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Abstract

Geometric 3D scene classification is a very challenging
task. Current methodologies extract the geometric informa-
tion using only a depth channel provided by an RGB-D sen-
sor. These kinds of methodologies introduce possible errors
due to missing local geometric context in the depth chan-
nel. This work proposes a novel Residual Attention Graph
Convolutional Network that exploits the intrinsic geometric
context inside a 3D space without using any kind of point
features, allowing the use of organized or unorganized 3D
data. Experiments are done in NYU Depth vl and SUN-
RGBD datasets to study the different configurations and to
demonstrate the effectiveness of the proposed method. Ex-
perimental results show that the proposed method outper-
forms current state-of-the-art in geometric 3D scene classi-
fication tasks.

1. Introduction

Scene classification is a fundamental problem in com-
puter vision. It has a wide range of practical applications
such as semantic recognition [47] and remote sensing [7]
among others. This paper focuses on indoor scene classi-
fication. Indoor scene classification is a challenging task
due to the fact that the same class of scene can have large
variations in light, shapes, occlusions and different layouts.
Some of these challenges have been proved very difficult to
solve without the 3D information that is lost in image cap-
turing.

During the last years, the use of sensors able to capture
3D data has dramatically increased. These sensors are able
to capture information directly into a 3D point cloud rep-
resentation (LiDAR) as well as capturing registered colour
and depth information (Kinect). One of the challenges that
are inherent in some of these sensors is the fact that the
captured 3D point clouds are unorganized. This increase in

usage has introduced the necessity to develop new methods
to understand this data.

Convolutional Neural Networks (CNNs) have achieved
extremely good performance in a multitude of tasks, such
as in image classification [31, 15] or segmentation [21, 44].
However, standard CNNs can not be used to process 3D
point clouds directly. Standard convolution operations only
work in a lattice structure in the euclidean space which is
not the case for 3D point clouds.

This paper proposes a new methodology that exploits the
geometric information of 3D point clouds using graph neu-
ral networks. These 3D point clouds can be obtained from
an RGB-D image or directly from LiDAR sensors. The
main contributions of this paper are: a) The use of an At-
tention Graph Neural Network to capture the geometric in-
formation of a scene. b) The adaptation of Attention Graph
Neural Networks into a deep residual architecture similar
to [15, 3]. ¢) The proposed network has been applied into
the 3D geometric scene classification task on two datasets
(NYU Depth vl and SUN-RGBD) outperforming current
state-of-the-art on this task.

2. Related work
2.1. Geometric Learning

Currently, there are different techniques to process 3D
point clouds using geometric information. Multi-view
based techniques [34, 2, 14, 9] represent a 3D space as a col-
lection of 2D views where standard CNNs are used. How-
ever, the geometric information used in multi-view based
techniques is quite limited. To overcome this limitation, the
use of voxel grids has been proposed [22, 42, 25, &, 37].
Working with voxel grids can be inefficient due to the cubic
complexity associated with this kind of structure. Related
to voxel grids, researchers have suggested using hierarchi-
cal spatial data structures, for example, kd-trees and octrees,
which are more memory and computation efficient [36].
Another approach to tackle these kinds of data is by ap-



plying template on a neighborhood representation witch is
obtained by mapping the neighbors on a fixed structure, as
it is done in MoNet [23].

This work focuses on the representation of 3D point
clouds as a graph. Currently, there are two main ways to
use graph data on neural networks. Graph Neural Net-
works [28] [26], which recurrently apply neural networks
to every node of the graph, and Graph Convolutional Net-
works [5], which use a generalization of the convolution to
a graph. This generalization can be done on the spectral
domain and the spatial domain.

On the one hand, spectral domain makes use of the graph
spectral analysis theory, where the convolution corresponds
to the multiplication of the signal on vertices transformed
into the spectral domain, using the graph Fourier transform.
The spatial locality of filters is given by the smoothness of
the spectral filters, in the case of [5], modeled as B-splines.
This spectral transformation implies multiplications with
the eigenvector matrix which have a high computational
cost. Defferrard et al. [10] propose a parameterization of
filters as Chebyshev polynomials that is computationally
more efficient. In all cases, methods that use spectral do-
main have the drawback that the graph structure (such as
the number of nodes) must be fixed.

On the other hand, spatial domain methods [11, 19, 35]
define convolutions directly on the graph, operating on
groups of spatially close neighbours. Furthermore, it is pro-
posed to add the signals provided by each node in the neigh-
bourhood and do multiplication using a weight matrix that
shares the weights between all edges. Edge-Conditioned
Convolutions [30] proposed by M. Simonovsky and N. Ko-
modakis, performs convolutions over local graph neigh-
bourhoods exploiting the attributes of the edges. An intu-
itive explanation of the proposal is that the lattice space that
is needed to do a convolution is artificially created using the
edges. These edges have a direct influence on the weights of
the filter used to calculate the convolution. Verma et al. [40]
propose FeaStNet.This operator tries to establish correspon-
dences between filter weights and graph neighbourhood.
These correspondences are dynamically computed from the
node features using a linear layer. A recent work by Wang
et al. [41] proposes a Dynamic Edge Convolution opera-
tion, that computes the new feature of each node using an
aggregation operation over the resulting values obtained by
a multi-layer perceptron (MLP) applied on each neighbour-
hood.

The proposed work in this paper is based on Edge-
Conditioned Convolutions in order to create the Graph Con-
volutional Network to process 3D point clouds. It is also
inspired by the investigation done by X.Bresson et al. [3]
that demonstrates the benefits of adding residual learning
on Graphs Convolutional Networks. The proposed exten-
sion adapts Edge-Conditioned Convolutions to work in a

deep residual learning architecture.
2.2. Attention Methodologies

Visual attention enables humans to analyze complex
scenes and devote their limited perceptual and cognitive re-
sources to the most important of sensory data. Attention
models aim to automatically identify the most attractive re-
gions in images like the human visual systems do. Xu et
al. [43] introduced an attention based model that automati-
cally learns to describe the content of images. Their model
is able to automatically learn to fix its gaze on salient ob-
jects. Ren et al. [277] propose an end-to-end Recurrent Neu-
ral Network architecture with an attention mechanism that
produces detailed instance segmentation. Moreover, atten-
tion mechanisms are common on the machine translation
field [1]. Velickovic et al. [39] introduce an attention mech-
anism on graphs using the node information of a graph.
The proposed attention network in this work is based on
the intrinsic behaviour of the Edge Conditioned Convolu-
tions [30] and it is presented in subsection 3.2.

2.3. Scene Classification

Traditional methodologies for scene classification make
use of handcrafted features such as SIFT [4] and HOG [38].
But with the emergence of deep learning techniques, bet-
ter features can be obtained. Places-CNN [45] is the most
successfully deep feature learning model in scene classifica-
tion. Their work consist of training standard architectures,
such as VGG [31] or ResNet [15] using a very large pro-
vided dataset. Furthermore, George et al. [13] propose to
model the occurrence patterns of objects in scenes, captur-
ing the informativeness and discriminability of each object
for each scene. Cai et al. [6] propose a new CNNs multi-
modal feature learning framework for RGB-D scene classi-
fication. This method can capture the local structure from
the RGB-D scene images and automatically learn a fusion
strategy. However, this method uses a 2D CNN with the
depth channel as input. Possible errors can appear from
missing part of local context information since the depth
channel does not contain intrinsic parameters of the camera.
In contrast, the method proposed in this paper obtains the
geometric information taking advantage of the local context
intrinsic in the 3D space.

3. Residual Attention Graph Convolutional
Networks

In this section, an extension of Graph Convolutional
Networks is presented to tackle the problem of 3D geo-
metric scene classification. The extension is composed of
four main parts: Graph construction 3.1, Attention Graph
Convolution 3.2, Residual Graph Convolutional block 3.3
and the adaptation of the pooling mechanism to work with
graphs 3.4.



3.1. Graph Construction

Graph Construction is an important step on Graph Con-
volutional Networks as connections between nodes (edges)
act as the receptive field on conventional CNNs. Edges indi-
cate the influence between nodes in the graph. Graph Con-
struction can be seen as three different stages: a) Project
RGB-D image to 3D space. If the input is a 3D point cloud,
this step can be skipped. b) Create the connectivity between
nodes. Two methods will be explored: Radius proximity
connection and K nearest neighbours (kNN). Both have the
particularity that the edges are directed. c) Add attributes to
each edge of the graph.

Let [z, y, 2] be the 3D coordinates of a point in the cam-
era coordinate system and [u, v] the coordinates of a point
in the image. The focal length of the camera is represented
by [fz, fy] and the coordinates of the principal point are
[¢z, ¢y]. The Pinhole camera model is used to project RGB-
D image to 3D space as is described in Eq. (1).

z = depthchannel

_(u—cg)-2
 fa (1)
y = (U_fzy)'z

Each projected point in the 3D space will be a node in the
graph. In order to generate the edges, two different strate-
gies will be explored. The first one is K nearest neighbours
(kNN). This approach consists of selecting the K closest
neighbours in the geometric space of each node of the graph
and connect them. K will be constant for all the nodes of
the graph. This means that each node of the graph will have
the same number of neighbours. The second one is radius
proximity connection which consists of selecting all nodes
in the graph that are inside of a defined radius r, as neigh-
bours for each node. The radius will be constant for each
node, therefore, each node may have a different number of
neighbours. Both strategies need to do a self-connection to
guarantee that their own node has influence from itself in
successive layers of the network.

Finally, attributes for edges and features for nodes need
to be added. In this work the nodes of the input graph
will not have any features and edges will have geometric
attributes. Specifically, offsets between the two nodes con-
nected. However, adapting node features and edge attributes
to other domains is straightforward, giving the proposed
network a great potential to adapt to different sensors (such
as LiDAR).

3.2. Attention Graph Convolution

Attention Graph Convolution (AGC) is an operation
based on Edge-Conditioned Convolution proposed by Mar-
tin Simonovsky et al. [30]. This operation performs con-

volutions over local graph neighbourhoods exploiting the
attributes of the edges. An intuitive explanation of the pro-
posal is that the lattice space that is needed to do a convolu-
tion is artificially created using edges. These edges have a
direct influence on the weights of the filter used to calculate
the convolution. Depending on the edge attribute a weight
will be generated. This generation of weights is done by
a Dynamic Filter Network [17] which can be implemented
with any differentiable architecture. In this work, it will be
implemented using FC(x) layers, where FC is a fully con-
nected layer and = the number of output features of the lay-
ers. This filter will be applied to each edge independently.
The output of it will be (d* - d~1), where d’ is the num-
ber of node features of layer [ and d'~! the number of node
features of the previous layer. This is needed because this
filter will generate the weights of the bank filters used on
the convolution. Figure 1 depicts the AGC layer operating
over a node N; of an input graph. In section 4.3, different
configurations of these Dynamic Filters will be studied.

This convolution operation is formalized in Eq. (2)
where X is the vector of node features, N the set of neigh-
bourhoods, © is a matrix with the weights generated by the
Dynamic Filter Network and b a learnable bias of the layer.
Index ¢ indicates the current node to evaluate, [ corresponds
to a layer index in a feed-forward neural network and j the
neighbours of the node i.
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As can be observed, the connectivity edge policy has a
direct impact on the convolution operation. These connec-
tions can be seen as the receptive field of the graph convolu-
tion operation. If radius policy is applied, the receptive field
of the convolution operation is equal for each node of the
graph, like convolutions applied in the euclidean space. In
contrast, if the KNN policy is chosen each node can have a
completely different receptive field. It depends on the point
cloud density.

The attention stage of this operation is done in the
weights generation step. The Dynamic Filter Network gen-
erates weights conditioned by the edge attributes of the
neighbourhood. In the case of this work, these edges will
have geometric attributes, that means, Dynamic Filter Net-
work will pay attention to the nodes depending on their ge-
ometric information.

3.3. Residual Attention Graph Convolution

The previous Attention Graph Convolution (AGC) is ex-
tended to a Residual Attention Graph Convolution (RAGC)
following the inspiration of the ResNet [15] architecture.
Bresson et al. demonstrated in [3] that standard Graph Con-
volutional Networks can benefit from a residual learning ap-
proach. The proposal is to extend AGC layers with two
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Figure 1. Picture of an AGC layer on a directed graph. Where NN is a node, E an edge, A the features of an edge, F’ the features of a node

and W the weights of the filter.

stacked layers (more stacked layers could be employed).
Figure 2 shows a schema of the proposed RAGC block.

Eq. (3) formalizes the residual learning extension, where
F is a stack of AGC layers (including their corresponding
activation map), P a projection function, that projects the
input to the same feature space that the output of the last
AGC layer of the stack, x and y are the input and output of
the stacked layers considered.
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Figure 2. Schema of the Residual Attention Graph Convolution
block.

The projection function of the residual block, P(x), is
implemented as 1D convolution and it introduces extra pa-
rameters and computation complexity. It can be avoided,
only if the dimensionality of the input and the output of the
stacked layers are equal. However, keeping the projection
function improves the performance of the network [15].

y = F(z, {AGCi} + P(x)) 3)
3.4. Pooling Graph Operation

The pooling stage of the graph is done using the Voxel
downsample algorithm [46]. It consists of creating voxels

of resolution ré, over the point cloud and replacing all points

inside the voxel with their centroid. ri, is the radius for each
pooling layer of the network and it gets increased at each
pooling layer to reduce the total number of nodes in the
graph.

The feature of the new point is the average or the maxi-
mum (depends on the kind of pooling done) of the features
of the points inside the voxel. After the pooling operation is
done, the graph is reconstructed from the downsampled 3D
point cloud.

3.5. Architecture

The final proposed architecture is based on the well-
known ResNet-18. The details of the proposal can be seen
in Table 1. It is composed of the following basic modules:

e Graph Init: It creates the initial graph from the in-
put 3D point cloud. It can connect nodes using a KNN
approach or by radius proximity. As explained in sec-
tion 3.2, radius policy guarantees that each node has
the same receptive field. For this reason in this work,
radius policy will be applied. Node features will start
with a value of 1 as the application of this work is
to obtain the geometric characteristics of the scene.
Edge attributes include the geometric relationship be-
tween the two connected nodes. Specifically, edge at-
tributes in this work will be the Spherical offsets be-
tween nodes.

e AGC layers: Attention graph convolution layer pre-
sented in Section 3.2 followed by an activation layer.

e RAGC Block: It consists of the stack of two AGC
layers with their correspondent activation layers, as it
is depicted in Figure 2.

e Max Pooling layers: It consists of a downsampling of
the graph by using larger values of ri, at every pooling



as described in section 3.4. Values of ri, are selected to
approximately reduce the number of nodes in the graph
by a factor of two. Table 2 shows the radius selected
for the two datasets used in this work.

e Average Pooling Layer: Similar to the previous layer
but with averaging of features instead of using the
maximum. The main purpose of averaging is to group
all the features obtained by previous layers before the
final FC layers.

e FClayers: The last part of the proposed architecture is
composed of two FC layers. These layers are in charge
of classifying the 3D point cloud using the descriptor
obtained by the previous stages. Both layers are fol-
lowed by an activation function. Notice that the out-
put size of the last FC layer depends on the number of
classes that are intended to classify.

All activation functions chosen for this architecture are
ReLUs, except for the last FC layer that is followed by a
Softmax activation. In the training phase, a Batch Normal-
ization block [16] is added between all blocks (except pool-
ing blocks) to reduce the covariance shift. Finally, a dropout
module with 0.2 probability is incorporated between the last
two FC layers to avoid overfitting.

| Layer Name | N. output Features | N. blocks |

Graph Init - 1
ACG 16 1
Max Pooling - 1
RACG Block 16 2
Max Pooling - 1
RACG Block 32 2
Max Pooling - 1
RACG Block 64 2
Max Pooling - 1
RACG Block 128 2
Max Pooling - 1
Global Average - 1
FC 128 1

FC Problem Dependent 1

Table 1. Final architecture for the proposed Residual Attention
Graph Convolutional Network.

4. Experiments
4.1. Datasets

Two datasets are used to evaluate the performance of the
proposed method.

NYU Depth v1 dataset created by Silberman et al. [29]
from New York University. It is composed of 2284 captures
from 7 different scenes. For the indoor scene classification

challenge, the cafe scene is discarded due to the lack of vari-
ability (as recommended by the authors). The dataset is di-
vided using the official split into 1097 captures for training
and 1140 for test. Notice, that after discarding the cafe sce-
nario 2237 captures remain in the dataset. Figure 3 depicts
the class distribution. Hyperparameter search and ablation
studies are performed in this dataset.

SUN-RGBD dataset created by Song et al. [33] from
Princeton University. It is composed of 10335 RGB-D sam-
ples. It was captured from different sensors including Asus
Xtion, RealSense, Kinect vl and Kinect v2. Following the
approach proposed in the paper, classes with less than 80
samples are discarded. After that, 9504 samples remain
with 19 different scenes. These samples were divided in
4845 for training and 4659 for test using the official split.
Figure 3 depicts the distribution between classes and sen-
sors. Moreover, it can be observed that the dataset is highly
unbalanced which will affect results as explained later in the
section. Furthermore, there are huge differences between
the number of captures done by Kinect v2 and RealSense
Sensors.

For both datasets the following pre-processing is applied:
a) Center crop is applied. New RGB-D resolution is 560 X
400 pixels. b) Downsampling by a factor of x8 so finally
3500 RGB-D pixels are used. c) Project the RGB-D pixels
to a 3D space as explained in Section 3.1 to compute the
initial 3D point cloud. Colour is discarded.

4.2. Comparison with State-of-the-art

Layer Graph Radius | Pooling Radius
rg Tp
Graph Init 0.1 -
1. Max Pooling 0.15 0.1
2. Max Pooling 0.25 0.15
3. Max Pooling 0.35 0.25
4. Max Pooling 0.55 0.35
5. Max Pooling 0.55 0.55
Global Avg - -

Table 2. Radius in meters used on the proposed network for graph
construction and pooling in both architectures.

In this section, the proposed method is compared with
state-of-the-art methods that use geometric information ob-
tained from the depth channel to perform scene classifica-
tion. Moreover, FeaStNet [40] and Dynamic Edge Convo-
lution (DEC) [41] are used over the NYU and SUN-RGBD
datasets to demonstrate that the AGC outperforms the re-
cent state-of-the-art. AGC exploits the local geometric con-
text intrinsic in the 3D space. In addition, the proposed
method is an end-to-end learning method opposed to LM-
CNN [6] that uses a region proposal algorithm (which needs
to be trained separately). Methods CNN-RNN [32] and



(a) NYU Depth v1 Train Distribution
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(b) NYU Depth v1 Test Distribution
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Figure 3. Samples distribution of train and test splits on NYU Depth v1 dataset (first row) and SUN RGBD dataset (second row).

Method | Accuracy (%) |
CNN-RNN [32] 65.2
RICA [20] 64.7
Places2-CNNs [45] 66.9
Hybrid-CNNs5s [45] 68.2
LM-CNN [6] 67.8
Geometric Residual DEC [41] 58.4
Geometric Residual FeaStNet [40] 68.6
Geometric RAGC Network 74.5

Table 3. Comparison results of the method proposed and other
published methods on NYU Depth v1 dataset obtained from ar-
ticle [6]. Dynamic-Edge-Convolution (DEC) and FeaStNet results
are obtained after the adaptation to the scene classification prob-
lem.

RICA [20] were not initially designed for geometric scene
classification but are included as a reference as in [6].

For the proposed method, an implementation on Py-
Torch [24] using Pytorch Geometric [12] is publicly avail-

Method | Accuracy (%) |
CNN-RNN [32] 26.1
Places-CNN+RBF kernel SVM [45] 27.7
Places2-CNNs+softmax+Alexnet [45] 32.1
Places2-CNNs+softmax+VGG [45, 31] 34.7
LM-CNN [6] 34.6
Geometric Residual DEC [41] 19.0
Geometric Residual FeaStNet [40] 22.7
Geometric RAGC Network 42.1

Table 4. Comparison results of the method proposed and other
published methods on SUNRGBD dataset are obtained from ar-
ticle [6]. Dynamic-Edge-Convolution (DEC) and FeaStNet results
are obtained after the adaptation to the scene classification prob-
lem.

able at https://imatge-upc.github.io/ragc/.

For both datasets the proposed method will have the
following configuration: a) Radius policy to generate the



edges. b) Edge attributes are Spherical offsets between con-
nected nodes giving edge attributes a total dimension of 3.
¢) Node features are initially set to 1 so only geometric (no
colour) information is fed into the proposed network. d) Dy-
namic Filter Networks used in both AGC layer and RAGC
blocks to generate convolution weights from edge attributes
have the following configuration: FC(16)-ReLu-FC(32)-
ReLu-FC(d' - d'—1), where d is the number of node features
of layer [. e) Table 2 shows the radius used in the graph
construction steps for each pooling layer. f) The proposed
network is trained during 200 epochs using ADAM [ 18] op-
timizer with a learning rate of: 1e~3, weigh decay of: 5e~*
and deltas in range (0.9,0.999). g) Online data augmenta-
tion is performed to avoid overfitting. The following aug-
mentation is performed during the training phase: 1) Ro-
tation over the vertical axis randomly between (0, 27). 2)
Mirror over horizontal axes randomly with a probability of
0.5. 3) Random removal of points in the input 3D point
cloud with a probability of 0.2.

All parameters of the network are initialized randomly
in both datasets experiments. For all experiments, the max-
imum accuracy for five executions using random initializa-
tion seeds are reported. In the case of the experiments using
FeaStNet and DEC, the same proposed architecture is used,
where the differences are: a) AGC operation is replaced
with the correspondent new graph convolutional operation,
this replacement is also done inside the residual block. b)
In both FeaStNet and DEC, the spatial coordinates are used
as node features, due to the fact that both operations ignore
the attributes of the edges. Based on the results reported
in the respective papers and several tests, the corresponding
hyperparameters are chosen. In the case of DEC the best
value of k-neighbours found is 9. For FeaStNet the best
value of M that indicates the number of weight filters is 8
and Max is used as aggregation stage.

As can be observed in Tables 3 and 4 the proposed
method outperforms current state-of-the-art. In the case
of NYU Depth vl dataset, the proposed method exceeds
by 6% the accuracy of previous scene classification ap-
proaches. Moreover, RAGC surpasses DEC and FeaStNet in
this specific problem. Both methods ignore edge attributes
that limit the representation of the relationship of the nodes
with their neighbourhood. Furthermore, the formulation of
DEC limits the operation in the use of k-neighbours, this
policy does not guarantee to have the same receptive field
in 3D point clouds that leads to having poor results in com-
plex point clouds. In the case of the more challenging
SUN-RGBD dataset, the proposed method still improves
other scene classification state-of-the-art methods with an
increase of 7.4% of the accuracy and surpasses DEC and
FeaStNet. Demonstrating that the proposed method is able
to obtain better geometric representation of the scene than
the current state-of-the-art methodologies. Figure 4 shows

the confusion matrix for each dataset. The diagonal ele-
ments represent the recognition accuracy for each category.
In the case of the NYU Depth v1 dataset, the confusion ma-
trix shows that the classes have more or less the same per-
centage of accuracy except for bookstore, which presents
higher accuracy. The confusion matrix for the SUN-RGBD
shows problems to classify some of the classes which might
be due to the unbalance of the original dataset as explained
in Section 4.1.

4.3. Ablation Studies

In the previous section, the best configuration of the pro-
posed method is compared against the state-of-the-art. In
this section, different configurations will be explored us-
ing NYU Depth V1 dataset. Specifically, different edge at-
tributes, configurations of the Dynamic Filter Network and
the influence of the residual block will be studied using the
proposed architecture as baseline.

Edge Generation Policies. The edge generation poli-
cies studied will be KNN and radius policies previously ex-
plained. For the purpose of this experiment the attributes of
the edge will be fixed using Spherical offsets, the configura-
tion of the Dynamic Filter Network will be fixed as FC(16)-
ReLu-FC(32)-ReLu-FC(d; - d;_1) and residual blocks will
be used. After several experiments it was found that the best
value of k was 9. Table 5 shows the results of these exper-
iments using the best k found. As can be observed, radius
policy surpasses the accuracy obtained with kKNN.

Policy | Accuracy(%) |
Radius 74.5
kNN 70.9

Table 5. Comparison of edge generation policies.

Edge Attributes. The edge attributes studied will be:
Cartesian offsets, Spherical offsets and the concatenation of
Cartesian and Spherical offsets. For the purpose of this ex-
periment the radius policy will be used, the configuration of
the Dynamic Filter Network will be fixed as FC(16)-ReLu-
FC(32)-ReLu-FC(d;-d;_1) and residual blocks will be used.
Table 6 shows the results of these experiments. As can be
observed, when Spherical offsets are used the results are
better than Cartesian offsets or the combination of both off-
sets.

] Edge Feature | Accuracy(%) |
Cartesian Offset 72.3
Spherical Offset 74.5

Cartesian and Spherical Offset 73.2

Table 6. Comparison of different edges attributes of the proposed
method.
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Figure 4. Confusion matrixes of the proposed method on NYU Depth v1 dataset (left) and SUN RGBD dataset (right). The labels on the
vertical axis express the true classes and the labels on the horizontal axis denote the predicted classes.

Configuration | Accuracy(%) |
FC(dyd)_1) 70
FC(16)-FC(d;d;_1) 71.6
FC(32)-FC(dyd;_1) 74.1
FC(16)-FC(32)-FC(d1d;_1) 74.5

Table 7. Comparison of different configurations of the Dynamic
Filter Network. Note that between two consecutive FCs there is
an activation function.

Dynamic Filter Network. To study the influence of the
Dynamic Filter Network architecture the attributes of the
edge will be fixed using the Spherical offsets. Moreover
residual blocks and radius policy will be used. In Table 7 the
different cases analyzed and their results are shown. As can
be observed, there is a slight difference between the two and
three FCs layer configuration. This means that it is possible
to compress the network without a significant loss of perfor-
mance. Furthermore, it is possible to compress the network
using a single FC configuration with a loss of 4.5% accu-
racy and still achieve a performance which is better than the
current state-of-the-art.

Residual Graph Network. To study the influence of
residual blocks in the architecture, the attributes of the edge
will be fixed using Spherical offsets, the configuration of
the Dynamic Filter Network will be fixed as FC(16)-ReLu-
FC(32)-ReLu-FC(d; - d;_1) and radius policy will be used.
Table 8 shows the results of these experiments. As can be
observed, the residual blocks help to increase the accuracy
in 1.9%.

5. Conclusions

This work presents a novel Residual Attention Graph
Convolutional Network that outperforms the current state-
of-the-art in Geometric 3D Scene Classification. This pro-

| Configuration | Accuracy(%) |

Residual 74.5
Plain 72.4

Table 8. Comparison of plain and residual configurations using
same number of layers.

posal exploits the geometric context intrinsic in 3D space
that helps the network to learn the geometric relations be-
tween points in a 3D point cloud. This is possible due to the
fact that the proposed network is able to focus on the im-
portant relationships between points in the 3D point cloud.
Different depth sensors can be used as node features are
not required. The proposed network extends current Graph
Convolutional Networks to a deep architecture in a resid-
ual learning framework similar to ResNet in standard con-
volutional networks. In the future, new attributes for the
edge will be investigated to improve the generation of con-
volutional weights by the Dynamic Filter Network. Fur-
thermore, the attention stage will be improved studying new
projection functions that take into account edge features in
successive layers.
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