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Abstract

The self-supervised learning of depth and pose from

monocular sequences provides an attractive solution by us-

ing the photometric consistency of nearby frames as it de-

pends much less on the ground-truth data. In this pa-

per, we address the issue when previous assumptions of the

self-supervised approaches are violated due to the dynamic

nature of real-world scenes. Different from handling the

noise as uncertainty, our key idea is to incorporate more

robust geometric quantities and enforce internal consis-

tency in the temporal image sequence. As demonstrated on

commonly used benchmark datasets, the proposed method

substantially improves the state-of-the-art methods on both

depth and relative pose estimation for monocular image se-

quences, without adding inference overhead.

1. Introduction

The joint learning of depth and relative pose from

monocular videos [47, 51, 54] has been an active research

area due to its key role in simultaneous localization and

mapping (SLAM) and visual odometry (VO) applications.

The simplicity and the unsupervised nature make itself a

potential replacement for traditional approaches that in-

volve complicated geometric computations. Given adjacent

frames, this approach uses convolutional neural networks

(CNNs) to jointly predict the depth map of the target image

and the relative poses from the target image to its visible

neighboring frames. With the predicted depth and relative

poses, photometric error is minimized between the original

target image and the synthesized images formed by bilinear-

sampling [19] the adjacent views.

However, several existing problems hinder the perfor-

mance of this approach. First, the photometric loss requires

the modeling scene to be static without non-Lambertian sur-

faces or occlusions. This assumption is often violated in
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Figure 1. (a) Violations of the photometric consistency in

KITTI [13]. (b) The lack of depth consistency leads to erroneous

‘black holes’ (middle [54]) in the depth estimation.

street-view datasets [6, 13] with moving cars and pedes-

trians (see Figure 1(a) for some failure cases). To this

end, we need other stable supervisions that are less affected

when the photometric consistency is invalid. Second, as the

monocular depth inference considers only single images,

there is no guarantee that adjacent frames would have con-

sistent depth estimation. This increases the chance that the

inferred outcome would contain noisy depth values, and ig-

nores the information from adjacent views when it is readily

available. In addition, using pure color information is sub-

ject to the well-known gradient locality issue [5]. When

image regions with vastly different depth ranges have the

similar appearance (e.g. the road in Figure 1(b)), gradients

inferred from photometric information are not able to effec-

tively guide the optimization, leading to erroneous patterns

such as ‘black holes’ (erratic depth).

In this paper, we propose a novel formulation that em-

phasizes various consistency constraints of deep interplay

between depth and pose, seeking to resolve the photometric

inconsistency issue. We propose the geometric consistency

from sparse feature matches, which is robust to illumination

changes and calibration errors. We also show that enforcing

the depth consistency across adjacent frames significantly

improves the depth estimation with much fewer noisy pix-



els. The geometric information is implicitly embedded into

neural networks and does not bring overhead for inference.

The consistency of multi-view geometry has been widely

applied to and even forms the basis for many sub-steps

in SfM, from feature matching [4], view graph construc-

tion [42, 52], motion averaging [15] to bundle adjust-

ment [44]. Yet enforcing the consistency is non-trivial in the

learning-based settings. Instead of tweaking the network

design or learning strategy, we seek a unified framework

that effectively encodes geometries in different forms, and

emphasize the efficacy of geometric reasoning for the re-

markable improvement. Our contributions are summarized

as follows:

(1) We introduce traditional geometric quantities based on

robust local descriptors into the learning pipeline, to com-

plement the noisy photometric loss.

(2) We propose a simple method to enforce pairwise and

trinocular depth consistency in the unsupervised setting

when both depth and pose are unknown.

(3) Combined with a differentiable pixel selector mask, the

proposed method outperform previous methods for the joint

learning of depth and motion using monocular sequences.

2. Related Works

Structure-from-Motion and Visual SLAM. Structure-

from-Motion (SfM) [2] and visual SLAM problems aim

to simultaneously recover the camera pose and 3D struc-

tures from images. Both problems are well studied and

render practical systems [9, 34, 50] by different commu-

nities for decades, with the latter emphasizes more on the

real-time performance. The self-supervised depth and mo-

tion learning framework derives from direct SLAM meth-

ods [9, 10, 35]. Different from indirect methods [7, 25, 34]

that use reliable sparse intermediate geometric quantities

like local features [38], direct methods optimize the geom-

etry using dense pixels in the image. With accurate pho-

tometric calibration such as gamma and vignetting correc-

tion [22], this formulation does not rely on sparse geometric

computation and is able to generate finer-grained geometry.

However, this formulation is less robust than indirect ones

when the photometric loss is not meaningful, the scene con-

taining moving or non-Lambertian objects.

Supervised Approaches for Learning Depth. Some early

monocular depth estimation works rely on information from

depth sensors [8, 39] without the aid of geometric relations.

Liu et al. [28] combine deep CNN and conditional random

field for estimating single monocular images. DeMoN [46]

is an iterative supervised approach to jointly estimate op-

tical flow, depth and motion. This coarse-to-fine process

considers the use of stereopsis and produces good results

with both depth and motion supervision.

Unsupervised Depth Estimation from Stereo Match-

ing. Based on warping-based view synthesis [55], Garg et

al. [12] propose to learn depth using calibrated stereo cam-

era pairs, in which per-pixel disparity is obtained by min-

imizing the image reconstruction loss. Godard et al. [14]

improve this training paradigm with left-right consistency

checking. Pilzer et al. [36] propose knowledge distilla-

tion from cycle-inconsistency refinement. These methods

use synchronized and calibrated stereo images which are

less affected by occulusion and photometric inconsistency.

Therefore, this task is easier than ours which uses temporal

multiview images and outputs relative poses in addition.

Unsupervised Depth and Pose Estimation. The joint

unsupervised optimization of depth and pose starts from

Zhou et al. [54] and Vijayanarasimhan et al. [47]. They

propose similar approaches that use two CNNs to esti-

mate depth and pose separately, and constrain the out-

come with photometric loss. Later, a series of improve-

ments [24, 31, 48, 51, 53] are proposed. Wang et al. [48]

discuss the scale ambiguity and combine the estimated

depth with direct methods [43, 9]. Zhan et al. [53] consider

warping deep features from the neural nets instead of the

raw pixel values. Klodt et al. [24] propose to integrate weak

supervision from SfM methods. Mahjourian et al. [31] em-

ploy geometric constraints of the scene by enforcing an ap-

proximate ICP based matching loss. In this work, we follow

the previous good practices, with the major distinction that

we incorporate golden standards from indirect methods and

enforce consistency terms to the state-of-the-art results.

3. Method

3.1. Problem Formulation

We first formalize the problem and present effective

practices employed by previous methods [24, 31, 47, 48,

51, 53, 54]. Given adjacent N -view monocular image se-

quences (e.g. {I1, I2, I3} for N = 3), the unsupervised

depth and motion estimation problem aims to simultane-

ously estimate the depth map Dt of the target (center) im-

age (I2 in the 3-view case) and the 6-DoF relatives poses

Tt→s = [Rt→s|tt→s] ∈ SE(3) to N − 1 source views (I1
and I3), using CNNs with photometric supervision.

For a source-target view pair (Is, It), It can be inversely

warped to the source frame Is given the estimated depth

map Dt and the transformation from target to source Tt→s.

Formally, given a pixel coordinate pt in It which is co-

visible in Is, the pixel coordinate ps in Is is given by the

following equation which determines the warping transfor-

mation

ps ∼ Ks[Rt→s|tt→s]Dt(pt)K
−1
t pt, (1)

where ∼ denotes ‘equality in the homogeneous coordi-

nates’, Ks and Kt are the intrinsics for the input image pair,

and Dt(pt) is the depth for this pairticular pt in It.
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Figure 2. The architecture of our method. Besides photometric consistency (Section 3.1), we explore epipolar geometric consistency

(Section 3.2), depth consistency and multi-view consistency (Section 3.3) to improve the depth and pose estimation.

With this coordinate transformation, synthesized images

can be generated from the source view using the differ-

entiable bilinear-sampling method [19]. The unsupervised

framework then minimizes the pixel error between the tar-

get view and the synthesized image

Lpixel =
1

|M|

∑

∀pt∈M

∣∣∣Ĩ(s)
t (pt|Dt,Tt→s)− It(pt)

∣∣∣ , (2)

where Ĩ
(s)
t represents the synthesized target image from

source image. I(p) is the function that maps the image

coordinate p in image I to pixel value, and the first term

Ĩ
(s)
t is the bilinear-sampling operation used to acquire the

synthesized view given relative motion and depth. M is a

binary mask that determines if the inverse warping falls into

a valid region in the source image, and can be computed an-

alytically given the per-pixel depth and relative transforma-

tion. |M| denotes the total number of valid pixels.

In addition to the per-pixel error, structured similarity

(SSIM) [49] is shown to improve the performance [14, 51],

which is defined on local image patches x and y rather than

every single pixel. We follow the previous approaches [31,

51] to compute the SSIM loss on 3 × 3 image patches

(c1 = 0.012, c2 = 0.032) as follows

LSSIM =
1

2
[1−

∑

∀x∈Ĩ
(s)
t

,∀y∈It

(2µxµy + c1)(2σxy + c2)

(µ2
xµ

2
y + c1)(σx + σy + c2)

].

(3)

The depth map is further constrained by the smooth-

ness loss to push the gradients to propagate to nearby re-

gions, known as the gradient locality issue [5]. Specifically,

we adopt the image-aware smoothness formulation [14, 51]

which allows sharper depth changes on edge regions

Lsmooth =
∑

∀pt∈It

|∇Dt(pt)|
T · e−|∇It(pt)|, (4)

where ∇ denotes the 2D differential operator for computing

image gradients. Optimizing a combination of above loss

terms wraps up the basic formulation of training objectives,

which forms the baseline written as

Lbaseline = αLpixel + (1− α)LSSIM + βLsmooth. (5)

However, there are drawbacks with the basic formulation.

We then describe the key ingredients of our contributions.

3.2. Learning from Indirect Methods

The above view synthesis formulation requires several

important assumptions: 1) the modeling scene should be

static without moving objects; 2) the surfaces in the scene

should be Lambertian; 3) no occlusion exists between ad-

jacent views; 4) cameras should be photometrically cali-

brated, a technique adopted in direct SLAM methods [9, 10]

to compensate for vignetting [22] and exposure time. Vio-

lation to any of the above criteria would lead to photomet-

ric inconsistency. The first three assumptions are inevitably

violated to some extent because it is hard to capture tem-

porally static images with no occlusion in the real world.

The fourth restriction is often neglected by datasets with no

photometric calibration parameters provided.

To address these limitations, previous methods [24, 54]

additionally train a mask indicating whether the photomet-

ric loss is meaningful. Yet, we present a novel approach to

tackle this issue by injecting indirect geometric information

into the direct learning framework. Different from direct



methods that rely on dense photometric consistency, indi-

rect methods for SfM and visual SLAM are based on sparse

local descriptors such as SIFT [50] and ORB [34]. Local

invariant features are much less likely to be affected by the

scale and illumination changes and can be implicitly em-

bedded into the learning framework.

Symmetric epipolar error. Assuming the pinhole camera

model, the feature matches St↔s = {p ↔ p′} between

the target and source views satisfy the epipolar constraint,

where p and p′ are the calibrated image coordinates. The

loss with the feature matches and the estimated pose can be

quantified using the symmetric epipolar distance [16]

Lepi(S|R, t) =
∑

∀(p,p′)∈S

(
p′TEp√

(Ep)2(1) + (Ep)2(2)

+

pTEp′

√
(Ep′)2(1) + (Ep′)2(2)

),

(6)

where E being the essential matrix computed by E =
[t]×R, [·]× is the matrix representation of the cross prod-

uct with t. We simply omit the subindices for conciseness

(S for St↔s, R for Rt→s, t for tt→s).

(a) Motion with proper baseline (b) Forward motion (c) Re-projection error using depth

Reprojection error

Figure 3. (a) For two images with proper motion baseline, the un-

certainty (shaded region) is small. (b) For forward motion with

narrow baseline, the uncertainty is large. (c) The re-projection er-

ror unites estimated depth and pose with sparse features, and does

not involve triangulation uncertainty.

Re-projection error. The epipolar constraint does not con-

cern the depth in its formulation. To involve depth op-

timization using the feature match supervision, there are

generally two methods: 1) triangulate the correspondence

p ↔ p′ using the optimal triangulation method [16] as-

suming the Gaussian noise model, to obtain the 3D track

for depth supervision; 2) back-project 2D features in one

image using the estimated depth to compute the 3D track,

and re-project the 3D track to another image to compute

the re-projection error. We take the second method because

the estimated depth and pose are sufficient to compute the

3D loss, and triangulation is often imprecise for ego-motion

driving scenes [6, 13] (see Figure 3 for illustration, and a

mathematically rigorous explanation in the Appendix).

Lreproj(S|R, t,Dt) =
∑

∀p↔p′∈S

∥∥∥[R|t]D̂t(p)p− p
′
∥∥∥
2
, (7)

where D̂t(p) is the bilinear-sampling operation [19] in the

target depth map as the feature coordinate p is not an inte-

ger. Minimizing re-projection error using feature matches

can be viewed as creating sparse anchors between the weak

geometric supervision and the estimated depth and pose. In

contrast, Equation 6 does not involve the estimated depth.

Since outliers may exist if they lie close to the epipolar

line, we use the pairwise matches that are confirmed in three

views [17]. Minimizing the epipolar and re-projection er-

rors of all matches using CNNs mimics the non-linear pose

estimation [3]. The experiment shows that this weak super-

visory signal significantly improves the pose estimation and

is superior to other SfM supervisions such as [24].

3.3. Consistent Depth Estimation

In this section, we describe the depth estimation module.

Previous methods, whether operating on three or five views,

are pairwise approaches in essence because loss terms are

computed pairwisely from the source frame to the target

frame. Even though the pose network outputs N − 1 rel-

ative poses at once, it is unknown if these relative poses

are aligned to the same scale. We propose the motion-

consistent depth estimation formulation to address this is-

sue. Rather than minimizing the loss between the target

frame and adjacent source frames, our proposed formula-

tion also considers the depth and motion consistency be-

tween adjacent frames themselves.

Forward-backward consistency. As shown in Figure 2,

our network architecture estimates the depth maps of the

target image (It), as well as the forward and backward

depths. Inspired by [14, 37] that uses left-right consis-

tency on stereo images, we propose forward-backward con-

sistency for monocular images. In addition to bilinear-

sampling pixel values, it samples the estimated depth maps

of forward and backward images (Is). This process gener-

ates two synthesized depth maps D̃
(s)
t that can be used to

constrain the estimation of the target image depth map Dt.

However, the availability of only monocular images

makes the problem more challenging. For learning with

stereo images, the images are rectified in advance so the

scale ambiguity issue is not considered. While for learn-

ing monocular depth, the estimated depth is determined

only up to scale, therefore the alignment of depth scale is

necessary before constraining the depth discrepancy. We

first normalize the target depth map using its mean Dt :←
Dt/mean(Dt) to resolve the scale ambiguity of the target

depth [48], which determines the scale of relative poses.

Then we apply a mean alignment to the synthesized depth

maps and the normalized target depth map in the corre-

sponding region informed by the analytical mask M (Equa-



(a) Image (b) Error Suppression Mask (c) Gradient Mask (d) Final Composite Mask

Moving Car

Figure 4. Differentiable mask composition. The inconsistency incurred by a moving object is filtered while the meaningful loss is preserved.

tion 2), and further optimize the depth discrepancy

Ldepth =
1

|M|

∑

∀p∈M

∣∣∣∣∣
mean(Dt ◦M)

mean(D̃
(s)
t ◦M)

· D̃
(s)
t (p)−Dt(p)

∣∣∣∣∣ ,

(8)

where ◦ means the element-wise multiplication and the loss

is averaged over all the valid pixel p in the mask M.

Multi-view consistency. The above losses are all defined

on the single target image (e.g. smoothness loss) or among

image pairs, even though the input is N -view (N ≥ 3) im-

age sequences. The pose network outputs N − 1 relative

poses between the target and source images, but the N − 1
relative poses are only weakly connected by the monocular

depth. To strengthen the scale consistency for triplet rela-

tion, we propose the multi-view consistency loss which pe-

nalizes inconsistency of the forward depth and backward

depth using the target image as a bridge for scale align-

ment. Formally, given image sequence (I1, I2, I3) with I2
the target image, and corresponding pose and depth predic-

tions (T2→1,T2→3) and (D1,D2,D3), we again obtained

the normalized depth map D1 = s12 · D1 where the scal-

ing ratio s12 = mean(D2◦M12)

mean(D̃
(1)
2 ◦M12)

as used in Equation 8. The

transformation from the backward image I1 to the forward

image I3 is T1→3 = T−1
2→1 · T2→3. The multiview loss

minimizes the depth consistency term and photometric con-

sistency term as

Lmulti =αLpixel(I1, Ĩ
(3)
1 ) + (1− α)LSSIM (I1, Ĩ

(3)
1 )

+
1

|M13|

∑

∀p∈M13

∣∣∣D1(p)−D
(3)
1 (p)

∣∣∣ , (9)

where Ĩ
(3)
1 and D

(3)

1 are the synthesized image and syn-

thesized normalized depth given D3 and T1→3. The sub-

indices 1 and 3 are interchangeable in the above Equation 9.

Lmulti goes beyond the pairwise loss terms Lpixel, LSSIM ,

Lepi and Ldepth because it utilizes the chained pose and

pushes the two relative poses to be aligned on the same

scale. This benefits monocular SLAM because it facilitates

the incremental localization by aligning multiple N -view

outputs, as we show in Section 4.4.

3.4. Differentiable Sparse Feature Selection

Photometric inconsistency inevitably exists due to occlu-

sion or non-Lambertian properties. Previous works employ

an additional branch to regress an uncertainty map, which

helps a little [54]. Instead, we follow the explicit occlu-

sion modeling approach [41] which does not rely on the

data-driven uncertainty. We have observed that photometric

inconsistency such as moving objects usually incurs larger

photometric errors (Figure 4(b)). On the other hand, image

region with small gradient changes does not offer meaning-

ful supervisory information because of the gradient locality

issue [5] (Figure 4(c)).

Therefore, we combine the error mask with the gradient

mask to select the meaningful sparse features, inspired by

the direct sparse odometry [9] but can be fit into the dif-

ferentiable training pipeline. Given the pixel error map,

we compute the error histogram and mask out the pixels

which are above σe(= 90)-th percentile. We also com-

pute the gradient mask and keep only the values that are

above σg(= 90)-th percentile. The final composite mask is

the multiplication of both masks with dynamic threshold-

ing. As shown in Figure 4(d), this mask operation filters

out a majority of photometric inconsistency regions like the

moving car. The composite mask is only used for the final

depth refinement when the error suppression mask is stable,

otherwise we observe a performance drop if training from

scratch.

Our final formulation takes into account the basic losses

in Equation 5, the geometric terms, as well as the consis-

tency terms, written as

Ltotal =αLpixel + (1− α)LSSIM + βLsmooth+

γ1Lepi + γ2Lreproj + µ1Ldepth + µ2Lmulti.
(10)

The weighting for different losses are set empirically given

hyper-parameters in previous methods and our attempts

(α = 0.15, β = 0.1, γ1 = γ2 = 0.001, μ1 = μ2 =
0.1). We also try to learn the optimal weighting using ho-

moscedastic uncertainty [21], but find no better result than

empirically setting the weights.

4. Experiments

4.1. Training Dataset

KITTI. We evaluate our method on the KITTI datasets [13,

32], using the raw dataset with Eigen split [8] for depth es-

timation, and the odometry dataset for pose estimation. Im-

ages are down-sampled to 128 × 416 to facilitate the train-

ing and provide a fair evaluation setting. For Eigen split,



Method Supervision Dataset Cap (m) Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Eigen et al. [8] Fine Depth K 80 0.203 1.548 6.307 0.282 0.702 0.890 0.958

Liu et al. [28] Depth K 80 0.202 1.614 6.523 0.275 0.678 0.895 0.965

Godard et al. [14]� Stereo/Pose K 80 0.148 1.344 5.927 0.247 0.803 0.922 0.964

Godard et al. [14]� Stereo/Pose K + CS 80 0.114 0.898 4.935 0.206 0.861 0.949 0.976

Zhou et al. [54] updated No K 80 0.183 1.595 6.709 0.270 0.734 0.902 0.959

Zhou et al. [54] updated No K - 0.185 2.170 6.999 0.271 0.734 0.901 0.959

Klodt et al. [24] No K 80 0.166 1.490 5.998 - 0.778 0.919 0.966

Mahjourian et al. [31] No K 80 0.163 1.24 6.22 0.25 0.762 0.916 0.968

Wang et al. [48] No K 80 0.151 1.257 5.583 0.228 0.810 0.936 0.974

Yin et al. [51] No K 80 0.155 1.296 5.857 0.233 0.793 0.931 0.973

Yin et al. [51] No K - 0.156 1.470 6.197 0.235 0.793 0.931 0.972

Yin et al. [51] updated No K + CS 80 0.149 1.060 5.567 0.226 0.796 0.935 0.975

Ours No K 80 0.140 1.025 5.394 0.222 0.816 0.938 0.974

Ours No K - 0.140 1.026 5.397 0.222 0.816 0.937 0.974

Ours No K + CS 80 0.139 0.964 5.309 0.215 0.818 0.941 0.977

Garg et al. [12] Stereo/Pose K 50 0.169 1.080 5.104 0.273 0.740 0.904 0.962

Zhou et al. [54] No K 50 0.201 1.391 5.181 0.264 0.696 0.900 0.966

Yin et al. [51] No K + CS 50 0.147 0.936 4.348 0.218 0.810 0.941 0.977

Ours No K 50 0.133 0.778 4.069 0.207 0.834 0.947 0.978

Table 1. Single-view depth estimation performance. The statistics for the compared methods are excerpted from corresponding papers,

except that the results marked with ‘updated’ are captured from the websites. ‘K’ represents KITTI raw dataset (Eigen split) and CS

represents cityscapes training dataset. The method [14] marked with � are trained and tested on larger scale (256× 512) images, whereas

others use 128 × 416 images. ‘-’ in Cap(m) means no maximum depth filtering is applied. The metrics marked by red means ‘the lower

the better’ and the ones marked by green means ‘the higher the better’. The best results for each category are bolded.

we use 20129 images for training and 2214 images for val-

idation. The 697 testing images are selected by [8] from 28

scenes whose images are excluded from the training set. For

the KITTI odometry dataset, we follow the previous con-

vention [51, 54] to train the model on sequence 00-08 and

test on sequence 09-10. We further split sequence 00-08 to

18361 images for training and 2030 for validation.

Cityscapes. We also try pre-training the model on the

Cityscapes [6] dataset since starting from a pre-trained

model boosts the performance [54]. The process is con-

ducted without adding feature matches for 60k steps. 88084

images are used for training and 9659 images for validation.

4.2. Implementation Details

Data preparation. We extract SIFT [30] feature matches

as the weak geometric supervision using SiftGPU [50] of-

fline. The putative matches are further filtered by geometric

verification [17] with RANSAC [11]. 100 feature pairs are

randomly sampled and used for training. Matches are only

used for training and not necessary for inference.

Learning. We implement our pipeline using Tensor-

flow [1]. The depth estimation part follows [51] which uses

ResNet-50 [18] as the depth encoder. The relative pose net

follows [54, 51] which is a 7-layer CNN, with the lengths

of feature maps reduced by half and the number of feature

channels multiplied by two from each previous layer. If

not explicitly specified, we train the neural networks using

3-view image sequences as the photometric error would ac-

cumulate for longer input sequences. We use the Adam [23]

solver with β1 = 0.9, β2 = 0.999, a learning rate of 0.0001

and a batch size of 4.

Training efficiency. The proposed method takes longer

time per step due to more depth estimations and loss compu-

tations. With a single GTX 1080 Ti, training takes 0.35s per

step compared with 0.19s for the baseline approach based

on Equation 5. It is noted that the inference efficiency is the

same as the baseline.

4.3. Depth Estimation

The evaluation of depth estimation follows previous

works [31, 51, 54]. As shown in Table 1, our method

achieves the best performance among all unsupervised

methods that jointly learn depth and pose. Previous meth-

ods often filter the predicted depth map by setting a max-

imum depth at 50m or 80m (the ground-truth depth range

is within 80m) before computing depth error, since distant

pixels may have prediction outliers. We also evaluate the

performance without this filtering step, marked by ‘-’ in the

Cap(m) column. It shows that without capping the maxi-

mum depth, [51, 54] become worse while our result seldom

changes, meaning our consistent training renders depth pre-

dictions with little noise. Figure 5 provides a qualitative

comparison of the predictions. We show the depth value

(the nearer the darker) instead of the inverse depth (dispar-

ity) parameterization, which highlights the distant areas.

Since both Klodt et al. [24] and ours use self-supervised

weak supervisions, we redo the experiments in [24] that

use self-generated poses and sparse depth maps from ORB-
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Figure 5. Qualitative comparison for depth estimation on the Eigen split. The predicted depth maps are first aligned with the ground-truth

using mean. Then the depth values larger than 80m are set to 80m to ensure a consistent color scale. It shows that our result best reflects

the ground-truth depth range and contains richer details (best view in color).

Method Seq 09 Seq 10

ORB-SLAM2 [34] 0.014 ± 0.008 0.012 ± 0.011

Zhou et al. [54] updated (5-frame) 0.016 ± 0.009 0.013 ± 0.009

Yin et al. [51] (5-frame) 0.012 ± 0.007 0.012 ± 0.009

Mahjourian et al. [31] , no ICP (3-frame) 0.014 ± 0.010 0.013 ± 0.011

Mahjourian et al. [31] , with ICP (3-frame) 0.013 ± 0.010 0.012 ± 0.011

Klodt et al. [24] (5-frame) 0.014 ± 0.007 0.013 ± 0.009

Ours et al. (3-frame) 0.009 ± 0.005 0.008 ± 0.007

Table 2. Pose estimation evaluation. All the learning-based meth-

ods are trained and tested on 128 × 416 images, while ORB-

SLAM2 are tested on full-sized (370× 1226) images.

SLAM2 [34] for weak supervision, fixing other settings.

We obtain slightly better statistics which still lags behind

the proposed method that uses feature matches. This im-

plies that the raw matches are more robust as the supervi-

sory signal, whereas using pose and depth computed from

SfM/SLAM is possible to introduce additional bias inher-

ited from the PnP [27] or triangulation algorithms.

4.4. Pose Estimation

high

Low

Seq 09 Seq 10

Ground-truth

Ours

Figure 6. The chained trajectory of the proposed method drawed

with the ground-truth on KITTI sequence 09/10. The color bar on

the right shows the scale of alignment error.

We evaluate the performance of relative pose estimation

on the KITTI odometry dataset. We have observed that with

the pairwise matching supervision, the result for motion es-

timation has been extensively improved. We measure the

Absolute Trajectory Error (ATE) over N -frame snippets.

The mean error and variance are averaged from the full se-

quence. As shown in Table 2, with the same underlying

network structure, the proposed method outperforms state-

of-the-art methods by a large margin.

However, the above comparison is in favor of learning-

based approaches which are only able to generate N -view

pose segments, but not fair for mature SLAM systems

which emphasizes the accuracy of the full trajectory. To

demonstrate that our method produces consistent pose es-

timation, we chain the relative poses by averaging the two

overlapping frames of 3-view snippets. We first align the

chained motion with the ground-truth trajectory by estimat-

ing a similarity transformation [45], and then compute the

average of APE for each frame. As shown in Figure 6,

even without global motion averaging techniques [15], our

method achieves comparable performance (8.82m/23.09m

median APE for Seq. 9/10) against monocular ORB-

SLAM [33] (36.83m/5.74m median APE for Seq. 9/Seq.

10) without loop closure. This comparison just provides

a fair comparison in terms of the full sequence, yet by no

means shows the learning-based method has surpassed tra-

dition VO methods. In fact, monocular ORB-SLAM with

loop closure and global bundle adjustment results in a much

smaller 7.08m median APE for Seq. 9 (Seq. 10 stays un-

changed because it has no loop).

4.5. Ablation Study

Performance with different modules. We conduct an ab-

lation study to show the effect of each component. The

models for depth and pose evaluation are trained solely on



Loss Configuration Depth (KITTI raw Eigen split) Pose (KITTI odometry)

Baseline Epipolar Re-projection Forward-backward Multi-view Mask Abs Rel Sq Rel RMSE RMSE log δ < 1.253 δ < 1.252 δ < 1.253 Seq 09 Seq 10

� - - - - - 0.163 1.371 6.275 0.249 0.773 0.918 0.966 0.014 ± 0.009 0.012 ± 0.012

� � - - - - 0.159 1.287 5.725 0.239 0.791 0.927 0.969 0.010 ± 0.005 0.009 ± 0.008

� � � - - - 0.152 1.205 5.56 0.227 0.800 0.935 0.973 0.009 ± 0.005 0.009 ± 0.008

� � � � - - 0.146 1.391 5.791 0.229 0.814 0.936 0.972 0.009 ± 0.005 0.008 ± 0.007

� � � � � - 0.143 1.114 5.681 0.225 0.816 0.938 0.974 0.009 ± 0.005 0.008 ± 0.007

� � � � � � 0.140 1.025 5.394 0.222 0.816 0.938 0.974 0.009 ± 0.005 0.008 ± 0.007

� (5-view) - - - - - 0.169 1.607 6.129 0.255 0.779 0.917 0.963 0.014 ± 0.009 0.013 ± 0.009

� (5-view) � � - - - 0.157 1.449 5.796 0.239 0.803 0.929 0.970 0.012 ± 0.008 0.010 ± 0.007

Table 3. Evaluation of different training loss configurations. All models are either solely trained on KITTI raw dataset (for depth) or KITTI

odometry dataset (for pose) without pre-training on Cityscapes. The depth estimation performance is evaluated with maximum depth

set/capped at 80m. All models except the last two are trained on 3-view image sequences. The best result for each metric is bolded.

KITTI raw dataset and odometry dataset respectively. We

choose an incremental order for the proposed techniques to

avoid too many loss term combinations. As shown in Ta-

ble 3, we have the following observations:

• The re-implemented baseline model, using Equation 5,

has already surpassed several models [24, 31, 54]. The

reasons can be attributed to the more capable depth en-

coder ResNet-50, which is also used by [51].

• The result for pose estimation is greatly improved with

the epipolar loss term Lepi. It shows the efficacy of us-

ing raw feature matches as the weakly supervised signal.

However, the improvement for depth estimation is not as

significant as pose estimation.

• Re-projection loss further improves the depth inference.

The improvements for pose estimation brought by ingre-

dients other than the epipolar loss are marginal.

• The depth consistency and multi-view consistency are the

essential parts for the improvement in depth estimation.

In summary, the epipolar geometric supervision helps the

pose estimation most, while the geometric consistency

terms in Section 3.3 essentially improve depth estimation.

Sequence Length. The multi-view depth consistency loss

boosts the depth estimation. However, the performance

boost can be also attributed to using longer image snippets,

since similar second-order relations can be exploited by us-

ing 5-view image sequences for training. Therefore, we fur-

ther evaluate the performance of using 5-view images. As

shown in Table 3, training on longer image sequences would

deteriorate the performance, because long sequences also

contain larger photometric noises. It shows that the pro-

posed formulation elevates the results not from more data,

but the consistency embedded in geometric relations.

4.6. Generalization on Make3D

To illustrate that the proposed method is able to gen-

eralize to other datasets unseen in the training, we com-

pare to several supervised/self-supervised methods on the

Make3D dataset [40], using the same evaluation protocol as

in [14]. As shown in Table 4, our best model achieves rea-

sonable generalization ability and even beats several super-

Method
Supervision Metrics

depth pose Abs Rel Sq Rel RMSE RMSE log10
Karsch et al. [20]† � - 0.417 4.894 8.172 0.144

Liu et al. [29]† � - 0.462 6.625 9.972 0.161

Laina et al. [26] † � - 0.198 1.665 5.461 0.082

Godard et al. [14] - � 0.443 7.112 8.860 0.142

Zhou et al. [54] - - 0.392 4.473 8.307 0.194

Ours - - 0.378 4.348 7.901 0.183

Table 4. Generalization experiments on Make3D. The evaluation

metrics are the same as the ones in Table 1 except the last one

(RMSE log10) to conform with [20]. The methods marked with

† are trained on Make3D. The depth estimation is evaluated with

maximum depth capped at 70m. We use the center-cropped images

as in [14] and resize them to 128× 416 for inference.

Image Ground Truth Zhou et al. Ours

Figure 7. Sample depth predictions on the Make3D dataset. Both

our method and SfMlearner [54] are trained on Cityscapes+KITTI.

vised methods on some metrics. A qualitative comparison

is shown in Figure 7.

5. Conclusion

We have presented an unsupervised pose and depth esti-

mation pipeline that absorbs both the geometric principles

and learning-based metrics. We emphasize on the consis-

tency issue and propose novel ingredients to make the re-

sult more robust and reliable. Yet, we should realize that

the current learning-based methods are still far from solv-

ing the SfM problem in an end-to-end fashion. Further in-

vestigations include enforcing consistency across the whole

dataset, such as incorporating loop closure and bundle ad-

justment techniques into the learning-based methods.
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