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Abstract

The use of hand gestures provides a natural alternative

to cumbersome interface devices for Human-Computer In-

teraction (HCI) systems. As the technology advances and

communication between humans and machines becomes

more complex, HCI systems should also be scaled accord-

ingly in order to accommodate the introduced complexities.

In this paper, we propose a methodology to scale hand ges-

tures by forming them with predefined gesture-phonemes,

and a convolutional neural network (CNN) based frame-

work to recognize hand gestures by learning only their con-

stituents of gesture-phonemes. The total number of possible

hand gestures can be increased exponentially by increasing

the number of used gesture-phonemes. For this objective,

we introduce a new benchmark dataset named Scaled Hand

Gestures Dataset (SHGD) with only gesture-phonemes in its

training set and 3-tuples gestures in the test set. In our ex-

perimental analysis, we achieve to recognize hand gestures

containing one and three gesture-phonemes with an accu-

racy of 98.47% (in 15 classes) and 94.69% (in 810 classes),

respectively. Our dataset, code and pretrained models are

publicly available 1.

1. Introduction

Computers have become an indispensable part of human

life. Therefore, facilitating natural human-computer inter-

action (HCI) contains utmost importance to bridge human-

computer barrier. Gestures have long been considered as

an interaction technique delivering natural and intuitive ex-

perience while communicating with computers. This is a

driving force in the research community to work on gesture

representations, recognition techniques and frameworks.

As technology keeps advancing, the use of computers in

our lives increases as well with additional new devices such

as smart phones, watches, TVs, headphones, autonomous

cars etc. Therefore, the communication between humans

and machines gradually becomes more complex, requiring

1https://www.mmk.ei.tum.de/shgd/

Figure 1: Top: An audio signal corresponding to the sen-

tence “give her the post”. Each word in this sentence con-

sists of one or multiple phonemes. Bottom: A video signal

(i.e. sequence of frames) containing 2 hand gestures. Simi-

lar to speech signal, each gesture consists of one or multiple

gesture-phonemes denoted by α, β, γ, δ, ε. The signals and

their annotations are for illustrative purposes only.

HCI systems to accommodate the introduced complexities.

In this work, we propose an approach to scale hand

gestures by composing each gesture with multiple gesture-

phonemes. The main inspiration comes from the phonol-

ogy and morphology of the spoken languages. Fig. 1 (top)

shows the morphological and phonological analysis of the

sentence “give her the post”. Each word in this sentence is

composed of a sequence of phonemes. Similarly, we create

hand gestures using one or multiple gesture-phonemes se-

quentially, as shown in Fig. 1 (bottom). So, our motivation

is first to learn the gesture-phonemes successfully, then to

recognize hand gestures, which contains multiple gesture-

phonemes, with only this knowledge.

Structuring hand gestures with this approach enables to

scale hand gestures without requiring to collect additional

training data. For a given number of gesture-phonemes,

the number of all possible hand gestures is exponentially

proportional to the number of gesture-phonemes each ges-

ture contains. For the proposed gesture scaling approach,



we present a convolutional neural network (CNN) based

framework using sliding-window approach together with

Viterbi-like [29] decoder algorithm. For the CNN model,

we have used 2-dimensional (2D) and 3-dimensional (3D)

SqueezeNet and MobileNetV2 models.

This paper presents the following contributions:

(i) Our major contribution is creating hand gesture recog-

nition framework, which is “scalable” according to the

complexity of the desired HCI system. To the best

of our knowledge, this is the first work that address

the scalability of hand gestures. The CNN model is

only trained with 10 gesture phonemes and 3 signal-

ing classes (preparation, retraction and no-gesture),

and the framework can recognize scaled gesture tu-

ples with 3 gesture phonemes (as in this paper) or

more. Assumed that a HCI system with the recog-

nition capability of 810 different gestures needs to be

implemented. With the old fashioned way, you need

to define 810 different hand gestures, collect enough

training samples (400 training samples for each class),

train an architecture to get desired accuracy (remem-

ber that for ChaLearn IsoGD [30], the state-of-the-

art accuracy is around 80% for 249 classes). With

this framework, you just need to train with 10 gesture

phonemes and 3 signaling classes, then for 810 classes

(3-tuple gestures) you can achieve around 95% accu-

racy. Consider the situation when you need 65610 dif-

ferent gestures (5-tuple gestures). Approximately 25

million training samples are needed for the old fash-

ioned way.

(ii) The second contribution is the benchmark dataset

named Scaled Hand Gestures Dataset (SHGD), which

will be made publicly available. The videos are col-

lected using a Time-of-Flight (ToF) based 3D Image

Sensor, which is shown in Fig. 2. The dataset con-

tains only gesture-phonemes in its training set. For

the test set, SHGD contains gesture-phonemes and 3-

tuple gestures.

(iii) The third contribution of the paper is that with the

designed Viterbi-like decoder, the performed 3-tuple

gestures are recognized only once. This contains

utmost importance for online HCI systems. More-

over, designed Viterbi-like decoder is very lightweight

as HCI systems should be designed considering the

memory and power budget of the HCI system.

2. Related Work

Ever since AlexNet [17], deep CNNs have dominated

nearly all computer vision tasks. At first, CNNs have

infiltrated to the image-based tasks due to the availabil-

ity of only large scale image datasets such as ImageNet

[3]. Afterwards, CNNs are also applied for video analysis

tasks. However, as the first video datasets were compar-

atively small such as UCF-101 [28] and HMDB [18], all

initial video analysis architectures are based on 2D CNNs

which utilize transfer learning from ImageNet, such as

[27, 14, 31, 4]. With the availability of large-scale video

datasets like Sports-1M [14], Kinetics [1], Jester [7], this

problem was solved and successful 3D CNNs could be

trained from scratch without overfitting [9].

Since gestures provide a natural, creative and intuitive

interaction experience for communication with computers,

hand gesture recognition is one of the most popular video

analysis tasks. Although there have been many approaches

using hand-crafted features like orientation of histograms

[5], histogram of oriented gradients (HOG) [25] or bag-of-

features [2], the state of the art hand gesture recognition

architectures are based on CNNs [16, 22, 21, 23, 15], similar

to other computer vision tasks.

Until recently, the primary trend has been to make

CNNs deeper and more complicated [12, 10] in order to

achieve higher classification performance. But the pursue

of lightweight networks with high accuracy is now growing,

as in many real-time applications like autonomous driving

and robotics, where the computation capability of the plat-

form is always limited. Therefore, there has been several re-

source efficient CNN architectures such as SqueezeNet[13],

MobileNet [11], MobileNetV2 [26], ShuffleNet [32] and

ShuffleNetV2 [19], which aim to reduce computational cost

but still keep the accuracy high. In our work, we have used

the 2D and 3D versions of SqueezeNet and MobileNetV2

since we want a lightweight framework.

Fusion of different modalities is another strategy that

helps CNNs to improve recognition performance. However,

fusion also introduces extra computational cost especially at

decision [27] and feature [20] level. On the other hand, [16]

proposes a data level fusion strategy, Motion Fused Frames

(MFFs), where different modalities can be fused with very

little modification to the network and computational cost.

Since we have infrared (IR) and depth modalities in our

dataset, we have adapted data level fusion strategy.

Although there have been many gesture recognition ap-

proaches, the idea of scaling hand gestures is very new but

also very important in order to create complex HCI sys-

tems. To the best of our knowledge, this is the first work

that scales hand gestures. More importantly, besides scal-

ing, we achieve very similar recognition performance for

gesture-tuples (94.69% accuracy for 810 classes) compared

to single gestures (98.47% accuracy for 15 classes).

3. Methodology

In this section, we fist describe the collected dataset. Af-

terwards, we explain the details of the experimented frame-

work with its 2D and 3D CNN architectures and Viterbi-like

decoder. Finally, we give the training details.



Figure 2: Data collection setup. Dataset is collected in in-

frared (bottom-left) and depth (bottom-right) modalities us-

ing Infineon® IRS1125C REAL3TM 3D Image Sensor.

3.1. Scaled Hand Gestures Dataset (SHGD)

SHGD contains 15 single hand gestures, each recorded

for infrared (IR) and depth modalities using Infineon®

IRS1125C REAL3TM 3D Image Sensor. Each recording

contains 15 gesture samples (one sample per class). There

are in total 324 recordings from 27 distinct subjects in the

dataset. Recordings of 8 subjects are reserved for testing,

which makes 30% of the dataset. Every subject makes 12

video recordings using two hands under 6 different envi-

ronments, which are designed for increasing the network

robustness against different lightning conditions and back-

ground disturbances. These environments are (1) indoors

under normal daylight, (2) indoors under daylight and with

an extra person in the background, (3) indoors at night under

artificial lighting, (4) indoors in total darkness, (5) outdoors

under intense sunlight and (6) outdoors under normal sun-

light. We have simulated outdoor environments using two

bright lights: Two lights for “intense sunlight” and one light

for “normal sunlight”.

Fig. 2 shows data collection setup, used camera and data

samples. Subjects performed gestures while observing the

computer screen, where the gestures were prompted in a

random order. Videos are recorded at 45 frames per sec-

ond (fps) with spatial resolution of 352×287 pixels. Each

recording lasts around 33 seconds.

3.1.1 Single Gestures

In its training set, SHGD contains only single gestures un-

der 15 classes, which are given in Table 1. Recordings in

the dataset are continuous video streams meaning that each

recording contains no-gesture and gesture parts. Moreover,

Label Gesture Label Gesture Label Gesture

1 Fist 6 Two Fingers 11 Swipe Left∗

2 Flat Hand 7 Five Fingers 12 Swipe Right∗

3 Thumb Up 8 Stop Sign 13 Pull Hand In∗

4 Thumb Left 9 Check 14 Move Hand Up∗

5 Thumb Right 10 Zero 15 Move Hand Down∗

Table 1: 15 single gesture classes in Scaled Hand Gesture

Dataset (SHGD). ∗ marks the dynamic gestures which are

not included as gesture-phonemes.

each gesture contains preparation, nucleus and retraction

phases [24, 6, 8], which are critical for real-time gesture

recognition.

Among the single gesture classes listed in Table 1, static

gestures are selected as gesture-phonemes since it is more

convenient to perform different static gestures sequentially.

For the rest of the paper, we will use the term phoneme in-

stead of gesture-phoneme for the sake of easiness.

3.1.2 Gesture Tuples

Gesture tuple refers to hand gestures which contain sequen-

tially performed phonemes. There are in total 10 different

phonemes. When constructing gesture tuples, we leave out

the consecutive same phonemes to avoid sequence length

confusion. Therefore, the total number of different tuples

can be calculated by the following equation:

N = m(m− 1)(s−1) (1)

where m is the number different phonemes and s is the

number of phonemes that the gesture tuple contains.

Besides the test set for single gestures, SHGD also has

a test set for gesture tuples containing 3 phonemes. 5 sub-

jects perform gesture tuples under 5 different lightning con-

ditions (excluding the environment of (2)). There are in to-

tal 10×(10−1)(3−1) = 810 permutations meaning different

classes for 3-tuple gestures. Recordings are not segmented

for this case. Therefore, one recording contains no-gesture,

3-tuple gesture and no-gesture without exact location of 3-

tuple gesture.

Since gestures are performed at different speeds in the

real-life scenarios, we have also collected 3-tuple gestures

at three different speeds: Slow, medium and fast. The sub-

jects should finish 3-tuple gestures within 300 frames (6.7

sec), 240 frames (5.3 sec) and 180 frames (4 sec) for slow,

medium and fast speed, respectively.

3.1.3 SHGD-15 and SHGD-13

SHGD-15 refers to the standard dataset where all single ges-

tures in Table 1 are included. On the other hand, SHGD-

13 is specifically designed for 3-tuple gesture recognition.

Besides 10 phonemes, SHGD-13 also contains preparation



(raising hand), retraction (lowering hand) and no-gesture

classes. As there is no indication when a gesture starts and

ends in the video, we use preparation and retraction classes

to detect Start-of-Gesture (SoG) and End-of-Gesture (EoG).

We use no-gesture class to reduce the number false alarms

since most of the time, “no gesture” is performed in real-

time gesture recognition applications [15].

SHGD-15 is a balanced dataset with 96 samples in

each class. However, SHGD-13 is an imbalanced dataset,

where preparation and retraction classes contain 10 times

more samples than phonemes, whereas no-gesture contains

around 20 times more samples than phonemes. Therefore,

training of SHGD-13 requires special attention.

3.2. Network Architecture

The general workflow of the proposed architecture is de-

picted in Fig. 3. A sliding window goes through the video

stream with a queue size of 8 frames and stride s of 1.

The frames in the input queue is passed to a 2D/3D CNN

which is pretrained on SHGD-13. The classification results

are then post-processed by averaging with non-overlapping

window size of 5. In this way, we can filter out some fluc-

tuations due to the ambiguous states while changing the

phonemes. Next, the post-processed outputs are fed into

a detector queue, which tries to detect SoG and EoG. When

the sum of class scores for preparation is higher than the

threshold, we set SoG flag on, activate the classifier queue

and start storing the post-processed scores. Then, the detec-

tor queue is responsible for detecting EoG in a similar man-

ner. After EoG flag is received, we deactivate the classifier

queue and run the Viterbi-like decoder which recognizes the

3-tuple gesture. In the next parts, we explain the details for

the main building blocks in the proposed architecture.

3.2.1 2D and 3D CNN Classifiers

CNN classifier is the most critical part of the proposed ar-

chitecture. The properties of the deployed CNNs determine

the detection and classification performance, memory usage

and the speed of the overall architecture. In order to fulfill

the resource constrained conditions and run as a real time

application, two lightweight models are preferred selecting

SqueezeNet [13] and MobileNetV2 [26] as classifiers in our

architecture. In our analyses, we have deployed the 2D and

3D versions of these models.

The input to the CNN classifier is always 8 frames. Us-

ing these 8 frames, CNN classifier should recognize static

phonemes together with dynamic preperation and retraction

classes successfully. 3D CNNs can capture this dynamic

motion information inherently due to their 3D convolutional

kernels. However, 2D CNNs requires an extra spatiotempo-

ral modeling in order to reason the relations between differ-

ent frames.

Figure 3: The general workflow of the proposed architec-

ture. Sliding windows with stride s run through incoming

video frames, and these frames in the queue are fed to a 2D

or 3D CNN based classifier. The classifier’s results are post-

processed afterwards. After Start-of-Gesture (SoG) gets de-

tected, the classifier queue is activated. Classifier’s results

are saved in the classifier queue until End-of-Gesture (EoG)

is detected. Then, the Viterbi-like decoder runs on the clas-

sifier’s queue to recognize the 3-tuple gesture.

Fig. 5 depicts the applied spatiotemporal modeling ap-

proach used for 2D CNN models. Features of each 8

frames are extracted using the same 2D CNN and concate-

nated keeping their order intact. Afterwards, two levels of

fully connected (fc) layers are applied in order to get class-

conditional probability scores. The reason behind is that fc

layers can organically infer the temporal relations, without

knowing it is a sequence at all. The size of features 2D

CNNs extracts is 64 for each frame. With the first fc layer,

feature dimension is reduced from 64×8=512 to 256. With

the second fc layer, dimension is reduced to the number of

classes.

On the other hand, 3D CNNs contains spatiotemporal

modeling intrinsically and does not require an extra mecha-

nism. We have inflated SqueezeNet and MobileNetV2 such

that they accept 8 frames as input. The details of the 3D-

SqueezeNet and 3D-MobileNetV2 are given in Table 2 and

Table 3, respectively. Their main building blocks are also

depicted in Fig. 4.

3D-SqueezeNet is deployed with simple bypass, as it



Figure 4: Blocks used in 3D CNN architectures. F

is the number of feature maps and D×H×W stands for

Depth×Height×Width for the input and output volumes.

DwConv stands for depthwise convolution. 13 and 33

refers to kernel sizes of 1×1×1 and 3×3×3, respectively.

(a) SqueezeNet’s Fire block with simple bypass; (b) Mo-

bileNetV2’s inverted residual block with stride 1; (c) Mo-

bileNetV2’s inverted residual block with spatiotemporal

downsampling (2×).

achieves better results in the original architecture. How-

ever, we have not used simple bypass for its 2D version,

as 2D-SqueezeNet pretrained on ImageNet is only avail-

able without bypass. For MobileNetV2, we have used

width multiplier of 1 for both 2D and 3D versions.

The spatial size of the inputs are 224 and 112 for 2D

and 3D CNNs, respectively. The number of input chan-

nels c depends on the experimented input data modality.

Besides IR and depth, we have also applied data level fu-

sion to IR and Depth (IR+D) in our experiments. We have

used RGB modality only in pretrainings. Accordingly, the

Figure 5: Spatiotemporal modeling approach used for 2D

CNN models.

Layer / Stride Filter size Output size

Input clip c×8×112×112

Conv1/s(1,2,2) 3×3×3 64×8×56×56

MaxPool/s(1,2,2) 3×3×3 64×8×28×28

Fire2 128×8×28×28

Fire3 128×8×28×28

MaxPool/s(2,2,2) 3×3×3 128×4×14×14

Fire4 256×4×14×14

Fire5 256×4×14×14

MaxPool/s(2,2,2) 3×3×3 256×2×7×7

Fire6 384×2×7×7

Fire7 384×2×7×7

MaxPool/s(2,2,2) 3×3×3 384×1×4×4

Fire8 512×1×4×4

Fire9 512×1×4×4

Conv10/s(1,1,1) 1×1×1 NumCls×1×4×4

AvgPool/s(1,1,1) 1×4×4 NumCls

Table 2: 3D-SqueezeNet architecture. Fire block is depicted

in Fig. 4 (a).

number of input channels are 3, 2, 1, 1 for RGB, IR+D,

IR, depth modalities, respectively. The final size of inputs

are c×224×224 for 2D CNNs, and c×8×112×112 for 3D

CNNs.

3.2.2 Viterbi-like Decoder

Viterbi decoding was invented by Andrew Viterbi [29] and

is now widely used in decoding convolutional codes. It is an

elegant and efficient way to find out the optimal path with

minimal error. In this paper, we have adapted it and used

a Viterbi-like decoder to find out the phoneme sequences in

Layer / Stride Repeat Output size

Input clip c×8×112×112

Conv1(3×3×3)/s(1,2,2) 1 32×8×56×56

Block/s(1,1,1) 1 16×8×56×56

Block/s(1,2,2) 2 24×8×28×28

Block/s(2,2,2) 3 32×4×14×14

Block/s(2,2,2) 4 64×2×7×7

Block/s(1,1,1) 3 96×2×7×7

Block/s(2,2,2) 3 160×1×1×1

Block/s(1,1,1) 1 320×1×1×1

Conv(1×1×1)/s(1,1,1) 1 1280×1×1×1

Linear(1280×NumCls) 1 NumCls

Table 3: 3D-MobileNetV2 architecture. Block is inverted

residual block whose details are given in Fig. 4 (b) and (c).

Expansion factor of 6 is applied except for the initial Block

where expansion factor of 1 is applied.



3-tuple gestures with maximal probability. Same as conven-

tional Viterbi algorithm, we narrow down the optional paths

systematically for each new input in the classifier queue.

For the Viterbi-like decoder, we introduced a couple of

terms for better comprehensibility: K is the number of al-

lowed state transitions in the output sequence, which is 2 as

we use 3-tuple gestures. The state refers to a phoneme in a

path for the given time instant. P refers to class-conditional

probability scores for phonemes stored in Classifier Queue,

which is shown in (2), whose columns Pt are the aver-

age probability scores of each phoneme for five consecu-

tive time instants. Pt values are softmaxed before putting

in P. T is the length of P (i.e. number of columns), and N

is the number of phoneme classes, which is 10 in our case.

Therefore, the size of P is T×N.

P =

⎡

⎣

∣

∣ · · ·
∣

∣ · · ·
∣

∣

P0 · · · Pt · · · PT−1
∣

∣ · · ·
∣

∣ · · ·
∣

∣

⎤

⎦ , Pt =

⎡

⎢

⎢

⎢

⎣

pt,0
pt,1

...

pt,N−1

⎤

⎥

⎥

⎥

⎦

(2)

The probability of a path is the sum of the probability scores

of all the states that this path goes through. Besides the

number of allowed transitions K, we introduce another con-

straint, transition cost δ, in order to prevent false state tran-

sitions in the path. A path metric M holds the paths mt,i

with their sequence record πt,i, path score st,i and the tran-

sition times kt,i. The path mt,i is shown as following:

mt,i = [πt,i, st,i, kt,i] , 0 ≤ i < γ, 0 ≤ t < T (3)

The state of path mt,i at time instant t is denoted as nt,i, and

the last state in πt,i is also denoted as πlast
t,i . The transition

cost is set to -0.2. The path scores s, transition record k

and sequence record π are updated with every new Pt as

following:

st+1,i=st,i+pt+1,i+δ, δ=

⎧

⎪

⎨

⎪

⎩

−0.2, ifnt+1,i �=πlast
t,i

and kt,i<K

0, otherwise

(4)

πt+1,i=

{

πt,i ∪ nt+1,i, if nt+1,i �=πlast
t,i andkt,i<K

πt,i, otherwise
(5)

kt+1,i=

{

kt,i + 1, if nt+1,i �=πlast
t,i and kt,i<K

kt,i, otherwise
(6)

In order to reduce computation, we limit the number of

paths in M to γ, which is set to 300. The working mecha-

nism of the proposed Viterbi-like decoder is given in algo-

rithm 1. Fig. 6 depicts the illustration of our Viterbi-like

decoder. Our decoder can inherently deal with the ambi-

guities at phoneme transitions as it naturally makes use of

temporal ensembling.

Algorithm 1 Viterbi-like decoder for 3-tuple gesture recog-

nition

1: function VITERBI-LIKE DECODER(P, S)

2: Initialize s, π and k at P0;

3: for each Pt do

4: Create all possible paths

5: Update s, π and k according to (4), (5) and (6)

6: Descending sort all m in M with their scores s

7: Keep no more than the first γ paths

8: end for

9: return π of m with maximum s and k=K

10: end function

3.3. Training Details

In the trainings, we have used Stochastic Gradient De-

scent (SGD) with standard categorical cross-entropy loss.

While we have used 5×10−4 and 1×10−3 weight decay

for 2D and 3D CNNs, respectively, the momentum is kept

same as 0.9 for all the trainings. As Jester is the largest

available hand gesture dataset [7], we have pretrained all

models on Jester dataset before fine tuning on SHGD-15

and SHGD-13. For 2D CNN models, before Jester pretrain-

ing, we also have used models pretrained with ImageNet as

starting point. The learning rate for 2D CNNs is initialized

at 0.001 and reduced with a factor of 0.1 at 25th, 35th and

45th epochs. For trainings of 3D CNNs on Jester dataset,

learning rate is initialized with 0.1 and reduced twice with

a factor of 0.1 at 30th and 45th epochs. All trainings are

completed at 60th epoch for Jester and SHGD.

For fine tuning of SHGD-15 and SHGD-13, the pre-

trained parameters are loaded except for the first convolu-

tional layer and the last fully connected layer. The number

of input channels for the first convolutional layer is modi-

fied from 3 (RGB) to 2 for IR+D and 1 for IR and Depth

modalities. In the last fully connected layer, the number of

Figure 6: Illustration of our Viterbi-like decoder for 3-tuple

gesture recognition. For the sake of simplicity, we have

highlighted only three paths while the correct one is in red.

For the correct path, π = [5,1,3], s = 6.1 and k = 2. 2 times

the transition cost of 0.2 is subtracted from each path.



Model Params MFLOPs Acc.(%)

2D-SqueezeNet 0.89M 310 87.40

2D-MobileNetV2 2.41M 366 91.35

3D-SqueezeNet 1.85M 686 87.74

3D-MobileNetV2 2.39M 344 93.33

Table 4: Results of different models on the validation set

of Jester dataset. For 2D CNNs, FLOPs are calculated for

extracting one frames features and final fc layers.

output features is set to the number of classes in SHGD. For

SHGD-13, we have deployed weighted categorical cross-

entropy loss as it is an unbalanced dataset.

We have deployed several data augmentation techniques

such as random rotation (±10◦), random resizing and ran-

dom spatial cropping. Apart from spatial augmentations,

we also applied temporal augmentations. Input clips are se-

lected from random temporal positions given the bounds of

each class. Moreover, at pretraining of 2D CNNs on Jester

dataset, frames are selected randomly within each segment

of videos as in Temporal Segment Network (TSN) [31],

which introduces extra variation in the trainings.

4. Experiments

4.1. Results using Jester dataset

Jester is currently the largest available hand gesture

dataset. There are in total 148.092 video samples collected

for 27 different classes. As the labels of the test set are

not publicly available, we have experimented on the vali-

dation set of the dataset. Table 4 summarizes the achieved

results for our models. Besides the classification accuracy,

the computational complexity in terms of floating point op-

erations (FLOPs) and number of parameters are also given

in Table 4 in order to highlight the resource efficiency of our

models. The best result is achieved by 3D-MobileNetV2

with accuracy of 93.33%.

4.2. Results using SHGD-15 and SHGD-13

The performance of our models for SHGD-15 and

SHGD-13 using different modalities are given in Table

5. The best results are achieved by 2D-SqueezeNet

(98.47%) and 3D-MobileNetV2 (96.06%) for SHGD-15

and SHGD-13, respectively, both at IR+D modality.

For SHGD-15, 2D CNNs always achieve better results

than 3D CNNs for all modalities. This is because of the

fact that around 66.67% of samples in SHGD-15 are static

gestures, and 2D CNNs captures static content better than

3D CNNs. On the other hand, around 20% of samples in

SHGD-13 are static gestures resulting 3D CNNs to perform

better. In order to highlight this situation, we have plot-

ted the receiver operating characteristics (ROC) curves for

static phoneme classes; and dynamic preparation and re-

Model
Accuracy (%)

SHGD-15 SHGD-13

IR

2D-SqueezeNet 98.13 92.56

2D-MobileNetV2 97.36 93.11

3D-SqueezeNet 92.99 95.87

3D-MobileNetV2 92.85 94.62

D
ep

th

2D-SqueezeNet 98.13 95.02

2D-MobileNetV2 98.13 95.64

3D-SqueezeNet 89.93 95.87

3D-MobileNetV2 92.78 95.85

IR
+

D

2D-SqueezeNet 98.47 93.94

2D-MobileNetV2 97.92 95.06

3D-SqueezeNet 92.64 95.59

3D-MobileNetV2 94.31 96.06

Table 5: Results of different models with different modali-

ties on the test sets of SHGD-15 and SHGD-13.

traction classes in SHGD-13, which can be seen in Fig. 7,

where the same results can be observed.

Different models are sensitive to different data modal-

ities. For instance, 2D-MobileNetV2 performs better at

depth modality, whereas 3D-MobileNetV2 performs best

at IR+D modality. However, fusion of different modalities

(IR+D) results in better performance most of the time.

4.3. Results for 3-tuple gesture recognition

In this section, we evaluate the performance of our mod-

els for 3-tuple gesture recognition. Test set for this objective

contains 1620 samples from 810 different permutations (i.e.

classes). In order to evaluate the performance, three differ-

ent errors and the total accuracy are defined as following:

• Detector error: The number of the gesture tuples, in

which SoG or EoG is not successfully detected. It in-

cludes the flags detected at the wrong time and flags

not detected at all.

• Tuple error: The number of the gesture tuples, whose

predicted sequence does not match to the ground truth.

• Single error: The number of the single phonemes

which are recognized mistakenly inside the tuple er-

ror. For instance, if the ground truth is [6,8,10] and the

recognized tuple is [6,10,12], then the single error is 2.

• Total accuracy: The percentage of the correctly pre-

dicted tuples in the whole test set, where Nsamples is

equal to 1620. It is calculated as following:

Acc=(1−
Errdet + Errtup

Nsamples

)% (7)

For this task, models are trained with SHGD-13. Table 6

gives the performance of experimented models on different



(a)

(b)

Figure 7: ROC curves of 4 different models trained on

SHGD-13 with IR+D modality. (a) Average ROC curves

for dynamic preparation and retraction classes, (b) Average

ROC curves of all the static phoneme classes.

modalities for 3-tuple gesture recognition. For the detection

threshold of detector, 5 and 6 are used for 2D and 3D CNNs,

respectively. Similar to previous results, 3D CNNs capture

dynamic classes better and make less detector errors. On

the other hands, 2D CNNs make less tuple and single error

as they consist of static classes.

3D-MobileNetV2 achieves the best performance with an

accuracy of 94.69% for recognizing 810 different gesture

tuples. 3D CNNs surpass 2D CNNs in this task generally,

except for depth modality. We assume that this is due to the

noise pixels appearing in depth modality from time to time.

Therefore, 3D CNNs fail to capture the temporal relations

between noisy frames.

Model
Error

Acc.(%)
Det Tup Sin

IR

2D-SqueezeNet 191 54 126 84.88

2D-MobileNetV2 116 103 248 86.60

3D-SqueezeNet 11 159 375 89.51

3D-MobileNetV2 10 209 492 86.48

D
ep

th

2D-SqueezeNet 73 127 275 87.65

2D-MobileNetV2 77 111 259 88.40

3D-SqueezeNet 68 200 261 83.46

3D-MobileNetV2 82 169 271 84.51

IR
+

D

2D-SqueezeNet 125 79 184 87.41

2D-MobileNetV2 41 71 165 93.09

3D-SqueezeNet 7 103 228 93.21

3D-MobileNetV2 3 83 171 94.69

Table 6: Performance for the tuple detection. Det, Tup

and Sin refer to the number of detector, tuple and single

phoneme errors out of 1620 test samples.

5. Conclusion and Outlook

In this paper, we propose a novel approach for scaling

hand gestures such that CNNs can recognize without requir-

ing an enormous quantity of training data or extra training

effort. For this objective, we create and share a benchmark

dataset, Scaled Hand Gestures Dataset (SHGD), which con-

tains gesture tuples having a sequence of gesture phonemes.

Moreover, we have proposed a network architecture for

recognition of gesture tuples using a novel Viterbi-like de-

coder. In our experiments, we have used the 2D and 3D

versions of the SqueezeNet and MobileNetV2 models. We

achieve a classification accuracy of 98.47% for 15 single

gesture classes, and we achieve an accuracy of 94.69% for

recognition of 810 different 3-tuple gesture classes.

The proposed approach contains utmost importance in

order to meet the needs of applications requiring more com-

plex HCI systems. We can easily scale hand gestures expo-

nentially by increasing the number of gesture phonemes in

multi-tuple gestures.

Similar to Rotokas language (spoken on the island of

Bougainville), which contains 11 phonemes, we plan to cre-

ate a hand language by using multi-tuple gestures and start

talking with our hands.
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