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Figure 1. Results of our human shape reconstruction on challenging examples. The first row shows the input images, the second row shows

the reconstruction results, and the third row show the reconstructed body at novel views.

Abstract

We present a method to reconstruct the body geome-

try of a person by aligning the skinned multi-person linear

(SMPL) model to an unconstrained human image. In con-

trast to previous methods that regress the model parameters

from a shared image feature, we decouple the regression

of pose and shape parameters in two sub-networks so that

we can use different backbone architectures to extract bet-

ter and more specific features for each regression task while

allowing the two sub-networks to work together by our final

training loss. We have further proposed a novel bidirec-

tional silhouette constraint to restrict the estimated body ge-

ometry. The silhouette constraint is weighted adaptively ac-

cording to the accuracy of pose estimation in order to han-

dle truncations, occlusions and complex human poses. Ex-

perimental results on Human3.6M and UP datasets show

that our method outperforms state-of-the-art methods and

fits the body segmentation better, especially under extreme

human pose conditions.

1. Introduction

Human pose estimation and full body shape recon-

struction have been studied for decades. Classical ap-

proaches, such as optical flow in monocular image se-

quences [1, 34, 9], multi-view stereo [44], and depth-range

sensors [38, 46, 30, 8, 32], have made great progresses but

they usually require more than one input images in order to

extract 3D information from 2D images, or require point

cloud registration in order to fuse the dense depth point

clouds captured/estimated from multiple views. Recent ad-

vances, such as [41, 37, 24, 29, 14], have demonstrated the

possibility of using deep neural network to directly regress

the model parameters of human body shape templates, i.e.

SCAPE [3] and SMPL [18], which converts the highly ill-

posed optimization problem into a low dimensional param-

eter regression problem. With the new deep learning frame-

work, single image human body shape reconstruction can

be achieved.

Previous deep learning based approaches, however, were

mainly focused on the human pose estimation, but less at-



tentions were paid on the full body shape reconstruction.

Thus, the resulting body shapes are almost uniform and

have less diversities where the estimated body shape usu-

ally does not reflect the geometry of the target body.

To address this problem, we present a novel deep neu-

ral network architecture to accurately reconstruct human

body together with the corresponding 3D joint positions.

Our method follows the previous frameworks [14, 29, 24]

by aligning the SMPL model [18] to an unconstrained hu-

man image. Noticing the deep feature for 3D pose esti-

mation and 3D shape reconstruction might be at different

level [29], we decouple the regression of SMPL parameters

into two sub-networks and use more appropriate backbone

architecture for each of them to better estimate the corre-

sponding parameters respectively. Compared with previous

works which first predict semantic human features ( e.g.,

body segmentation [29], 3D joint positions [41, 37, 24],

volumetric geometry representation [42]) followed by re-

gressing the SMPL parameters, our method is in a simple

end-to-end framework which is easy to train and the con-

verged results are more stable.

In addition, we restrict the estimated body geometry

by forcing it to match the projected body shape with a

predefined human body segmentation. The geometry-to-

silhouette constraint ensures the predicted human body lies

within the body segmentation while the opposite silhouette-

to-geometry constraint encourages the body segmentation

to be covered by its geometry. By considering this bidirec-

tional silhouette constraint, the estimated 3D geometry can

better align with the body segmentation which allows the

body shape and pose to be more accurately estimated. In

order to handle partial truncations or complex human body

poses, we segment the body geometry according to its near-

est 3D joints, and adaptively weight the silhouette constraint

according to the accuracy of estimated 3D joints. Through

the adaptive weighting, the silhouette constraint would not

be biased by the non-overlapping areas of truncated/self-

occluded areas of human segments.

We evaluate the performance of our method on two 3D

human datasets, namely Human3.6M [13] and UP[15].

Our method shows substantial improvements over the pre-

vious methods [14, 29, 5, 24, 42], especially for extreme hu-

man body pose and shape. The proposed bi-directional sil-

houette constraint has shown significant contribution and it

is general which can be applied to other human reconstruc-

tion or 3D pose estimation frameworks. Some of our results

on challenging images are shown in Fig. 1, and demonstrate

the accurate estimation of human pose as well as a proper

body shape which fits the body boundary well.

2. Related works

In this section, we briefly review the recent works in 3D

human pose estimation and human shape reconstruction.

3D human pose estimation aims to locate accurate 3D

joints from 2D images. Great progress has been made with

the establishment of large-scaled 3D human pose datasets,

such as Human3.6M [13] and MPI-INF-3DHP [20]. Be-

cause these 3D human datasets are mainly captured in a lab-

oratory setting, 2D human pose datasets with in-the-wild

images are always jointly used to enrich the data diver-

sity [48, 40]. Existing approaches can be categorized into

the two-stage methods [19, 22, 48, 40, 6, 23, 50] and the

direct end-to-end methods [31, 7, 43, 33, 25, 36].

Two-stage methods first predict the 2D projection of 3D

joints in image spaces and then estimate the corresponding

depth values with various constraints, such as pose prior [6],

skeleton prior [23], and geometric prior [50]. End-to-end

methods directly estimate the 3D joint positions in a de-

tection or regression framework. Statistical priors, such as

kinematic human model [49] and adversarial learning [45],

can be used as additional constraints to avoid abnormal

poses. Human structural information is difficult to be di-

rectly exploited in the regression model, so it can be in-

tentionally enhanced via a joint connection structure [35]

or a latent pose representation [39]. The depth informa-

tion of a 3D joint can be further refined using a coarse-to-

fine scheme [28] or supervised by ordinal depth relation la-

bel [27].

3D human shape reconstruction estimates the whole 3D

body geometry instead of only sparse joint positions. Re-

cent approaches are mainly based on a parametric geome-

try representation, such as SCAPE [3] and SMPL [18], to

estimate body geometry from a single image. The model

parameters are optimized with several priors, including 2D

joint position [5], edge and shading [11], biological limi-

tation [47], and silhouette constraint [4, 15]. Besides the

shape of human body, its clothing and texture can also be

modeled simultaneously [2].

Besides optimization based approaches, the model pa-

rameters can also be regressed using deep neural net-

works [41, 37, 24, 29, 14]. These methods are generally

supervised by 2D/3D joints and other image features, for

example the body segmentation [29, 41, 24]. Tan et al. [37]

utilizes synthetic data to train an encoder-decoder network,

where the decoder network predicts the body masks di-

rectly from SMPL parameters and is trained from synthe-

sized SMPL body. Kanazawa et al. [14] proposes the first

end-to-end model, HMR, to directly regress the model pa-

rameters by jointly utilizing 2D/3D joints, labeled SMPL

parameters, and a pose-adversarial constraint.

3. Parametric human shape reconstruction

In this section, we first introduce the SMPL model and

our network architecture, then describe how our network is

trained using the SMPL parameter loss, the joint position
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Figure 2. The network architecture of our method. The regression of human pose parameter and shape parameter is decoupled into two

sub-networks. The estimated SMPL parameters are restricted by SMPL parameter loss Lp, joint position loss Lj , bidirectional silhouette

loss Ls and regularization loss Lreg .

loss, the bidirectional silhouette loss, and the regularization

loss. We will also describe the datasets and training details

by the end of this section.

3.1. Parametric shape model

We employ the SMPL [18], a skinned multi-person lin-

ear model, to represent human 3D geometry. Using a para-

metric representation has several advantages. First, it can

significantly reduce the number of parameters which makes

the single image body reconstruction possible. Second, by

manipulating a few model parameters, one can create ani-

mations of the reconstructed model easily which benefits to

many downstream applications.

A SMPL body shape M has n = 6890 vertices and is

controlled by a shape parameter β ∈ R10 and a pose pa-

rameter θ ∈ R72 as:

M(β, θ;φ) = W(T̄ +BS(β) +BP (θ),J (β), θ), (1)

where φ is the human model parameters learned from large

human 3D scans, T̄ ∈ R3n is vertices in the mean shape

with zero pose, BS and BP are the shape-dependent blend

function and pose-dependent blend function, J is a function

for computing human joint positions, and W is a standard

blend skinning function.

We use a weak perspective projection C = {Cs, Cx, Cy}
to project a 3D vertex (x, y, z)⊤ in M onto the 2D image

plane as:

proj(x, y, z) = Cs · (x+ Cx, y + Cy), (2)

where Cs is a scale factor, and (Cx, Cy) is a 2D translation.

Combining Eq. (1) and Eq. (2), recovering a 3D human

geometry from one single image is equivalent to regress its

SMPL parameter {β, θ, C}.

3.2. Network architecture

The architecture of proposed network is shown in Fig. 2.

Although previous methods regress reasonable SMPL pa-

rameters from a shared generic image feature [24, 14, 29],

the projected body shape does not always overlap with hu-

man silhouette. We observe that the reconstruction errors

caused by the pose parameter errors are significantly larger

than the errors caused by the shape parameter errors. Thus,

putting these two sets of parameters equally would not solve

the inherent bias that a network would focus to regress cor-

rect pose parameters before shape parameters. We therefore

decouple the regression of shape parameter from pose and

projection parameters, so we can use different sub-network

architectures to achieve better estimations instead of simply

sharing the same feature backbone.

We design our shape sub-network as a simplification to

VGG network [26] which consists of 5 convolutional layers

and 3 fully-connected layers to regress the shape parameter

directly. There is an ambiguity between the shape parame-

ter β and projection parameter C that changing one’s body

shape can be achieved by either changing the value of scale

factor Cs or tuning the value of β. We avoid such ambiguity

by putting the regression of C in the pose sub-network rather

than leaving it in shape sub-network. Our pose sub-network

uses Resnet50 [12] as the backbone network and directly

predicts both pose and projection parameters together. An

ablation study of our network design is presented in Sec. 4.3

3.3. Training loss

We use four different losses to train our network, includ-

ing the SMPL parameter loss Lp, the joint position loss Lj ,

the bidirectional silhouette loss Ls, and the parameter regu-



Figure 3. The illustration of proposed bidirectional silhouette loss.

The red box indicates the region where ωv = 0 while the ellipses

indicate ωv = 1. Vertices in green ellipse has larger ωp than yel-

low ellipse since the right wrist joint is predicted more accurate

than the left wrist.

larization loss Lreg. So the entire training loss is:

L = Lp + Lj + Ls + Lreg. (3)

SMPL parameter loss. It is possible to get the ground

truth of SMPL parameters by aligning its model to sparse

landmarks on human shape [14, 15, 17]. So our network

can be constrained by measuring the Euclidean distance

between the predicted parameters and the corresponding

ground truth as:

Lp = λp(‖β − β̂‖2 + ‖θ − θ̂‖2), (4)

where β̂, θ̂ are the ground truth and the weight λp reflects

the importance of this loss.

Joint position loss. With the predicted SMPL parameters,

both 3D and 2D positions of selected human joints can be

calculated by Eq. (1) and Eq. (2). We therefore define the

joint loss as:

Lj = λ3D

∑

j∈FM

‖M(j)− ĵ3D‖2

+ λ2D

∑

j∈FM

‖proj(M(j))− ĵ2D‖2,

where FM denotes the set of 14 selected human joints, ĵ3D
and ĵ2D is the ground truth position of joint j in 3D and 2D

space. We use λ3D and λ2D to balance 3D joints constraint

and 2D joints constraint.

Bidirectional silhouette loss. Based on the intuition that

an accurate body geometry should align perfectly with

the corresponding body segmentation, we propose a bi-

directional silhouette loss ( shown in Fig. 3) to evaluate how

a projected geometry mesh M = proj(M) aligns with the

predefined body segment S as:

Ls = λM2SLM2S + λS2MLS2M. (5)

The forward geometry-to-silhouette direction LM2S mea-

sures the average distance between a mesh point p ∈ M to

its nearest 2D mask point Sp ∈ S as:

LM2S =
∑

p∈M

ωvωp‖p− Sp‖
2

2
, (6)

which ensures the predicted body lies within the segmen-

tation. LM2S might introduce wrong restriction when the

human body is truncated or the predicted human joints are

incorrect. Thus, we introduce adaptive weights ωv and ωp,

to reduce the negative effects in these cases. We manually

segment the 3D vertices in M into 14 semantic segments

based on their nearby joints and denote the corresponding

joint of vertex v as J(v). We then define ωv and ωp as:

ωv =

{

1 if J(v) is visible

0 otherwise
, (7)

ωp = exp(−‖proj(M(J(v)))− Ĵ(v)2D‖2), (8)

where Ĵ(v)2D is the ground truth of the 2D joint J(v).
The backward silhouette-to-geometry direction LS2M

constraints the estimation of human shape in an inverse way

that it should cover the entire body silhouette as:

LS2M =
∑

q∈Sb

‖q −Mq‖
2

2
, (9)

where Mq identifies the nearest mesh vertex in M to a 2D

point q in the boundary of silhouette Sb.

By jointly enforcing the bidirectional constraints LM2S

and LS2M, our silhouette loss Ls ensures that the estimated

human shape should align with the body segmentation per-

fectly. Through the adaptive weights ωv and ωp, Ls influ-

ences our network less in the earlier training epochs when

the estimation of human pose is not accurate enough. As

the training goes on, the influence of Ls is increased along

with the improvement of 3D human pose estimation and fi-

nally works together with Lp and Lj to achieve an accurate

prediction of pose and shape parameters which better fit the

body segmentation.

Regularization loss. A regularization [5] or discrimina-

tor network [14] of predict parameters is necessary for al-

leviating abnormal human pose or body shape. In this pa-

per, we incorporate the regularization instead of discrimi-

nator network to make our network as simple as possible.

Because our network is trained with large human 3D pose

datasets [13, 20], we found that ambiguity of human pose

can be well relieved even without additional regularization.

We therefore employ the L2 regularization loss only for

shape parameter β as:

Lreg = λreg‖β‖2. (10)



3.4. Datasets and training details

In order to ensure the proposed method is robust to dif-

ferent imaging conditions, we follow [14] to use 5 datasets

together for training. UP [15] consists of two subsets,

UP-S1h containing 26, 294 images with 2D joint positions

and body segmentations, UP-3D containing 8, 515 images

with 2D joints and the ground truth of SMPL parameters.

MS-COCO [16] provides around 80, 000 images with both

2D joint positions and body segmentations. Besides these

three in-the-wild datasets, we also use two large scale 3D

human pose datasets, Human3.6M [13] and MPI-INF-

3DHP [23]. Human3.6M provides 17 scenarios acted by

11 people from 4 calibrated cameras in a laboratory envi-

ronment. It consists about 360k images with available anno-

tations of 2D joint positions, 3D joint positions, and SMPL

parameters. MPI-INF-3DHP is another human 3D pose

dataset consisting of 150k images captured in lab scenarios.

Our network takes a 224 ∗ 224 image as input and the

human region is roughly aligned in the center with about

150 pixel height. The network is trained from scratch by

using the combination of all datasets for 50 epochs with a

learning rate 1e−4 and then fine-tuned for another 10 epochs

with learning 1e−5. We set the batch-size to 64 and use

Adam solver.

4. Experiment and results

We compare the performance of our proposed method

with other state-of-the-art methods in this section.

4.1. Evaluation metrics

We employ quantitative evaluation on Human3.6M and

UP datasets with different metrics.

Evaluation on Human3.6M. We follow a common pro-

tocol to evaluate the performance of our method on Hu-

man3.6M [28, 29, 14]. We use the images for subject 1 and

5 ∼ 8 as the training set and test on images for subject 9 and

11. The Protocol 1 tests on all the four capturing cameras

and reports the mean per joint position error(MPJPE); the

Protocol 2 only tests on the images captured by the frontal

camera (Cam3) and reports the mean per joint position er-

ror after a rigid alignment via Procrustes Analysis [10](PA-

MPJPE). PA-MPJPE is a variation of MPJPE that elimi-

nates the global misalignments by Procrustes Analysis and

exactly measures the accuracy of 3D pose estimation.

Evaluation on UP. The evaluation on UP dataset also

consists of two parts: 1) an evaluation on UP-S1h focus on

the binary prediction accuracy between the 2D mask of es-

timated human geometry and the ground truth of body seg-

mentation ,and we use two metrics, Accuracy and F1-score,

as the measurement; 2) an evaluation on UP-3D focuses the

Method PA-MPJPE(mm)
∗Tome et al. [40] 70.7
∗Martinez et al. [19] 47.7
∗Pavlakos et al. [27] 41.8
∗Yang et al. [45] 37.7

SMPLify [5] 82.3

Lassner et al. [15](UP-P91) 80.7

Lassner et al. [15](Direct predict) 93.9

Pavlakos et al. [29] 75.9

NBF [24] 59.9

HMR [14] 56.8

Ours 57.3

Table 1. Evaluation for 3D pose estimation on Human3.6M Proto-

col 2 with images only from the frontal camera. ∗ indicates meth-

ods only estimate 3D joint positions.

accuracy of reconstructed body shape and measures the re-

construction error as mean per vertex position error after

Procrustes Analysis(PA-MPVPE).

4.2. Evaluation with the state-of-the-art methods

We compare our results with both the state-of-the-art 3D

pose estimation methods [40, 19, 27, 45] and 3D shape re-

construction methods [14, 29, 15, 5, 24, 42]. The evalua-

tions for previous methods are obtained from their original

papers.

3D pose estimation. The evaluation on 3D pose estima-

tion with Human3.6M [13] Protocol 1 and Protocol 2 are

shown in Tab. 2 and Tab. 1, respectively. Tab. 2 lists the

MPJPE results on all test images and Tab. 1 lists the PA-

MPJPE results on images only from the frontal camera. The

methods denoted by ∗ only estimate the positions of sparse

3D joints and the rests, including our method, reconstruct

the whole body geometry.

Since the 3D human shape reconstruction problem is

generally a more complex problem than the 3D human pose

estimation, methods directly predicting 3D joint positions

show better results than methods regressing SMPL param-

eters. As shown in Tab. 1 and Tab. 2,two state-of-the-art

3D human shape reconstruction methods, NBF [24] and

HMR [14] and our method have very competitive results

and are significantly better than others [5, 15, 29] in Pro-

tocol 2. Comparing to Protocol 2 which only uses im-

ages from the frontal camera, the Protocol 1 results shown

in Tab. 2 demonstrate our method outperforms HMR [14]

in a more general evaluation that the test images are from

all the four cameras in Human3.6M [13]. The result of

our method shows more accuracy and robust estimations of

3D joint positions than previous human reconstruction ap-

proaches.



Method MPJPE(mm)
∗Vnect [21] 80.5
∗Pavlakos et al. [28] 71.9
∗Martinez et al. [19] 62.9
∗Yang et al. [45] 58.6

HMR [14] 88.0

Ours 84.4

Table 2. Evaluation for 3D pose estimation on Human3.6M Pro-

tocol 1 with images from all the four cameras. ∗ indicates methods

only estimate 3D joint positions.

Method Acc. F1. Time Platform

SMPLify [5] 0.919 0.88 60s Desktop

Lassner et al. [15](DP) 0.867 0.80 0.13s GTX970

Bodynet [42] 0.928 0.84 0.28s Modern GPU

SMPLify-anchor [29] 0.922 0.88 60s Desktop

HMR [14] 0.917 0.87 0.040s Titan 1080ti

Our 0.919 0.88 0.012s Tesla P40

3D ground truth [15] 0.93 0.88 \ \

Table 3. Evaluation for human body segmentation on UP. The run-

ning time and platform for each method is obtained from their

original paper.

Human body segmentation. Besides the evaluation on

3D pose estimation task, we further analyze the perfor-

mance of our method focusing more on the quality of re-

constructed body shape via evaluating the body segmenta-

tion results on UP [15] dataset with segmentation accuracy

and F1-score as done in [14, 15].

A result with 3D ground truth SMPL parameters is pro-

vided by [15] and sets the upper bound for this evaluation.

Although Bodynet [42] achieved the highest performance in

accuracy, but its F1-score is relative lower than other meth-

ods. Furthermore, it outputs a 3D body geometry in the

volume space and is generally time consuming than others

which directly regress the SMPL parameters instead. We

believe the F1-score is a more appropriate metric than ac-

curacy in human body segmentation task because it bal-

ances the precision and recall, and a significant improve-

ment over human pose or shape may only increase F1-score

a little. Three methods, SMPLify [5], SMPLify-anchor [29]

and our approach arrive the upper bound of F1-score while

our method is extremely faster than others. Although our

method and HMR [14] are very competitive in this eval-

uation, our method is slightly better in a higher F1-score

which demonstrates the robustness of our method. The run-

ning time and platform of each method is obtained from

relevant papers and also included in Tab. 3. Because the

running platforms are different, we only regard it as a refer-

ence for evaluating the overall computational cost.

Qualitative evaluation. Besides the aforementioned

quantitative evaluations on 3D pose estimation and human

body segmentation, we further present some qualitative

comparisons with HMR in Fig. 4. Thanks to the proposed

bidirectional silhouette constraint, our results are visually

better in matching with human boundaries which means a

more accurate pose and body shape are estimated.

In order to validate our method on more general images

rather than only selecting images from the datasets, we ad-

ditionally show some results of our method on collected In-

ternet images in Fig. 5 and it demonstrates our method is

accurate and robust enough for handling various scenarios.

4.3. Ablation study

To better analyze the network architecture and under-

stand the benefit by incorporating the bidirectional silhou-

ette constraint, we compare several different network struc-

tures with/without our silhouette constraint in Tab. 4. All

the results presented in this subsection are trained and eval-

uated on UP dataset to eliminate the possible improvement

achieved by using multiple training datasets.

Network architecture. As discussed in Sec. 3.2, decou-

pling the regression of shape and pose parameters achieves

better estimation than simply sharing the same feature back-

bone. So we design our-base1 network using a simple archi-

tecture that one ResNet-50 [12] is used to extract a generic

image feature and then directly regresses all the SMPL pa-

rameters from it. We further separate the regression of pose

and shape into two sub-networks to form our-base2 network

and two ResNet-50 [12] are used individually. Consider-

ing the freedom of human shape is much less than human

poses, we propose our final design by using a simplifica-

tion of VGG network [26] as the backbone for shape sub-

network.

According to the evaluation listed in Tab. 4, separat-

ing the regression of pose and shape performs better than

sharing the same feature network. Although the accuracy

and PA-MPVPE decline a little bit after replacing the shape

backbone by simplified VGG, it achieves a higher F1-score

which is more balance for evaluating a segmentation prob-

lem. Taking the performance and efficiency into account,

we choose to present a decoupled network architecture with

simplified VGG as the shape backbone in Sec. 3.2.

Bidirectional silhouette constraint. One of our major

contribution is the proposed adaptive bidirectional silhou-

ette constraint which improves the estimation of both hu-

man pose and shape via encouraging the reconstructed body

geometry aligns well with the body segmentation/boundary.

We validate its capability by employing it with four differ-

ent network architectures, including our-base1, our-base2,

our-proposed network, and the state-of-the-art HMR [14].

Based on the evaluation results listed in Tab. 4, all the

four networks perform better after training with the pro-



Results on Human3.6M [14] Results on UP [15]

Figure 4. Qualitative evaluation of our method on images in Human3.6M and UP. The images in Human3.6M are captured in the

laboratory environment and the images in UP are collected in-the-wild. Our results are rendered as blue and the results of HMR [14] are

rendered as pink.

Figure 5. Qualitative results of our method on challenging Internet images which are totally outside of the datasets.

posed bidirectional silhouette constraint, especially achiev-

ing a significant improvement in F1-score. It is because

these networks achieve a better alignment between the es-

timated body and human mask via the incorporation of sil-

houette constraint and result in a rising of true positive and

decrease of false negative. Results shown in Fig. 6 vi-

sually demonstrate the benefit of incorporating silhouette

constraint in some specific cases. We highlight the regions

where silhouette constraint shows substantial improvements

over the networks without using silhouette constraint in a

better body boundary fitting. The silhouette constraint not

only help the estimated body geometry fit the body segmen-

tation well, but also correct inaccurate 3D pose estimations,

especially for the results of HMR [14] in the second and

third case.

4.4. Failure cases

Although our method outperforms other state-of-the-art

single image human 3D reconstruction approaches, it still

suffers from failure cases caused by extreme human pose or

shape as shown in Fig. 7. Even incorporating with the sil-

houette constraint, our method still cannot handle such ex-



Method
Network

Ls Accuracy F1-score PA-MPVPE(mm)
Pose-Net Shape-Net Regressor

HMR [14] ResNet-50 IEF-FC
w/o 0.890 0.811 96.3

w/ 0.893 ↑ 0.845 ↑ 92.7 ↓

Our-base1 ResNet-50 Straight-FC
w/o 0.900 0.827 95.7

w/ 0.905 ↑ 0.840 ↑ 90.9 ↓

Our-base2 ResNet-50 ResNet-50 Straight-FC
w/o 0.907 0.844 89.9

w/ 0.908 ↑ 0.847 ↑ 88.5 ↓

Our-proposed ResNet-50 Simple VGG Straight-FC
w/o 0.898 0.849 91.1

w/ 0.903 ↑ 0.856 ↑ 86.3 ↓

Table 4. Ablation study for the network architecture and validation for the bidirectional silhouette constraint. IEF-3 identifies the iterative

error feedback structure with three fully-connected layers used in HMR and Straight-FC identifies straight fully-connected layers used in

our method. w/o means without while w/ means with. ↑ and ↓ denote the metric changes caused by the utilization of silhouette constraint.

(a) (b) (c) (d) (e)

Figure 6. Visual benefits of incorporating silhouette constraint.(a)

The input image. (b) Results of HMR w/o Ls. (c) Results of HMR

w/ Ls. (d) Results of our-proposed network w/o Ls. (e) Results

of our-proposed network w/ Ls. Substantial improved regions are

masked using red boxes.

treme cases because these images are very rare in all public

human 3D datasets. This problem might be addressed by

extending the current datasets or training the network using

synthetic images and real images jointly [42].

5. Conclusion

We propose a novel end-to-end deep neural network ar-

chitecture to accurately reconstruct 3D human shape from

(a) (b)

Figure 7. Failure case study of our method. (a) Failure case on

image with extreme pose. (b) Failure case on image with extreme

body shape.

a single image. We decouple the regression of pose and

shape parameters into two sub-networks and employ differ-

ent backbone architectures to extract more specific features

for each individual regression. The network is constrained

by a bidirectional silhouette constraint which forces the

estimated geometry to match the predefined human body

segmentation. Our method shows substantial improvement

over the previous methods in its accurate estimation on both

3D human pose and shape. The proposed bi-directional

silhouette constraint is also general and significantly con-

tributes to other human reconstruction or 3D pose estima-

tion frameworks.
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