and height of the camera in various environments.

We choose a uniformly random value for the height of

the camera ranging from a ground person’s height to around

20 metres. We also choose a uniformly random value for tilt

of the camera in the range (0°, 40°]. We choose a value for

camera roll from a normal distribution with µ = 0° and

σ = 5° which is truncated in the range [−30°, 30°].
CARLA provides the ability to change the field of view

of the camera. This allows us to effectively change the

focal length of the camera as given in equation (1). We

use a uniformly random value for field of view from the

range [15°, 115°] which is carefully selected based on the

images that are generally captured or are obtained from traf-

fic surveillance cameras. The different parameters that we

have discussed above allow us to generate a wide variety

of images with different aspect ratios that resemble real-

world images. We will refer to this dataset as CARLA-VP

(i.e. CARLA with Vanishing Points). See figure 5 for a few

samples from the dataset.

5.2. Ground Truth Generation

Synthetic datasets allow us to create precise ground

truths. We mentioned above that we can change tilt, roll

or yaw of the camera in the CARLA simulator. This

gives us the value for the camera’s rotation matrix R =
[

r1 r2 r3

]

by composing it as a composition of in-

dividual rotation matrices. Similarly, we also know the in-

ternal calibration matrix K of the camera as CARLA uses a

simplified form and we already know the focal length (1).

Using K and R, we can generate ground truth for the or-

thogonal vanishing points. Consider a point at infinity in the

z direction, z∞, which is represented as
[

0 0 1 0
]T

in

homogeneous coordinates, and its image vz . Then by the

camera’s projection equation, we have:

vz = K

[

R t
]

z∞ = K

[

r1 r2 r3 t
]

⎡

⎢

⎢

⎣

0
0
1
0

⎤

⎥

⎥

⎦

vz = Kr3 (7)

Similarly, we can also solve for the orthogonal horizontal

vanishing points in the scene which are given by vx = Kr1

and vy = Kr2, and the horizon line is given by h = vx×vy .

6. Experiments

In this section, we perform a range of experiments to

evaluate our method both qualitatively as well as quantita-



Figure 5: Sample images from the CARLA-VP dataset. The im-

ages show a wide variety of settings i.e. different camera positions

and orientations, different weathers and different times of the day.

tively. We first explain the performance measures and con-

duct an ablation study of the method in section 6.3, where

we also compare different CNN architectures. We then eval-

uate our method on videos and compare its performance

quantitatively on the VIRAT Video dataset with some quali-

tative results on the real-world images. Finally, we compare

our horizon detection method with previous state-of-the-art

methods.

6.1. Performance Measures

We use two performance measures. The first is the area

under the curve (AUC) metric proposed by Barinova et al.

[5] for evaluating horizon line estimation. For each test im-

age sample, the maximum difference between the height of

the ground truth and estimated horizon over the image, di-

vided by the image height, is computed; and these values

are then plotted for the test set, where the x-axis represents

the error percentage and the y-axis represents the percent-

age of images having error less than the threshold on the

x-axis. The AUC is measured on this graph.

The second performance measure evaluates the camera

internal and external parameters, in particular the field of

view (which depends on the predicted focal length), and the

roll and tilt of the camera. We measure the error in these pa-

rameters in degrees. Note, these quantities are not directly

estimated by the CNN, but are computed from the predicted

vertical vanishing point and horizon line.

6.2. Implementation details

The final layer of the network is required to predict

four scalars, and this is implemented using regression-by-

classification as a multi-way softmax for each scalar over

b discretization bins. The number of discretization bins

is chosen as b = 500 in our experiments. An alternative

would be to directly regress each scalar using methods sim-

ilar to [15, 27], but we did not pursue that here.

At test time, we consider the c bins with the highest prob-

ability, and use a weighted average of these bins by their

probabilities to calculate the regressed value. We find that

c = 11 gives the best performance on the validation set.

Model

Parameterization

Field of

view

Camera

tilt

Camera

roll

Horizon and field of

view
6.061° 2.663° 1.238°

Horizon and vertical

vanishing point
4.911° 2.091° 0.981°

Table 2: Comparison of the error in estimated internal and external

camera parameters on the CARLA-VP dataset using different pa-

rameterization techniques (lower is better). It can be seen that the

CNN trained to output the horizon line and the vertical vanishing

point gives better performance.

CNN Architectures
Field of

view

Camera

tilt

Camera

roll

VGG-M 6.163° 2.332° 1.534°

VGG-16 5.385° 1.887° 1.207°

Resnet-50 4.509° 1.755° 1.104°

Resnet-101 4.534° 1.652° 1.234°

Inception-V1 6.773° 2.374° 1.456°

Inception-V4 4.130° 1.509° 0.853°

Table 3: Comparison of the error in estimated internal and exter-

nal camera parameters on the CARLA-VP dataset using different

CNN architectures as a component of our pipeline (lower is bet-

ter).

The CNN is trained using TensorFlow [1] v-1.8 in

Python 3.6. It is initialized with pre-trained weights from

ImageNet classification [11]. All layers are fine-tuned as

the task at hand is inherently different from the image clas-

sification task. We use the Adam optimizer [21] with de-

fault parameters. The training starts with an initial learning

rate of 1e-2 which is divided by 10 up-to 1e-4 whenever the

validation loss increases.

6.3. Ablation Study

Field of view vs vertical vanishing point. We discussed

in section 4 that our method for calculating the bird’s eye

view involves estimating the internal and external parame-

ters of the camera. We do this by estimating the horizon line

and the vertical vanishing point from a given image. This

involves predicting four different scalars. However, we can

further reduce the number of parameters by predicting the

field of view instead of the vertical vanishing point. This is

an even more compact representation which uses only three

scalars. It allows us to calculate the focal length directly

from the field of view as in (1) [20], and the tilt and roll of

the camera from the horizon line and focal length.

We evaluate this approach to see how it performs against

our original method. The results are shown in table 2. We

observe that the four scalar parameterization does better in

estimating all the internal and external parameters of the

camera. We believe that one of the major reasons is that the

vertical vanishing point is easier to estimate given that the

orientation of the ground plane or the direction of vertical



Figure 6: Horizon line detection AUC performance on the VIRAT

Video dataset. Comparison of our method (trained on synthetic

data) against DeepHorizon [36] and Lezama [22]. The dataset con-

tains a variety of images with various positions and orientations of

the horizon line. Our method does significantly better than the

state-of-the-art.

lines on the ground plane is directly observable from the

image. On the other hand, the camera’s field of view can

be difficult to estimate given the fact that two images which

are captured from cameras with different focal lengths and

different distances to the objects may appear very similar.

There are other advantages of our method as well. It is

easier to verify the vertical vanishing point manually from

an image. It also gives us an additional method for cal-

culating the tilt of the camera and we can average it with

the tilt value calculated from the horizon line. Furthermore,

the focal length of the camera is relatively more sensitive to

small errors at large values of the field of view due to the

tan relation in (1) (the focal length is inversely proportional

to tan of the field of view. Therefore, for large values of

the field of view, a small change in the field of view (e.g.

change from 115 to 117 compared to 45 to 47) will cause f

to change more since the slope of the tangent increases very

quickly as it approaches π/2).

Choice of trunk architecture. We compare the perfor-

mance using a number of different and popular CNN ar-

chitectures. In each case, the CNN is initialized by pre-

training on ImageNet classification. We start with a simple

model i.e. VGG-M [8] with relatively few parameters, and

then train progressively more complex and deeper CNNs.

Table 3 shows the comparison of the tested networks on the

CARLA-VP dataset. We use the best performing Inception-

v4 [33] architecture for the remaining results.

6.4. Comparison with other methods

We compare our method for estimating the horizon line

on two public image dataset benchmarks.

6.4.1 Comparison on the VIRAT Video dataset

The VIRAT video dataset [30]. This dataset contains

videos with fixed cameras (table 1) along with the corre-

sponding homography matrices for the ground planes. It

Figure 7: Reduction of relative error in estimating the focal length

of the camera as the estimates from more frames are averaged for

different videos in the VIRAT Video dataset. We observe that the

estimate asymptotes at around 400 frames.

also contains object and event annotations. We use single

images extracted from videos in this dataset and extract the

ground truth horizon lines from the given homography ma-

trices using (7).

We compare our method, trained on the synthetic

CARLA-VP dataset, to two other methods: DeepHori-

zon [36] using the provided API; and Lezama [22] using

the code published by the authors. Therefore, this dataset is

unseen for all three methods. See figure 6 for the results.

We observe that our method outperforms DeepHorizon

(state-of-the-art) and Lezama by a significant margin. Upon

closer inspection, we see that the DeepHorizon method

struggles on images where the horizon line lies outside the

image, while our method is able to do well on such images.

One of the reasons could be that DeepHorizon gives good

weightage to segmentation between the ground plane and

the sky to aid the horizon prediction, but this cue may not

be available when the camera is titled significantly.

We show qualitative results for some of the scenes from

the VIRAT Video dataset in figure 8, which contains the

original images and their corresponding bird’s eye views.

The obtained bird’s eye views have the correct geometric

proportions for different objects present in the scene such

as dimensions of lane markings and roads. This means that

we can obtain Euclidean measurements in the scene if we

know one reference distance in the image. We observe that

our method is able to transfer well to the real-world images

and generates veridical views.

Real time performance on Videos. Since our method

does not involve any other refinement steps like expecta-

tion maximization etc. as used in [37], it is very fast and

takes around 40 ms per image on a lower-middle end GPU

(GTX 1050 Ti). This amounts to 25 frames per second, thus

making it suitable for application to videos in real time.

Here, we evaluate a simple approach which can be used

to improve the performance. We apply our method to differ-

ent videos from the VIRAT Video dataset and average the

values for the internal and external parameters of the cam-



Method Datasets Post-Processing AUC

Lezama et al. [22] (requires no training) ✓ 52.59%

Zhai et al. [37] 110K Google Street ✓ 58.24%

Workman et al. [36] HLW+500K Google Street ✗ 69.97%

Workman et al. [36] HLW+500K Google Street ✓ 71.16%

Ours HLW ✗ 74.52%

Table 4: Horizon line detection AUC performance on the HLW test dataset. Comparison of our method against other horizon-line detection

methods. The datasets column shows the datasets the methods were trained on.

Figure 8: (Left) Source images (Right) Bird’s eye view of the cor-

responding source images which are automatically calculated us-

ing our method.

era (rather than the homography matrix). This allows us to

refine our estimated values continuously and get more reli-

able and stable results. We observe that the estimate of the

camera parameters gets more accurate as more frames are

averaged from the video. See figure 7 for a visualization

of the focal length error. The estimated value for the focal

length approaches the ground truth value as the number of

frames increases.

6.4.2 Comparison on the HLW Dataset

In this section, we present our results on the latest hori-

zon detection dataset known as Horizon Lines in the Wild

(HLW).

The Horizon Lines in the Wild (HLW) dataset [36].

This dataset contains around 100K images with ground

truths for the horizon line. The dataset mostly contains

images with a very small tilt or roll of the camera and the

camera is close to a ground person height. This causes the

horizon line to be visible in most of the images.

We use pre-initialized weights from ImageNet to train

our method on the training set of the HLW dataset to com-

pare with other methods. See table 4 for a summary of per-

formance of different methods on the HLW test set. We

achieve 74.52% AUC, outperforming the previous state-of-

the-art method Workman et al. [36] with a relative improve-

ment of 4.72%.

Our network predicts the geometry in one forward pass,

without any kind of post-processing involved. Compared to

this, Lezama et al. [22] detect line segments in the image

initially, and compute vanishing points from them which

gives the horizon line. Zhai et al. [37] estimates horizon line

candidates from the CNN. Then they estimate the zenith

vanishing point using these horizon lines. Based on this,

they estimate the horizontal vanishing points on the hori-

zon line candidates and select the horizon line with maxi-

mum score. Workman et al. [36] estimate the horizon line

directly from the image using a CNN, but they use further

post-processing techniques to achieve their best results.

7. Conclusion

We have presented a complete pipeline for removing per-

spective distortion from an image, and obtaining the bird’s

eye view from a monocular image automatically under geo-

metric constraints. Our method can be used as plug and play

to help other networks which suffer from multiple-scales

due to perspective distortion such as vehicle tracking [28],

crowd counting [24, 25] or penguin counting [4] etc. Our

method is fast, robust and can be used in real-time on videos

to generate a bird’s eye view of the scene.

Note, the finite points used to represent the geometric en-

tities in this work do not correspond directly to observable

features in the image. A possible improvement in future

work would be to design a projection method so that they

do correspond.
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