
Auto-encoding meshes of any topology

with the current-splatting and exponentiation layers

Alexandre Bône Olivier Colliot Stanley Durrleman

The Alzheimer’s Disease Neuroimaging Initiative

ARAMIS Lab, ICM, Inserm U1127, CNRS UMR 7225, Sorbonne University, Inria, Paris, France

{alexandre.bone, olivier.colliot, stanley.durrleman}@icm-institute.org

Abstract

Deep learning has met key applications in image com-

puting, but still lacks processing paradigms for meshes, i.e.

collections of elementary geometrical parts such as points,

segments or triangles. Meshes are both a powerful repre-

sentation for geometrical objects, and a challenge for net-

work architectures because of their inherent irregular struc-

ture. This work contributes to adapt classical deep learn-

ing paradigms to this particular type of data in three ways.

First, we introduce the current-splatting layer which em-

beds meshes in a metric space, allowing the downstream

network to process them without any assumption on their

topology: they may be composed of varied numbers of ele-

ments or connected components, contain holes, or bear high

levels of geometrical noise. Second, we adapt to meshes the

exponentiation layer which, from an upstream image array,

generates shapes with a diffeomorphic control over their

topology. Third, we take advantage of those layers to de-

vise a variational auto-encoding architecture, which we in-

terpret as a generative statistical model that learns adapted

low-dimensional representations for mesh data sets. An ex-

plicit norm-control layer ensures the correspondence be-

tween the latent-space Euclidean metric and the shape-

space log-Euclidean one. We illustrate this method on sim-

ulated and real data sets, and show the practical relevance

of the learned representation for visualization, classifica-

tion and mesh synthesis.

1. Introduction

Deep learning has met key applications in image com-

puting, but still lacks processing paradigms for mesh data.

Understood as collections of elementary geometrical parts

such as lines in 2D or triangles in 3D, meshes are a compact

and natural representation for geometrical data. The inher-

ent difficulty with meshes is that they do not have regular

structure: two meshes might be similar in their 3D geometry

yet very different in their parametrization – e.g. composed

of varying numbers of elementary triangles or connected

components of such triangles, contain holes breaking their

topology, or bear high levels of geometrical noise. Practical

tasks (such as regression or classification) remain however

ultimately the same regardless of the data type, which leads

to the question: is it possible to simply adapt image deep

learning paradigms to work with meshes?

A first challenge lies in building an “embedding” layer,

able to represent input meshes with irregular structure into

vectors of fixed dimension, that can then be processed by

any classical network architecture. Focusing on the case

of point clouds, [15, 24] introduce specific architecture for

object classification, part segmentation, and semantic seg-

mentation. In the case of connected meshes, intrinsic oper-

ators are defined in [21], as well as in the geometric deep

learning papers [2, 17, 18] surveyed by [3]. Considering

mesh points as graph nodes, they introduce convolution-like

operators able to compute feature vectors from sub-graphs

extracted at a fixed number of seed vertices. Those tech-

niques are well-suited to process model-based graphs such

as molecular structures or computer-aided designs because

local topologies carry information, but large receptive fields

(and high computational power) would be required to pro-

cess noisy data-driven graphs such as connectomes or seg-

mented organs. Global graph representations are extracted

in [26], but only after convergence of a costly iterative pro-

cedure. An opposed trend in the literature advocates for

transforming input 3-dimensional shapes into either binary

volumetric images [25, 32] or series of textured 2D images

obtained by selecting a set of viewpoints [28]. If those ap-

proaches might be computationally intensive, the opportu-

nity to seamlessly use well-understood deep network ar-

chitectures is a particularly appealing asset, which helped

them achieving top performance for object recognition. To

the best of our knowledge, those image-transform methods

however either ignore the information offered by the nor-

mals of the meshes, or take them indirectly into account

through some arbitrary and fixed illumination. If this is not

the case of signed distance functions used in [4, 5, 27] to

represent the environment from depth sensor signals [20],

the computational complexity to estimate such maps from

fully-determined shapes seems too elevated to be used as a

feature extraction layer – which should typically rather con-

sist in a forward operation.

A second challenge, reciprocal to the first, is to build an

output layer able to generate meshes. Going beyond the

generation of “shapes” as image-like structures, [7] synthe-

sizes point clouds. For higher-level shape primitives like

surfaces, a shared paradigm in [9, 11, 12, 13, 23, 29, 31]

consist in linearly deforming the vertices of a template

mesh, while keeping its connectivity unchanged. In [13,

31], the template is fixed to a generic ellipsoid. In [9], it is

assembled from a bank of parts, when in [23] several tem-

plates from a large bank are linearly combined. A specific

face template and its allowed linear deformation modes are

fixed a priori in [29], when those are learned in [11, 12].

A shared assumption is that the deformation should not

modify the template mesh topology: those papers either

assume all shapes isomorphic to the sphere [13, 31], rely

on an upstream classifier [9, 23], or restrict to a single

class [11, 12, 29]. This central topological hypothesis is

systematically enforced in an extrinsic manner through ded-

icated regularity terms, and is only verified at convergence.

Based on the theory of currents [30], we introduce in

Section 2 the current-splatting layer, which embeds meshes

in a metric space without any assumption on their topology.

The normals are directly and compactly taken into account

in this transformation, capturing maximal information for

the downstream network to process. The introduced metric

space naturally offers a loss function that measures the simi-

larity between any two meshes. In [6, 16], the authors define

the so-called exponentiation layer for imaging data, which

smoothly deforms a template image to generate a new one

with an intrinsic diffeomorphic control on its topology. We

adapt this layer to meshes in Section 3, enabling the syn-

thesis of smooth and regular objects from the upstream net-

work. In Section 4, we take advantage of those input and

output layers to devise a variational auto-encoding archi-

tecture, which we interpret as a generative statistical model

for meshes. An explicit norm-control layer ensures the cor-

respondence between the latent-space Euclidean metric and

the shape-space log-Euclidean one. Experimental results on

varied data sets are reported in Section 5.

2. Meshes seen as splatted currents

A mesh y is understood in this paper as a homogeneous

collection of elementary geometrical parts such as points,

segments, or triangles. A standard description is therefore

to write y as a list of points, along with a list of segments or

triangles that we call connectivity, point clouds being seen

as degenerated meshes with no connectivity. We focus in

the rest of the article on non-degenerated meshes, and more

specifically on surfaces of R3 in the next sub-section to in-

troduce the current theory. All notations and concepts can

however be adapted to collections of segments or points.

2.1. Continuous theory

The pragmatic description of a surface mesh as a finite

collection of triangles can be understood as the dicretization

of an infinite set of points x ∈ R
3 with infinitesimal normal

vectors n ∈ R
3 attached to them. The geometric measure

theory [19] studies those objects called rectifiable sets under

loose piece-wise smoothness hypotheses: the strategy is to

embed them in a functional Hilbert space, where desirable

basic operators such as addition, subtraction, averaging or

scalar product will be naturally defined. Given a space Ω of

square-integrable vector fields ω : R3 → R
3, we associate

to the rectifiable surface y the mapping defined by:

C∗(y)(ω) =

∫

y

ω(x)⊤ · n(x) · dσ(x) (1)

where x denotes a parametrization of y, dσ(x) an infinites-

imal surface element and (.)⊤ the transposition operator.

Equation (1) is invariant under parametrization change,

hence the mapping C∗(y) is a linear form on Ω. We call

currents such linear forms, which are elements of Ω∗, the

dual space of test fields. Following [30], we further assume

that Ω is a reproducing kernel Hilbert space with kernel

KΩ : R
3 × R

3 → R and scalar product denoted 〈.|.〉Ω.

The Riesz representation theorem gives the existence of

some C(y) ∈ Ω such that C∗(y)(.) =
〈

., C(y)
〉

Ω
. Com-

bining equation (1) and the reproducing property ω(x) =
〈

ω, KΩ(x, .)
〉

Ω
, this representant can be identified:

C(y)(.) =

∫

y

KΩ(x, .) · n(x) · dσ(x). (2)

Since
〈

C∗(y), C∗(y′)
〉

Ω∗
=

〈

C(y), C(y′)
〉

Ω
, this inner-

product on currents finally writes:

∫

y

∫

y′

n′(x′)⊤ ·KΩ(x, x
′) · n(x) · dσ(x) · dσ′(x′) (3)

which induces the distance metric:

dΩ(C, C
′)2 = 〈C, C〉Ω + 〈C′, C′〉Ω − 2 · 〈C, C′〉Ω. (4)

2.2. Practical discrete case

In practice, we propose to choose the simple radial Gaus-

sian kernel of radius σΩ > 0 for KΩ. Moreover, meshes are

represented as finite collections of T elements. Under those

hypotheses, equation (2) becomes:

C(y)(x) =
T
∑

k=1

exp
−
∥

∥x− ck
∥

∥

2

ℓ2

σ2
Ω

· nk (5)

Figure 1. Current-splatting mechanics. The input mesh is first

transformed in a vector field, which is then discretized on a fixed

grid to form a d-dimensional image. If a topologically simple ob-

ject was selected for the sake of clarity, note that any other topol-

ogy could be similarly treated.

where x is a point of Rd, the ck and nk respectively are the

centers and normals of the triangles composing y. In the

case of a collection of segments, the (nk)k are the tangent

vectors. In the same manner, equation (3) becomes:

〈

C(y), C(y′)
〉

Ω
=

T
∑

k=1

T ′

∑

l=1

exp
−
∥

∥c′l − ck
∥

∥

2

ℓ2

σ2
Ω

· n⊤

k n
′

l. (6)

Given a discrete grid gΩ of Rd, we finally define the splat-

ted current C(y) as the d-channel image resulting from the

discretization of C(y) on the grid gΩ.

Note the following properties of the current-splatting

transform: (i) it does not assume any particular topology of

the meshes, (ii) it is invariant under parametrization change,

(iii) it captures the proximity relationships between ele-

ments, (iv) it captures the orientation information encoded

by the normals of the triangles (or tangents of the segments).

All those properties are achieved at the cost of smoothing

out all geometrical features of characteristic radius inferior

to σΩ, which can on the other hand be useful to filter out

geometrical noise.

Architecture. The architecture of the current-splatting

layer is presented by Figure 1. The input mesh y is first

transformed in the function C(y), before being splatted into

a d-channel image C(y).

Hyper-parameters (σΩ, gΩ). The characteristic length σΩ

should ideally be larger than the noise to eliminate, and

smaller than the signal to capture. In practice, the grid gΩ is

obtained by uniformly dividing a bounding box containing

all the considered meshes. A good heuristic is to choose a

spacing between each node approximately equal to σΩ/2.

3. Meshes seen as deformations of a template

A mesh-generating layer is by essence an output layer,

and is therefore strongly linked to the loss function used to

train the network. In this work, we take advantage of the

current framework and use the distance metric defined by

equation (4), which is advantageously free of any topologi-

cal assumption. However, because of the low-pass filtering

behavior of the current transform, a naive output layer syn-

thesizing a mesh by directly predicting the position of its

points would be free to generate very noisy geometries.

3.1. Continuous theory

To control the regularity of the generated meshes, we im-

pose that they are diffeomorphic to a reference mesh y0.

This constraint suggests a method: instead of predicting

a mesh y directly, we want the network to generate a dif-

feomorphism φ, before computing the deformed template

y = φ ⋆ y0. As in [1], we construct diffeomorphisms

by following the streamlines of static smooth vector fields

v ∈ V ⊂ C∞
0 (Rd,Rd) during the time segment [0, 1]:

Φ(v) = φ1 where ∂tφt = v ◦ φt, φ0 = IdRd . (7)

The mapping Φ : V → GV = {Φ(v) | v ∈ V } is locally

invertible around the identity: similarly to [34], we define

on this neighbourhood of GV the “log-Euclidean” distance:

dV (φ, φ
′) =

∥

∥Φ−1(φ′)− Φ−1(φ)
∥

∥

V
(8)

which induces a distance on the corresponding neighbour-

hood of the orbit shape space GV ⋆ y0. We further assume

that V is a reproducing kernel Hilbert space with kernel

KV . The Riesz representation theorem gives the existence

of the “momenta” dual vector field m ∈ V ∗:

v(.) =

∫

Rd

KV (x, .) ·m(x) · dν(x) (9)

where dν(x) is an infinitesimal element of Rd. The inner

product 〈v, v′〉V on V can now be derived:

∫

Rd

∫

Rd

m′(x′)⊤ ·KV (x, x
′) ·m(x) ·dν(x) ·dν′(x′) (10)

which defines the norm operator ‖v‖V = 〈v|v〉
1/2.

3.2. Practical discrete case

In practice, we propose to choose the simple radial Gaus-

sian kernel of radius σV > 0 for KV . Moreover, the am-

bient space R
d is discretized into a grid gV . Under those

hypothesis, equations (9) and (10) write, in matrix forms:

v = KV ·m and 〈v|v′〉V = m⊤ ·KV ·m′ (11)

Figure 2. Exponentiation mechanics. The input d-dimensional ar-

ray m is first filtered by a Gaussian convolution layer. Interpreted

as a discretized velocity field, the resulting v is interpolated on

the successive positions of the moving mesh yt, which is finally

updated accordingly.

where the notations v and m refer to the gV -discretized

vector fields v and m respectively. The notation KV de-

notes the kernel tensor defined by, for any triplet of indices

(i0, j0, k0) of the grid gV :

[

KV

]

(i0,j0,k0)
=

∑

i,j,k

exp
−
∥

∥gi,j,k − gi0,j0,k0

∥

∥

2

ℓ2

σ2
V

(12)

in the case d = 3, easily adaptable to lower dimensions.

The time segment [0, 1] is uniformly discretized into T sub-

segments of length dt = 1/T . The differential equation (7)

becomes, for any time index 0≤ t≤T−1 and point x0∈R
d:

xt+1 = xt + dt · v(xt) ≈ xt + dt · I(v, xt) (13)

where I(v, xt) simply denotes the bi- or tri-linear interpo-

lation of the discretized velocity field v at location xt.

Architecture. The architecture of the exponentiation layer

is depicted by Figure 2. It takes as input a d-channel image,

interpreted as a d-dimensional momentum vector field m
discretized over a spatial grid gV . This upstream stimulus

m is filtered into the discrete velocity field v by a Gaussian

convolution layer with kernel width σV , according to equa-

tions (11, 12). A recurrent residual network of length T
then implements equation (13) for the template mesh (yt)t:
the interpolated velocity field I(v, yt) is computed, scaled

by dt, and added to the current mesh positions. The final

mesh yT forms the output of the exponentiation layer.

Hyper-parameters (σV , gV , T). The notation y0 encom-

passes both: (i) the positions of the points forming the mesh,

which are parameters of the exponentiation layer (i.e. esti-

mated), (ii) the mesh connectivity, which is fixed a priori.

All synthesized meshes will therefore have this same topol-

ogy. The characteristic length hyper-parameter σV should

ideally be of the order of the smallest geometrical features

to generate. In practice, the grid gV hyper-parameter is ob-

tained by uniformly dividing a bounding box containing the

initial y0. A good heuristic is to choose a spacing between

each node approximately equal to σV /2. The number of in-

tegration steps T forms a last hyper-parameter. We chose

T = 5 in all our experiments.

4. Meshes seen as low-dimensional codes

We take advantage of the current-splatting and exponen-

tiation layers to devise an auto-encoding architecture, which

aims at learning a low-dimensional representation of a data

set of meshes (yi)
n
i=1. Given some user-defined latent-

space dimension q ∈ N
∗, any shape yi will be represented

in the network by a corresponding code zi ∈ R
q . Note

that meshes represented by a varying number of points, seg-

ments or triangles are then homogeneously represented by

simple low-dimensional vectors of the Euclidean space R
q ,

where simple operations such as computing averages are

naturally defined. We choose to work with a variational

auto-encoder: the latent codes (zi)i are seen as probability

distributions. This allows to capture the uncertainty associ-

ated with such low-dimensional representations, and offers

a statistical interpretation of the resulting architecture.

4.1. Continuous theory

Statistical model. We note Dδ a δ-parametric mapping that

associates a velocity vector field v ∈ V to any code vec-

tor z ∈ R
q . We further require Dδ to be isometric, i.e.

‖z‖ℓ2 = ‖v‖V . Given a data set of meshes (yi)
n
i , we model

the observations as random deformations of a template y0:

yi
iid
∼NΩ

(

Φ
[

Dδ(zi)
]

⋆ y0, ǫ
2
)

with zi
iid
∼N

(

0, λ2
)

(14)

where ǫ > 0 and λ > 0. The normal distribution NΩ

is defined in the space of the Ω-currents, equipped with

the distance metric dΩ defined by equation (4). Equa-

tion (14) defines a mixed-effects model with fixed effects

θ = (y0, δ, ǫ, λ) and random effects (zi)i. We note respec-

tively pθ(yi|zi) and pθ(zi) the density functions of the two

normal distributions involved in equation (14).

Variational inference. We estimate the parameters θ with a

variational Bayes approach [10], which consist in minimiz-

ing the loss
∑n

i=1 Lθ,η(yi) given by:

Lθ,η(yi) = −

∫

log pθ(yi|zi) · qη(zi|yi) · dzi

+ KL
[

qη(zi|yi)
∥

∥ pθ(zi)
]

(15)

��

��
�"

�	 �	�	

��

�� ��

��
�"��

��

��
�"��

��

����
��
�"��

�� ����
��
�"��

��

����
��
�"��

��

�������� ������
��
�!

�"��
��

�� ��

��
�!

�"��
��

�� ��

��
�!

�"��
��

�� ��

��
�"��

��

��
�"��

��

��
�" ��

�"

��

��

���$���% ������ �� � ���$���% �
 ����

���������
����������
��������	 ���
�������������� ����������� ���� � � � �� �� �� ��
� ��
� �� �� �� �� ������	������

�� ���$���%

��

��������
�"

�� �� �$���%�
 ����

�� � � � ��
� �� �� �� � �� � � � �� �� �� �� �� �

���$���� ���#�%

��

��

����������

��

��
�"

�� � ���

Figure 3. Architecture of the mesh auto-encoder. The current-splatting layer transforms the input mesh into ad-dimensional array, which
is encoded by four convolution layers (in green) followed by a fully-connected layer (in yellow). Sampled codes are then decoded by three
fully connected layers followed by three deconvolution layers (in red). After “ltering by Gaussian convolution, a scaling layer (in red)
explicitly enforces the isometry of the decoding mapping. The exponentiation layer “nally synthesize the output mesh.

where KL(.� .) denotes the Kullback-Leibler divergence op-
erator, and wherezi � q� (zi |yi) is a � -parametric recog-
nition model that approximates the true posteriorzi �
p� (zi |yi). Minimizing the loss function de“ned by equa-
tion (15) actually consists in maximizing a lower bound of
the model likelihood, with equivalence in the perfect ap-
proximation case. We choose the recognition distribution
q� (.|yi) to be an uncorrelated GaussianN (µ i , i), whose
parameters are predicted from the current transformC(yi)
by the parametric mappingE � : C(yi) � µi , i . The
Kullback-Leibler term in equation (15) can be seen as a
regularizing lossR�,� (yi), easily derivable for the chosen
recognition model:

R�,� (yi) =
1
2

q�

k=1

�
µ2

i,k + 2
i,k

 2 Š log
 2
i,k

 2

�

+ cst. (16)

The remaining term, called attachment, is approximated by

drawingL sampleszi,l
iid� q� (.|yi):

A �,� (yi) =
1
2

L�

l =1

�
	 2

i,l

	 2 + |� | · log 	 2

�

+ cst (17)

with 	 2
i,l = d�

�
C(yi), C(�

	
D � (zi,l)

� y 0)

� 2
(18)

and where|� | is the normalization parameter forN � . These
losses are given modulo an additive constant with respect to
� and� which are jointly estimated. The high-dimensional
parametersy0, � and� are optimized by mini-batch stochas-
tic gradient descent. After each mini-batch, the remaining
scalar parameters
 , 	 are updated according to the closed-
form solutions:

 2 �
n�

i =1

q�

k=1

µ2
i,k + 2

i,k

n · q
, 	 2 �

n�

i =1

L�

l =1

	 2
i,l

n · L · |� |
.

(19)

Remark. AssumingD � isometric is suf“cient to achieve
equality between the log-Euclidean metric de“ned in Sec-

tion 3 and the natural� 2 metric ofRq. In other words, the
Euclidean distance between the latent-space representations
(zi) i can be seen as a convenient proxy to visualize and
measure the relative similarity between the corresponding
data points(yi) i . In addition, the estimated templatey0 can
be seen as a Fréchet average of those data points [1, 22].

4.2. Practical discrete case

As suggested in [14], in practice the encodingE � and
decodingD � mappings are neural networks, notedE � and
D � . The •discreteŽ encoderE � takesg� -splatted currents
C as inputs. In those discrete settings, the normalizer|� |
equals the number of nodes of the gridg� [8]. The de-
coding counterpartD � outputsgV -discretized momentum
vector “eldsm. A Gaussian convolution layer then com-
putes the associated discrete velocity “eld, which is “nally
explicitly scaled intov, enforcing the isometric assumption.

Architecture. The proposed architecture is illustrated by
Figure3. The current-splatting layer “rst transforms the in-
put meshes intod-channel square or cube images of length
2r along each axis. Four convolution layers with kernel size
and stride of 2 then reduce the spatial dimension, when the
number of channels successively increases fromd to 4, 8, 16
and 32. A fully-connected layer of output size2q completes
the encoder architecture. Its output is interpreted as mean
and variance parameters of the probabilistic code distribu-
tion: during training, a single realizationz is sampled with
the so-called reparametrization trick to ensure the backprop-
agation of gradients [14]. The decoder involves four decon-
volution layers symmetric to their encoding counterparts,
preceded by three fully connected layers. All decoding lay-
ers are chosen without bias. The “ltering and scaling layers
“nally generate the velocity “eldv, which is then exponen-
tiated. All convolution and linear layers are equipped with
tanh activation functions, at the exception of the last layer
of the encoder.

