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Abstract

We propose a novel approach for 3D shape comple-

tion by synthesizing multi-view depth maps. While previous

work for shape completion relies on volumetric representa-

tions, meshes, or point clouds, we propose to use multi-view

depth maps from a set of fixed viewing angles as our shape

representation. This allows us to be free of the memory lim-

itations of volumetric representations and point clouds by

casting shape completion into an image-to-image transla-

tion problem. Specifically, we render depth maps of the

incomplete shape from a fixed set of viewpoints, and per-

form depth map completion in each view. Different from

image-to-image translation networks that process each view

separately, our novel multi-view completion net (MVCN)

leverages information from all views of a 3D shape to help

the completion of each single view. This enables MVCN

to leverage more information from different depth views to

achieve high accuracy in single depth view completion, and

improve the consistency among the completed depth images

in different views. Benefiting from the multi-view represen-

tation and novel network structure, MVCN significantly im-

proves the accuracy of 3D shape completion in large-scale

benchmarks compared to the state of the art.

1. Introduction

Shape completion is an important challenge in 3D shape

analysis, serving as a building block in applications such as

3D scanning in robotics, autonomous driving, or 3D mod-

eling and fabrication. While learning-based methods that

leverage large shape databases have achieved significant ad-

vances recently, choosing a suitable 3D representation for

such tasks remains a difficult problem. On the one hand,

volumetric approaches such as binary voxel grids or dis-

tance functions have the advantage that convolutional neu-

ral networks can readily be applied, but including a third

dimension increases the memory requirements and limits

the resolutions that can be handled. On the other hand,

point-based techniques provide a more parsimonious shape

representation, and recently there has been much progress

in generalizing convolutional networks to such irregularly

sampled data. However, most generative techniques for 3D

point clouds involve fully connected layers that limit the

number of points and level of shape detail that can be ob-

tained [1, 4, 31].

In this paper, we propose to use a shape representation

that is based on multi-view depth maps for shape comple-

tion. The representation consists of a fixed number of depth

images taken from a set of pre-determined viewpoints. Each

pixel is a 3D point, and the union of points over all depth

images yields the 3D point cloud of a shape. This has the

advantage that we can use several recent advances in neural

networks that operate on images, like U-Net [24] and 2D

convolutional networks. In addition, the number of points

is not fixed and the point density can easily be increased by

using higher resolution depth images, or more viewpoints.

Here we leverage this representation for shape comple-

tion. Our key idea to perform shape completion is to render

multiple depth images of an incomplete shape from a set

of pre-defined viewpoints, and then to complete each depth

map using image-to-image translation networks. To im-

prove the completion accuracy, we further propose a novel

multi-view completion net (MVCN) that leverages informa-

tion from all depth views of a 3D shape to achieve high ac-

curacy for single depth view completion. In summary, our

contributions are as follows:

• A strategy to address shape completion by re-rendering

multi-view depth maps to represent the incomplete

shape, and performing image translation of these ren-

dered views.

• A multi-view completion architecture that leverages

information from all rendered views and outperforms

separate depth image completion for each view.

• More accurate 3D shape completion results than pre-

vious state of the art methods.



Figure 1: Overview of our approach. (a) We render 8 depth maps of an incomplete shape (shown in red) from 8 viewpoints

on the corners of a cube; (b) These rendered 8 depth maps are passed through a multi-view completion net including an

adversarial loss, which generates 8 completed depth maps; (c) We back-project the 8 depth maps into a completed 3D model.

2. Related Work

Deep learning on 3D shapes. Pioneering work on deep

learning for 3D shapes has relied on volumetric representa-

tions [16, 30], which allow the straightforward application

of convolutional neural networks. To avoid the computation

and memory costs of 3D convolutions and 3D voxel grids,

multi-view convolutional neural networks have also been

proposed early for shape analysis [22, 27] such as recogni-

tion and classification. But these techniques cannot address

shape completion. In addition to volumetric and multi-

view representations, point clouds have also been popular

for deep learning on 3D shapes. Groundbreaking work in

this area includes PointNet and its extension [21, 23].

3D shape completion. Shape completion can be performed

using volumetric grids, as proposed by Dai et al. [3] and

Han et al. [6], which are convenient for CNNs, like 3D-

Encoder-Predictor CNNs for [3] and encoder-decoder CNN

for patch-level geometry refinement in [6]. However, when

represented with volumetric grids, data size grows cubi-

cally as the size of the space increases, which severely lim-

its resolution and application. To address this problem,

point based shape completion methods were presented, like

[1, 31, 32]. The point completion network (PCN) [32] is the

state-of-the-art approach that extends the PointNet architec-

ture [21] to provide an encoder, followed by a multi-stage

decoder that uses both fully connected [1] and folding lay-

ers [31]. They show that their decoder leads to better results

than using a fully connected [1] or folding based [31] de-

coder separately. However, for these voxels or points based

shape completion methods, the numbers of input and out-

put voxels or points are still fixed. For example, the input

should be voxelized on a 323 grid [6] and the output point

cloud size is 2048 [31], however, which can lead to loss of

detail in many scenarios.

3D reconstruction from images. The problem of 3D shape

reconstruction from single RGB images shares similarities

with 3D shape completion, but is arguably even harder.

While a complete survey of these techniques is beyond the

scope of this paper, our work shares some similarities with

the approach by Lin et al. [15]. They use a multi-view depth

map representation for shape reconstruction from single

RGB images using a differentiable renderer. In contrast to

their technique, we address shape completion, and our ap-

proach allows us to solve the problem directly using image-

to-image translation. Soltani et al. [26] do shape synthe-

sis and reconstruction from multi-view depth images, which

are generated by a variational autoencoder [14]. However,

they do not consider the relations between the multi-view

depth images of the same model in their generative net.

Image translation and completion. A key advantage of

our approach is that it allows us to leverage powerful image-

to-image translation architectures to address the shape com-

pletion problem, including techniques based on generative

adversarial networks (GAN) [5], and U-Net structures [24].

Based on conditional GANs, image-to-image translation

networks can be applied on a variety of tasks [11]. Satoshi

et al. [9] and Portenier et al. [20] propose to use conditional

GANs for image completion or editing. However, each im-

age is completed individually in their networks. We propose

a network that can combine information from other related

images to help the completion of one single image.

3. Method

3.1. Multi-view Representation

As discussed above, high resolution completion is diffi-

cult to achieve by existing methods that operate on voxels or

point clouds due to memory limitations or fully connected

network structures. In contrast, multi-view representations

of 3D shapes [22, 27, 7, 8] can circumvent these obsta-

cles to achieve high resolution and dense completion. As



shown in Fig. 1 (a), given an incomplete point cloud, our

method starts from rendering 8 depth maps for this point

cloud. Specifically, the renderings are generated by placing

8 virtual cameras at the 8 vertices of a cube enclosing the

shape, all pointing towards the centroid of the shape. We

also render 8 depth maps from the ground truth point cloud,

and then we use these image pairs to train our network.

With this multi-view representation, the shape comple-

tion problem can be formulated as image-to-image transla-

tion, i.e., translating an incomplete depth map to a corre-

sponding complete depth map, for which we can take full

advantage of several recent advances in net structures that

operate successfully on images, like U-Net architectures

and GANs. After the completion net shown in Fig. 1(b),

we get 8 completed depth maps in Fig. 1(c), which can be

back-projected into a completed point cloud.

3.2. Multi-view Depth Maps Completion

In the completion problem, we learn a mapping from an

incomplete depth map xi to a completed depth map G(xi),
where xi is rendered from a partial 3D shape S, i ∈ [1, V ].
We render V views for each shape and expect to complete

each depth map xi of S as similar as possible to the corre-

sponding depth map yi of the ground truth 3D shape S1.

Although completing each of the V depth maps of a

3D shape separately would be straightforward, there are

two disadvantages. First, we cannot encourage consistency

among the completed depth maps from the same 3D shape,

which affects the accuracy of the resulting 3D shapes ob-

tained by back-projecting the completed depth maps. Sec-

ond, we cannot leverage information from other depth maps

of the same 3D shape while completing one single depth

map. This limits the accuracy of completing a single depth

image, since views of the same 3D model share some com-

mon information that could be exploited, like global shape

and local parts as seen from different viewpoints.

To resolve these issues, we propose a multi-view com-

pletion net (MVCN) architecture to complete one single

depth image by jointly considering the global 3D shape

information. In order to complete a depth image xi as

similar as possible to the ground truth yi in terms of both

low-frequency correctness and high-frequency structure,

MVCN is designed based on a conditional GAN [5], which

is formed by an image-to-image net G and a discrimina-

tor D. In addition, we introduce a shape descriptor d for

each 3D shape S to contribute to the completion of each

depth image xi from S, where d holds global information

of shape S. The shape descriptor d is learned along with the

other parameters in MVCN, and it is updated dynamically

with the completion of all the depth images xi of shape S.

3.3. MVCN Architecture

We use a U-Net based structure [24] as our image-

to-image net G, which has shown its effectiveness over

encoder-decoder nets in many tasks including image-to-

image translation [11]. Including our shape descriptor, we

propose an end-to-end architecture as illustrated in Fig. 2.

Figure 2: Architecture of MVCN. The shape descriptor rep-

resents the information of a 3D shape, which contributes to

the completion of each single depth map from the 3D shape.

We adopt the generator and discriminator architecture

of [11]. MCVN consists of 8 U-Net modules with an in-

put resolution of 256 × 256, and each U-Net module has

two submodules, DOWN and UP. DOWN (e.g. D3) con-

sists of the Convolution-BatchNorm-ReLU layers [10, 18],

and UP (e.g. U3) consists of UpReLU-UpConv-UpNorm

layers. More details can be found in [11].

In MVCN, DOWN modules are used to extract a view

feature fi of each depth image xi. For each 3D shape S,

we learn a shape descriptor d by aggregating all V view

features fi through a view-pooling layer. Since not all the

features are necessary to represent the global shape, we use

max pooling to extract the maximum activation in each di-

mension of all fi to form the shape descriptor, as illustrated

in Fig. 2. In addition, the shape descriptor d is applied to

contribute to the completion of each depth image xi.

Specifically, for an input xi we employ the output of

DOWN module D3 as the view feature fi, and insert the

view-pooling layer after D3. For each shape S we use a

shape memory to store all its V view features fi as shown

in Fig. 2. When we get fi, we first use it to update the cor-

responding feature map in shape memory. For example, if

i = 3, the third feature map in shape memory will be re-

placed with f3. Then we obtain the shape descriptor of S in

the current iteration by a view-pooling layer (max pooling

all feature maps in the shape memory of S). This strategy

dynamically keeps the best view features in all training iter-

ations, as illustrated in Fig. 2. Subsequently, we use shape

descriptor d to contribute to the completion of depth map

xi by concatenating d with view feature fi as the input of

module D2. This concatenated feature is also forwarded to

module U3 via a skip connection.



3.4. Loss Function

The objective of our conditional GAN is similar to

image-to-image translation [11],

LcGAN (G,D) =Ex,y[logD(x, y)]+

Ex[log(1−D(x,G(x))].
(1)

In our completion problem, we expect the completion

net (G) could not only deceive the discriminator but also

produce a completion result near the ground truth. Hence

we combine the GAN objective with a traditional pixel-wise

loss, such as L1 or L2 distance, which is consistent with pre-

vious approaches [11, 19]. Since L1 is less prone to blurring

than L2, and considering Eq. 4, there is a linear mapping

from a pixel in a depth image to a 3D point, we want to

push the generated image to be near the ground truth in L1

sense rather than L2. Therefore, the loss of the completion

net is

LL1(G) = Ex,y[‖y −G(x)‖1]. (2)

Our final object in training is then

G∗ = argmin
G

max
D

LcGAN (G,D) + λLL1(G), (3)

where λ is a balance parameter that controls the contribu-

tions of the two terms.

3.5. Optimization and Inference

Unlike some approaches that focus on image genera-

tion [25], our method does not generate images from noise,

which also makes our training stable, as mentioned in [9].

Similar to pix2pix [11], we only provide noise in the form

of dropout in our network.

To optimize our net, we follow the standard approach [5,

11]. The training of D and G is alternated, one gradient

descent step on D, then one step on G. Minibatch SGD

and the Adam solver [13] are applied, with a learning rate

of 0.0006 for G and 0.000006 for D, which slows down the

rate at which D learns relative to G. Momentum parameters

are β1 = 0.5, β2 = 0.999, and the batch size is 32.

During inference, we first run MVCN with all the 8 ren-

dered views of an incomplete 3D shape to build the shape

memory and extract the shape descriptor. Then we run the

net again for the second time to complete each view lever-

aging the learned shape descriptor.

Our final target is 3D shape completion. Given a gener-

ated depth image G(xi), for each pixel p at location (xp, yp)
with depth value dp, we can back-project p to a 3D point P

through an inverse perspective transformation,

P = R−1(K−1[xp, yp, dp]
T − t), (4)

where K, R, and t are the camera intrinsic matrix, rotation

matrix, and translation vector respectively. Note that K, R,

and t are always known since these are the parameters of the

8 virtual cameras placed on the corners of a cube. The final

shape is the union of the completed, back-projected point

clouds from all 8 virtual views.

4. Experiments

In this section, we first describe the creation of a multi-

category dataset to train our model, and then we illustrate

the effectiveness of our method and the improvement of

MCVN over a single view completion net (VCN) used as

a baseline, where each view is completed individually with-

out shape descriptor. Finally, we analyze the performance

of our method, and make comparisons with existing meth-

ods. By default, we conduct the training of MVCN under

the MVCN-Airplane600 (trained with the first 600 shapes

of airplane in ShapeNet [2]), and test it under the same 150

models involved in [32]).

4.1. Data Generation and Evaluation Metrics

We use synthetic CAD models from ShapeNet to create

a dataset to train our model. Specifically, we take mod-

els from 8 categories: airplane, cabinet, car, chair, lamp,

sofa, table, and vessel. Our inputs are partial point clouds.

For each model, we extract one partial point cloud by back-

projecting a 2.5D depth map (from a random viewpoint)

into 3D, and render this partial point cloud into V = 8
depth maps of resolution 256×256 as training samples. The

reason why we use back-projected depth maps as partial

point clouds instead of subsets of the complete point cloud

is that our training samples are closer to real-world sensor

data in this way. In addition, similar to other works, we

choose to use a synthetic dataset to generate training data

because it contains detailed 3D shapes, which are not avail-

able in real-world datasets. In the same way, we also render

V = 8 depth maps from the ground truth point clouds as

the ground truth depth maps. More details of rendering and

back-projecting depth maps are in the supplementary.

Similar to [32], here we also use the symmetric version

of Chamfer Distance (CD) [4] to calculate the average clos-

est point distance between the ground truth shape and the

completed shape.

4.2. Analysis of the Objective Function

We conduct ablation studies to justify the effectiveness

of our objective function for the completion problem. Ta-

ble 1(a) shows the quantitative effects of these variations,

and Fig. 3 shows the qualitative effects. The cGAN alone

(bottom left, setting λ = 0 in Eq. (3)) gives very noisy re-

sults. L2+cGAN (bottom middle) leads to reasonable but

blurry results. L1 alone (top right) also produces reason-

able results, but we can find some visual defects, like some

unfilled holes as marked, which makes the final CD distance

higher than that of L1+cGAN. These visual defects can be



reduced when including both L1 and cGAN in the loss func-

tion (bottom right). As shown by the example in Fig. 5, the

combination of L1 and cGAN can complete the depth im-

ages with high accuracy. We further explore the importance

of the two components of the objective function for point

cloud completion by using different weights (λ in Eq. (3))

of the L1 loss. In Table 1(b), the best completion result is

achieved when λ = 1. We set λ = 1 in our experiments.

Figure 3: Completion results for different losses.

Loss Avg CD

cGAN 0.010729

L1 0.005672

L2 + cGAN 0.006467

L1 + cGAN 0.005512

(a)

λ in Eq. (3) Avg CD

λ = 50 0.005748

λ = 10 0.005665

λ = 1 0.005512

λ = 0.5 0.005541

(b)

Table 1: Analysis of the objective function: average CD for

different losses (a), and different λ (b).

4.3. Analysis of the View-pooling Layer

Pooling methods. We also study different view-pooling

methods to construct the shape descriptor, including

element-wise max-pooling and mean-pooling. According

to our experiments, mean-pooling is not as effective as max-

pooling to extract the shape descriptor for image comple-

tion, which is similar to the recognition problem [27]. The

average CD is 0.005926 for mean-pooling, but that of max-

pooling is 0.005512, so max-pooling is used.

Position Avg L1 distance Avg CD

D2 3.376642 0.005512

D1 3.433185 0.005604

D0 3.500945 0.005919

Code 3.477186 0.005836

Table 2: Completion results for different positions of view-

pooling layer

Position of the view-pooling layer. Here we insert the

view-pooling layer into different positions to extract the

shape descriptor and further evaluate its effectiveness, in-

cluding D2, D1, and D0, which are marked in Fig. 2. In-

tuitively, the shape descriptor would have the biggest im-

pact on the original network if we place the view-pooling

layer before D2, and the experimental results illustrate this

in Table 2, where both average L1 distance and CD are the

lowest. We also try to do view pooling after D0 and con-

catenate the shape descriptor with the latent code (marked

in purple in Fig. 2) and then pass them through a fully con-

nected layer, but experiments show that the shape descriptor

will be ignored since both the average L1 distance and CD

do not decrease compared with single view completion net

(average L1 distance is 3.473643 and CD is 0.005839 in

Table 5).

Model Name Avg L1 Distance

MVCN-V3 3.794273

MVCN-V8-3 3.616740

MVCN-V5 3.564278

MVCN-V8-5 3.397558

Table 3: Average L1 distance for different numbers of views

in view-pooling.

Figure 4: Completion results for different numbers of views

in view-pooling.

Number of views in view-pooling. We also analyze the

effect of the number of views used in view-pooling. In Ta-

ble 3, MVCN-V3 was trained with 3 depth images (No.1,

3, 5) of the 8 depth images of each 3D model, and MVCN-

V5 was trained with 5 depth images (No. 1, 3, 5, 6, 8).

MVCN-V8-3 and MVCN-V8-5 were trained with all the

8 depth images, but were tested with 3 views and 5 views

respectively. In order to make fair comparisons, we took

the 1st, 3rd, and 5th view images to test MVCN-V8-3 and

MVCN-V3, and 1st, 3rd, 5th, 6th, 8th to test MVCN-V8-5

and MVCN-V5. The results show that the completion of

one single view will be better when we increase the num-

ber of views, which means other views are helpful for the

completion of one single view, and the more the views, the

higher the completion accuracy. Fig. 4 shows an example

of the completion. As we increase the number of views in

view-pooling, the completion results are improved.



Figure 5: An example of the completion of sofa. The 1st row: incomplete point cloud and 8 depth maps of it; The 2nd row:

generated point cloud and related 8 depth maps; The 3rd row: ground truth point cloud and its 8 depth maps.

Figure 6: Visual comparison between VCN and MVCN. Starting from the partial point cloud in the first row, VCN and

MVCN perform completions of depth maps in the second and third row, respectively, where the completed point clouds are

also shown. We use colormaps (from blue to green to red) to highlight the pixels with bigger errors than 10 in terms of L1

distance. Ground truth data is in the last row. MVCN achieves lower L1 distance on all the 8 depth maps.

4.4. Improvements over Single View Completion

Pervasive improvements on L1 distance and CD. From

Table 5, we find significant and pervasive improvements

over single view completion net (VCN) on both average

L1 distance and CD on different categories. Nets in Ta-

ble 5 were trained with 600 3D models for airplane, 1600

for lamp, and 1000 for other categories. We use 150 mod-

els of each category to evaluate our network, the same test

dataset in [32]. We further conduct visual comparison with

VCN in Fig. 6, where we can see MVCN can achieve higher

completion accuracy with the help of the shape descriptor.

Better generalization capability. Table 4 shows that we

can improve the performance of VCN and MVCN while in-

creasing the number of training samples. We find that the

performance differences between MVCN-Lamp1000 and

VCN-Lamp1000 are not obvious. The reason is that there

are relatively large individual differences among lamp mod-

els in ShapeNet, and the completion results are bad in sev-

eral unusual lamp models in the test set. For these mod-

els, the comparisons between VCN and MVCN are less

Model Avg L1 Distance Avg CD

MVCN-Airplane600 3.376642 0.005512

MVCN-Airplane1200 3.156200 0.005273

MVCN-Lamp1000 6.660511 0.012012

MVCN-Lamp1600 6.245297 0.010576

VCN-Lamp1000 6.763339 0.012091

VCN-Lamp1600 6.430318 0.012007

Table 4: Improvements while increasing training samples.

meaningful, so the improvement is not obvious. But this

can be solved when we add another 600 training samples in

training. MVCN-Lamp1600 has a bigger improvement than

VCN-Lamp1600 on average L1 distance and CD, which in-

dicates a better generalization capability of MVCN.

4.5. Comparisons with the State-of-the-art

Baselines. Some previous completion methods need prior

knowledge of the shape [28], or assume more complete in-

puts [12], so they are not directly comparable to our method.



Model Average L1 Distance

Avg Airplane Cabinet Car Chair Lamp Sofa Table Vessel

VCN 5.431036 3.473643 4.304635 3.858853 7.644824 6.430318 5.716992 7.572865 4.44616

MVCN 5.102478 3.376642 3.991407 3.609639 7.143200 6.245297 5.284686 7.155616 4.013339

Model Mean Chamfer Distance per point

Avg Airplane Cabinet Car Chair Lamp Sofa Table Vessel

VCN 0.008800 0.005839 0.007297 0.006589 0.010398 0.012007 0.009565 0.009371 0.009334

MVCN 0.008328 0.005512 0.007154 0.006322 0.010077 0.010576 0.009174 0.009020 0.008790

Table 5: Comparison of average L1 Distance and mean Chamfer Distance between VCN and MCVN.

Here we compare MVCN with several strong baselines.

PCN-CD [32] trained with point completion net with CD

as loss function, is the state of the art while this work

was developed. PCN-EMD uses Earth Mover’s Distance

(EMD) [4] as loss function, but it is intractable for dense

completion due to the calculation complexity of EMD. The

encoders of FC [1], Folding [31] are the same with PCN-

CD, but decoders are different, a 3-layer fully-connected

network for FC, and folding-based layer for Folding. PN2

uses the same decoder, but the encoder is PointNet++ [23].

3D-EPN [3] is a representative of the class of volumetric

completion methods. For fair comparison, the distance field

outputs of 3D-EPN are converted into point clouds as men-

tioned in [32]. TopNet [29] is a recent point-based method,

but it can only generate sparse point clouds because their

decoder mostly consists of multilayer perceptron networks,

which limits the number of points they can process.

Figure 7: Comparison between MVCN and PCN-CD.

Comparisons. As done in [32], we use the symmetric ver-

sion of CD to calculate the average closest point distance,

where ground truth point clouds and generated point clouds

are not required to be the same size, which is different from

EMD [4]. For point-based methods like PCN [32], the in-

put is sampled and the output size is fixed, which makes the

calculation of EMD relatively easy. Different from these

methods, the number of output points of our approach is not

fixed, which would require resampling our output to com-

pute the EMD. CD is more suitable for a fair comparison

among different techniques. Table 6 shows the quantita-

tive results, where the completion results of other methods

are from [32]. Our method achieves the lowest CD across

almost all object categories. A more detailed comparison

with PCN-CD is in Fig. 7, where the height of the blue

bar indicates the amounts of improvement of our method

over PCN-CD on each object. Our model outperforms PCN

on most objects. Fig. 9 shows the qualitative results. Our

completions are denser, and we recover more details in the

results. Another obvious advantage is that our method can

complete shapes with complex geometry, like the 2nd to 4th

objects, but other methods fail to recover these shapes.

4.6. Completion Results on KITTI

Our goal is to obtain high quality and high resolution

shape completion from data similar to individual range

scans focused on individual objects. Hence we obtain in-

complete data using synthetic depth images, which is sim-

ilar to data from RGB-D cameras. However, for data like

KITTI, which is extremely sparse and does not contain

ground truth, the usual objective is to obtain rough not high

resolution completion. Our method performs reasonably

well on KITTI data, as shown in Fig. 8. More completion

results on noisy, sparse, and occluded data can be found in

the supplementary material.

Figure 8: Completion results on KITTI.

5. Conclusion

We have presented a method for shape completion by

rendering multi-view depth maps of incomplete shapes,

and then performing image completion of these rendered

views. Our multi-view completion net shows significant

improvements over a baseline single view completion net

across multiple object categories. Experiments show that

our view based representation and novel network structure

can achieve better results with less training samples, per-

form better on objects with complex geometry, and generate

higher resolution results than previous methods.



Model Mean Chamfer Distance per point

Avg Airplane Cabinet Car Chair Lamp Sofa Table Vessel

3D-EPN 2.0147 1.3161 2.1803 2.0306 1.8813 2.5746 2.1089 2.1716 1.8543

FC 0.9799 0.5698 1.1023 0.8775 1.0969 1.1131 1.1756 0.9320 0.9720

Folding 1.0074 0.5965 1.0831 0.9272 1.1245 1.2172 1.1630 0.9453 1.0027

PN2 1.3999 1.0300 1.4735 1.2187 1.5775 1.7615 1.6183 1.1676 1.3521

PCN-CD 0.9636 0.5502 1.0625 0.8696 1.0998 1.1339 1.1676 0.8590 0.9665

PCN-EMD 1.0021 0.5849 1.0685 0.9080 1.1580 1.1961 1.2206 0.9014 0.9789

MVCN 0.8298 0.5273 0.7154 0.6322 1.0077 1.0576 0.9174 0.9020 0.8790

Table 6: Comparison with the state-of-the-art in terms of mean CD (multiplied by 100) per point over multiple categories.

Figure 9: Qualitative completion on ShapeNet, where MVCN can complete complex shapes with high resolution.
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