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Abstract

A fundamental question in learning to classify 3D shapes
is how to treat the data in a way that would allow us to
construct efficient and accurate geometric processing and
analysis procedures. Here, we restrict ourselves to networks
that operate on point clouds. There were several attempts
to treat point clouds as non-structured data sets by which a
neural network is trained to extract discriminative proper-
ties.

The idea of using 3D coordinates as class identifiers mo-
tivated us to extend this line of thought to that of shape clas-
sification by comparing attributes that could easily account
for the shape moments. Here, we propose to add polyno-
mial functions of the coordinates allowing the network to
account for higher order moments of a given shape. Exper-
iments on two benchmarks show that the suggested network
is able to provide state of the art results and at the same
token learn more efficiently in terms of memory and compu-
tational complexity.

1. Introduction

In recent years the popularity and demand for 3D sen-
sors has vastly increased. Applications using 3D sensors
include robot navigation, stereo vision, and advanced driver
assistance systems to name just a few. Recent studies at-
tempt to adjust deep neural networks (DNN) to operate on
3D data representations for diverse geometric tasks. Moti-
vated mostly by memory efficiency, our choice of 3D data
representation is coordinates of point clouds. One school
of thought indeed promoted feeding these geometric fea-
tures as input to deep neural networks that operate on point
clouds for classification of rigid objects.

From a geometry processing point of view, it is well
known that moments characterize a surface and can be use-
ful for the classification task. To highlight the importance
of moments as class identifiers, we first consider the case

of a continuous surface. In this case, geometric moments
uniquely characterize an object. Furthermore, a finite set
of moments is often sufficient as a compact signature that
defines the surface [1]. This idea was classically used for
estimation of surface similarity. For example, if all mo-
ments of two surfaces are the same, the surfaces are con-
sidered to be identical. Moreover, sampled surfaces, such
as point clouds, can be identified by their estimated geo-
metric moments, where it can be shown that the error in-
troduced by the sampling is proportional to the sampling
radius and uniformity. Our goal is to allow a neural net-
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Figure 1: Illustration of the proposed object classification
architecture. The input of the network includes the point
cloud coordinates as well as second order polynomial func-
tions of these coordinates. It enables the network to effi-
ciently learn the shape moments.

work to simply lock onto variations of geometric moments.
One of the main challenges of this approach is that train-
ing a neural network to approximate polynomial functions
requires the network depth and complexity to be logarithmi-
cally inversely proportional to the approximation error [2].
In practice, in order to approximate polynomial functions
of the coordinates for the calculation of geometric moments
the network requires a large number of weights and lay-
ers. Qi et al. [3] proposed a network architecture which
processes point clouds for object classification. The frame-
work they suggested includes lifting the coordinates of each
point into a high dimensional learned space, while ignoring



the geometric structure. An additional pre-processing trans-
formation network was supposed to canonize a given point
cloud, yet it was somewhat surprising to discover that the
transformer results are not invariant to the given orienta-
tions of the point cloud. Learning to lift into polynomial
spaces would have been a challenge using the architecture
suggested in [3]. At the other end, networks that attempt to
process other representations of low dimensional geometric
structures such as meshes, voxels (volumetric grids), and
multi-view projections are often less efficient when consid-
ering both computational and memory complexities.

In this paper, we propose a new network that favors ge-
ometric moments for point cloud object classification. The
most prominent element of the network is supplementing
the given point cloud coordinates together with polynomial
functions of the coordinates, see Fig.1. This simple oper-
ation allows the network to account for higher order mo-
ments of a given shape. Thereby, the suggested network
requires relatively low computational resources in terms of
run-time, and memory in sense of the number of network’s
parameters. Experiments on two benchmarks show that the
suggested scheme is able to learn more efficiently compared
to previous methods in terms of memory and actual compu-
tational complexity while providing more accurate results.
Lastly, it is easy to implement the proposed concept by
just calculating the polynomial functions and concatenating
them as an additional vector to the current input of point
cloud coordinates.

2. Related Efforts

This section reviews some early results relevant to our
discussion. First, we relate to methods used for learning
from processed point clouds such as voxels and trees based
models. Next, we present a line of works that consume
directly point clouds for object classification. The third
part describes early studies of higher order networks,
in which each layer applies polynomial functions to its
inputs, defined by the previous layer’s output. We provide
evidence that similar simple lifting ideas were applied
quite successfully to geometric object recognition and
classification in the late 80’s.

2.1. Learning features from processed point clouds

The most straightforward way to apply convolutional
neural networks (CNNs) to 3D data is by transforming 3D
models to grids of voxels, see for example [4, 5]. A grid
of occupancy voxels is produced and used as input to a 3D
CNN. This approach has produced successful results, but
has some disadvantages such as loss of spatial resolution,
and the use of excessively large memory. For some geomet-
ric tasks that require analysis of fine details, in some cases,
implicit (voxel) representation would probably fail to cap-

ture fine features. Several methods replace the grid occu-
pancy representation with radial basis functions [6], fisher
vectors [7] and mean points [8] for convolving with 3D ker-
nels. However, the 3D grid representation has an inherent
drawback in terms of memory consumption.

KdNet [9] and OcNet [10] approaches exploit tree mod-
els to build a balanced and unbalanced (respectively) hier-
archical structure partitions as a prepossessing stage. Nev-
ertheless, rotation, noise or variation in number of points
force rebuilding those trees from scratch.

In contrast to the methods mentioned above which
encode point clouds in trees or in voxels, our method
consumes the points directly.

2.2. Learning features directly from point clouds

A deep neural network applied to point clouds known as
pointNet was introduced in [3]. That architecture processes
the points’ coordinates for classification and segmentation.
The classification architecture is based on fully connected
layers and symmetry functions, like max pooling, to es-
tablish invariance to potential permutations of the points.
In addition, all Multi-Layer Perceptrons (MLPs) operations
are performed per point, thus, interrelations between points
are accomplished only by weight sharing. Furthermore, the
pointNet architecture also contains a transformer network
for coping with input transformations. It is supposed to
learn a set of transformations that transform the geometric
input structure into some canonical configuration, however
it is computationally expensive. The architecture pipeline
commences with MLPs to generate a per point feature vec-
tor, then, applies max pooling to generate global features
that serve as a signature of the point cloud. Finally, fully
connected layers produce output scores for each class.

PointNet’s main drawback is its limited ability to capture
local structures which has lead to an extensive line of work.
PointNet++ [11] extracts features in local multiscale re-
gions and aggregates local features in hierarchical manner.
RSNet [12] employs recurrent neural networks (RNN) on
point clouds slices for features extraction. KC-Net [13]
uses point cloud local structures by kernel correlation and
graph pooling. DGCNN [14] builds a k-nearest neighbor
(kNN) graph in both point and feature spaces to leverage
neighborhood structures. SO-Net [15] reorganizes the point
cloud into a 2D map and learns node-wise features for the
map. Those methods indeed capture the local structures
by explicit or handcrafted methods of encoding the local
information and have achieved state of the art results in 3D
shape classification and segmentation tasks. However, the
use of geometry context in the form of geometric moments
of 3D shapes is still absent from the literature.



2.3. Learning high order features

Multi-layer perceptron (MLP) is a neural network with
one or more hidden layers of perceptron units. The output ¢
of such a unit with an activation function o, previous layer’s
output 17 and vector of learned weights w is a first order
perceptron, defined as ¢ = o(}_; w;n;). Where, o is a
sigmoid function, o(a) = 1/(1 + e~%).

In the late 80’s, the early years of artificial intelligence,
Giles et al. [16, 17] proposed extended MLP networks
called higher-order neural networks. Their idea was to
extend all the perceptron units in the network to include
also the sum of products between elements of the previous
layer’s output 1. The extended perceptron unit named high-
order unit is defined as

p=0 (Zi Wil + D 5 Wi iy Dy g Wigk Mg M + - ) (h

These networks included some or all of the summation
terms. Theoretically, an infinite term of single high order
layer can perform any computation of a first order multi-
layer network [18]. Moreover, the convergence rate using
a single high layer network is higher, usually by orders of
magnitude, compared to the convergence rate of a multi-
layer first order network [17]. Therefore, higher-order net-
works are considered to be powerful, yet, at the cost of high
memory complexity. The number of weights grow expo-
nentially with the number of inputs, which is a prohibitive
factor in many applications.

A special case of high order networks is the square multi-
layer perceptron proposed by Flake et al. [19]. They extend
the perceptron unit with only the squared components of 7,
given by

¢ = oD wmi+ > wm|. 2
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The authors have shown that with a single hidden unit the
network has the ability to generate localized features in ad-
dition to spanning large volumes of the input space, while
avoiding large memory requirements.

3. Methods

The main contribution of this paper is leveraging the
network’s ability to operate on point clouds by adding
polynomial functions to their coordinates. Such a design
can allow the network to account for higher order moments
and therefore achieve higher classification accuracy with
lower time and memory consumption. Next, we show that
it is indeed essential to add polynomial functions to the
input, as learning to multiply inputs items is a challenge for
neural networks.

3.1. Problem definition

The goal of our network is to classify 3D objects given
as point clouds embedded in R3. A given point cloud X is
defined as a cloud of n points, where each point is described
by its coordinates in R3. Thatis, X = {x1,...,X,}, where
each point x, is given by its coordinates (z;,y;, ;). The
output of the network, should allow us to select the class
Y € L, where L = {1,..., L} is a set of L labels. For a
neural network defined by the function g : R™*3 s RL,
the desired output is a score vector in R”, such that
Y = arg maxjer, g(X;1).

3.2. Geometric Moments

The usage of invariant moments as shape descriptors is
based on the theory of invariant algebra [20] which ad-
dresses mathematical objects that remain unchanged un-
der linear transformations. Sadjadi and Hall [21], were
the first to utilize moments as 3D shape descriptors. Since
the 80s, extensive research has been done exploring mo-
ments as descriptors of shapes in two and three dimensions
[22, 23, 24, 25, 26, 27].

Geometric moments of increasing order represent dis-
tinct spatial characteristics of the point cloud distribution,
implying a strong support for construction of global shape
descriptors. By definition, first order moments represent the
extrinsic centroid; second order moments measure the co-
variance and can also be thought of as moments of inertia.
Second order moments of a set of points X C R? can be
compactly expressed in a 3 x 3 symmetric matrix X, Eq.
(3). where x; € X defines a point given as a vector of its
coordinates x; = (z;,;,25)%.
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Figure 2: The first and second geometric moments dis-
played on a point cloud. Using the first order moments (red
disc), the translation ambiguity can be removed. The prin-
cipal directions dy, ds, d3 (blue arrows) are defined by the
second order geometric moments. Adding these moments
to the input helps the network to resolve the rotation ambi-

guity.

Roughly speaking, we propose to relate between point
clouds by learning to implicitly correlate their moments.
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Figure 3: Approximation of the function x2 by a fully-connected feed forward neural network f,,(w) where n denotes the
number of hidden layers. Left: Approximation by different numbers of hidden layers. Right: The error of these functions.

Explicitly, the functions (22,42, 2%, xy,x2,yz) of each
point are given to a neural network as input features in
order to obtain better accuracy.

Geometric transformations. A desired geometric property
is invariance to rigid transformations. Any rigid transfor-
mation in R3 can be decomposed into rotation and transla-
tion transformations, each defined by three parameters [1].
A rigid Euclidean transformation 71" operating on a vector
v € R? has the general form

T(v)=R-v+t, “)

where R is the rotation matrix and ¢ is the translation vector.

Once translation and rotation are resolved, a canonical
form can be realized. The pre-processing procedure trans-
lates the origin to the center of mass given by the first order
moments, and scales it into a unit sphere compensating for
variations in scale. The rotation matrix, determined by three
degrees of freedom, can be estimated by finding the princi-
pal directions of a given object, for example see Figure 2.

The principal directions are defined by the eigenvectors
of the second order moments matrix ¥, see Eq. 3. They
can be used to rotate and translate a given set of points into
a canonical pose, where the axes align with directions of
maximal variations of the given point cloud [28]. The first
principal direction d;, the eigenvector corresponding to the
largest eigenvalue, is the axis along which the largest vari-
ance in the data is obtained. For a set of points X C R3, the
kth direction can be found by

dp = argmaxd’ (X, X)) d, 3)
lldll=1
where
k—1
X=X — Z ddr X, (6)
s=1

3.3. Approximation of polynomial functions

In the suggested architecture we added low order poly-
nomial functions as part of the input. The question arises
whether a network can learn polynomial functions, obviat-
ing the need to add them manually. Here, we first provide
experimental justification to the reason that one should take
into account the ability of a network to learn such functions
as a function of its complexity. Mathematically, we exam-
ined the ability of a network f(w,z) to approximate f (),
where w denotes the network parameters, such that

argmin || f (w, ) — f(2)||L.. <e, (7)
f(w,z)

for a given function f : R — R. Theoretically, according
to [29, 2], there exists a ReLU network that can approxi-
mate polynomial functions up to the above accuracy on the
interval [0, 1], with network depth, number of weights, and
computation units of O(e~!) each.

In order to verify these theoretical claims, we performed
experiments to check whether a network can learn the geo-
metric moments from the point cloud coordinates. Figure 3
shows an example for f(x) = 22 and its approximation by
a simple ReLU networks.

The pipeline can be described as follows. First we con-
sider uniform sampling of the interval of [0, 1]; the number
of samples was chosen experimentally to be 1,000 samples.
Next, we arbitrarily chose the number of nodes in each layer
to be 4, each with ReLU activation, using fully connected
layers (in contrast to the suggested network where we per-
form MLP separately per point). Lastly, we set the weight
initialization to be taken from a normal distribution.

Ideally, networks with a larger number of layers could
better approximate a given function. However, it is still a
challenge to train such networks. Our experiments show
that although a two layer network has achieved the theo-
retical bound, the network had difficulty to achieve more
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Figure 4: Momen®t Architecture. Momen“t takes as input N points, applies a spatial transformation, and then aggregates
the polynomial input multiplications with the k-nearest-neighbors graph as suggested in [14]. Next, point-wise MLP layers
are followed by max-pooling. The output is a probability distribution over the C classes. 2™¢ Order Layer aggregates each

point separately with its second order polynomial expansions, then concatenates it with the point’s neighbors.

accurate results than L., = 0.006 even when we increased
the number of layers above 6. Furthermore, we tried to add
skip connections from the input to each node in the network;
however, we did not observe a significant improvement.

Comparing two point clouds by comparing their mo-
ments is a well known method in the geometry processing
literature. Yet, we have just shown that the approximation
of polynomial functions is not trivial for a network.
Therefore, adding polynomial functions of the coordinates
as additional inputs could allow the network to learn the
elements of X in Eq. 3 and, assuming consistent sampling,
should better capture the geometric structure of the data.

3.4. Momen‘t Architecture

The network architecture is as follows (figure 4): the net-
work takes N points as input, applies a spatial transforma-
tion resulting in a 3x3 transformation matrix. We multiply
each input point with the transformation matrix to align the
point cloud. Then, the transformed point cloud is fed to our
second-order layer, which is a simple polynomial function
of the point cloud coordinates concatenated with the point’s
neighbors followed by an MLP layer. The higher order fea-
tures are then processed by several point-wise MLP layers
which map the points to higher dimensional space, followed
by max-pooling. Finally, similarly to pointNet, we apply

two fully connected layers of sizes (512, 256) and output a
softmax over the classes.

The baseline architecture of the suggested Momen®t net-
work is based on the pointNet architecture. Our main contri-
bution is the addition of polynomial functions as part of the
input domain. The addition of point coordinate powers to
the input is a simple procedure that improves accuracy and
decreases the run time during training and inference. We
also calculated the k-Nearest-Neighbors (kNN) graph from
the point coordinates as suggested in [14] with k£ = 20. The
output of the kNN block is the distance between a point to
each of its 20 neighbors, which is (z — 2/, y — ¢/, 2z — /)
where (z,y,z) and (2',y’,2’) are the point and neighbor
coordinates respectively. Then, we use a tile operation on
our 2nd order polynomial expansions with the kNN output,
followed by a point-wise MLP layer.

4. Experimental Analysis
4.1. Toy Problem

We first present a toy example to illustrate that extra
polynomial expansions as an input can capture geometric
structures well. Figure 5 (a+b) shows the data and the net-
work predictions for 1000 noisy 2D points, each point be-
longs to one of two spirals. We achieved 98% success with
extra polynomial multiplications, i.e 22, y2, xy, as input to a
one layer network with only 8 hidden ReLLU nodes, contrary



(©

Figure 5: Output response surfaces of a network comprised
of 8 hidden nodes with polynomial expansions (a) and with-
out (b). The output responses of each hidden node of (a) is
presented in (c). The training set (data points) are colored in
red/blue, which indicate positive/negative class respectively
while orange/light blue areas are the corresponding network
predictions.

to the same network without the polynomial multiplications
(only 53% success). Figure 5¢ shows the decision bound-
aries that were formed from the 8 hidden nodes of network
5a. As expected, radial boundaries can be formed from the
additional polynomial extensions and are crucial to forming
the entire decision surface.

4.2. Classification Performance

Dataset and data processing. Evaluation and compar-
ison of the results to previous efforts is performed on the
ModelNet40 benchmark [5]. ModelNet40 is a synthetic
dataset composed of Computer-Aided Design (CAD) mod-
els, containing 12,311 CAD models given as triangular
meshes, split to 9, 843 samples for training and 2,468 for
testing. Pre-processing of each triangular mesh as proposed
in [3] yields 1024 points sampled from each triangular mesh
using the farthest point sampling (FPS) algorithm. Rota-
tion by a random angle, about the y axis, and additive noise
are used for data augmentation. The database contains sam-
ples of very similar categories, like the flower-pot, plant and
vase, for which separation is subjective rather than objective

Mean Class  Overall
Method Accuracy  Accuracy
PointNet [3] 86.2 89.2
Deep-Sets [30] - 87.1
PointNet++ [11] - 90.7
PointCNN [31] - 91.7
ECC [32] 83.2 87.4
DGCNN [14] 90.2 92.2
Kd-Networks [9] 88.5 91.8
SO-Net [15] 87.3 90.9
KC-Net [13] - 91.0
ShapeContexNet [33] 87.6 90.0
PCNN [6] - 92.3
3DmFV-Net [7] - 914
Momen®t 90.3 924

Table 1: Comparison of classification accuracy (%) on
ModelNet40.

and is a challenge even for a human observer.

Results. Table 1 shows the results of the ModelNet40
classification task for various methods that assume differ-
ent representations of the data. Comparing to DGCNN, our
method achieves slightly better results, doing so while us-
ing kNN only on the input points, and not on the input to all
layers as in DGCNN. When DGCNN is used similarly with
respect to the kNN usage, they report a significant drop in
performance (91.9%), this highlights the power of geomet-
ric moments as features for point clouds.

4.3. Ablation Experiments

Robustness to point density and different orienta-
tions. We evaluate the robustness of our model to vari-
ations in point cloud density and to different orientations.
For these tests, the model was trained in the same manner
as we reported in previous sections, but was evaluated with
the augmented data. Figure 6 shows results for the point
density test. The model is fairly robust to sampling density
variation when the ratio of dropped points is less than half.

Next, we simulate different rotations of the point clouds
along the y-axis. Figure 7 shows a comparison between our
method and DGCNN, our model is more robust for almost
all rotations when compared to DGCNN.

Variations of the Architecture. To verify the effective-
ness of adding the 2nd_grder layer, we test different varia-
tions in model architecture with respect to the ModelNet40
dataset. First, we examine different polynomial orders of
the point cloud coordinates, see table 2. It can be seen that
adding polynomial functions of order higher than 2 does not
yield improvements in performance.

We also tested a variation in which the order of poly-
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Order Overall Accuracy
ond 92.4
2nd 4 grd 92.3
3rd 91.9
Learnable 91.6

Table 2: Overall accuracy of modelNet40 for different order
of polynomial expansions.

nomial functions was learned by a special neural network
layer defined as exp(w - log(|z| + €)) where w is the
learnable kernel and z is the input [34]. Second, we
tested the effect of different components in our network,
see table 3. Similar to our previous tests, removing the
spatial transformer and reducing the number of layers in
our network still achieves better accuracy than the baseline
version of DGCNN (91.2%).

Memory and Computational Efficiency. Our network
is implemented in tensorflow [35], we use ADAM optimizer
[36] with initial learning rate 0.01. Table 4 presents com-
putational requirements with respect to the number of the

Spatial Overall
Transformation Layers kNN  Accuracy
X [64,64,64,128,1024] X 88.1
X [256,1024] 4 91.4
X [64,64,64,128,1024] v 92.1
v [64,64,64,128,1024] v 924

Table 3: Variation of the network architecture. The effect of
different components in our network on the accuracy with
respect to ModelNet40 dataset.

Inference
Method Memory (MB) Time (msec) Acc
PointNet [3] 40 5.6 89.2
PointNet++ [11] 12 104 90.7
DGCNN [14] 21 17.3 92.2
PCNN [6] 17 54.1 92.3
Momen°“t 20 9.6 92.4

Table 4: Comparison of time and space complexity. Mem-
ory is the size of the model in mega-byte (MB) and the infer-
ence run-time was measured in milli-seconds (msec). Acc
stands for the suggested network accuracy on ModelNet40.

network’s parameters (memory) and with respect to the in-
ference time required by the models.

The inference time is measured for one point cloud with
1024 points on nVidia Titan X GPU. In comparison with
other methods, our results show that adding polynomial ex-
pansions to the input leads to better classification perfor-
mance, as well as computational and memory efficiency.

4.4. Part Segmentation Performance

Dataset and data processing. Evaluation and compar-
ison of the results to previous efforts is performed on the
ShapeNet benchmark [5]. ShapeNet contains 16,881 3D
models with 50 annotated parts from 16 categories. The
dataset is considered challenging due to the imbalance of its
labels. The aim of the part segmentation task is to predict a
category label to each point in the point cloud. The splitting
of the dataset to train/test and sampling of the points were
done similarly to [3].

Training and test procedures. We extended our archi-
tecture to address the segmentation task, which requires lo-
cal and global features. The network segmentation archi-
tecture is as follows: the network takes N points as input,
applies a spatial transformation, then the transformed point
cloud is fed to our second-order layer as in the classifica-
tion network. The higher order point-wise features are pro-
cessed by point-wise MLP layers and their outputs are con-
catenated to the 1024 global features layer. Finally, we ap-
ply several point-wise MLP layers to produce a label to each



Mean | Air. Bag Cap Car Chair Ear. Guitar Knife Lamp Laptop Motor Mug Pistol Rocket Skate. Table
PointNet [3] 837 | 834 787 825 749 896 73 91.5 859 808 95.3 65.2 93 81.2 57.9 72.8  80.6
DGCNN [14] 851 | 84.2 837 844 771 909 785 915 873 829 96.0 67.8 933 826 59.7 755 820
Kd-Net [9] 823 | 80.1 746 743 703 886 735 902 872 8l1.0 94.9 574 867 78.1 51.8 699 803
SO-Net [15] 849 | 828 778 880 773 906 735 90.7 839 828 94.8 69.1 942 809 53.1 729  83.0
KC-Net [13] 83.7 | 828 815 864 776 903 768 91.0 872 845 95.5 69.2 944 816 60.1 752 813
PCNN [6] 85.1 | 824 80.1 855 795 908 732 913 86.0  85.0 95.7 732 948 833 51.0 75.0 818
3DmFV-Net [7] 843 | 82.0 843 860 769 899 739 908 857 826 95.2 66.0 940 826 51.5 735 818
Momen®t 849 | 844 827 884 785 907 781 90.1 873 825 96.1 656 949 83.1 58.5 73.6 817

Table 5: Comparison of segmentation results on the ShapeNet database. The evaluation metric is mean Intersection over
Union (IoU).

point. points to leverage the network’s abilities to cope with the
problem of rigid objects classification. By lifting the shape
coordinates into a small dimensional, moments-friendly
space, the suggested network, Momen®t, is able to learn
more efficiently in terms memory and computational com-
plexity and provide more accurate classifications compared
to related methods. Experimental results on two benchmark
datasets confirm the benefits of such a design. We demon-
X strated that lifting the input coordinates of points in R? into
R? by simple second degree polynomial expansion, allowed

':i%f:r' the network to lock onto the required moments and classify

*;2 the objects with better efficiency and accuracy compared

g‘g to previous methods that operate in the same domain. We
S showed experimentally that it is beneficial to add these ex-

\.»‘«,‘vii' . . . .
pansions for the classification and the segmentation tasks.

We believe that the ideas introduced in this paper could be
applied in other fields where geometry analysis is involved,
and that the simple cross product of the input point with
itself could improve networks abilities to efficiently and ac-
curately handle geometric structures.

Figure 8: Qualitative results of Momen®t on the part seg-
mentation task, performed on the ShapeNet database [5].

To reduce memory consumption, we decreased the k-
nearest neighbors to only 15, compared to & = 30 in
DGCNN. Decreasing the number of neighbors during the
kNN computation also helps to substantially reduce the run-
time of the network during both training and inference. This research was partially supported by Rafael Ad-

Results. The evaluation metric is mean Intersection over  yanced Defense Systems Ltd.

Union (IoU), and in order to calculate it we followed the
same scheme as pointNet. We compute the IoU of each cat-
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