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Abstract

Gesture recognition and its application in human-

computer interfaces have been growing increasingly pop-

ular in recent years. Although many gestures can be rec-

ognized from a single image frame, to build a responsive,

accurate system, that can recognize complex gestures with

subtle differences between them we need large-scale real-

world video datasets. In this work, we introduce the largest

collection of short clips of videos of humans performing

gestures in front of the camera. The dataset has been col-

lected with the help of over 1300 different actors in their un-

constrained environments. Additionally, we present an on-

going gesture recognition challenge based on our dataset

and the current results. We also describe how a baseline

achieving over 93% recognition accuracy can be obtained

with a simple 3D convolutional neural network.

1. Introduction

Gesture recognition studies systems that can understand

and categorize hand motions and use this information to

control devices. Gestures are a natural and one of the old-

est ways in which humans communicate. Information con-

veyed using gestures ranges from pointing a finger to draw

attention to portraying information about space or time to

signalizing a need or want to one another. Hand motion is

generally considered an integral part of communication just

as facial expressions or language. In fact, sign language is

conveyed through complex gestures and can be as versatile

and complex as the spoken language.

Besides facilitating the automatic processing of sign-

language, gesture recognition has a wide range of applica-

tions in many industries. Gestures can be used for control-

ling devices in human-computer interfaces and find applica-

tions in the automotive sector, consumer electronics, public

transit, gaming, home automation, and others.

Various gesture recognition technologies have been de-

veloped over the years. Wearable sensor devices, have been

proposed for general recognition [8] [11] and targeted at

gaming [26], and sign language [2]. They include several

build-in sensors that accurately track different kinds of in-

formation, such as movement velocity, hand position, ac-

celeration, etc. From this data, the gestures are inferred.

The drawback of those approaches is the need for a device

that is widely adopted or commoditized. Computer vision

approaches eliminate the need for a device (besides a cam-

era) but need large amounts of data to train systems that can

generalize to unseen scenarios. Many approaches involve

complex hand segmentation or joint estimation. These ap-

proaches are typically motivated by the lack of large-scale

datasets that can be used to train deep neural networks. The

ImageNet classification challenge was one of the first to

demonstrate the usefulness of a large amount of labeled data

as a way to replace complex computational pipelines by a

single, end-to-end trainable model[14]. In this paper, we

present experiments implicating that the vast amount of data

points in our dataset attributes to the high scores obtained in

our challenge.

Dataset specification

Total number of videos 148,092

Total number of frames 5,331,312

Number of classes 27

Number of actors 1376

Avg. duration of videos 3 sec

Avg. number of videos per class 4391

Avg. number of videos per actor 43

Table 1. Overview of the dataset statistics.

In this work, we present the first large-scale gesture

recognition real-world video dataset. It is to the best of

our knowledge the largest dataset of video-clips showing

human gestures. It involves 148, 092 short clips of videos



Figure 1. Examples of videos from our dataset. Each image corresponds to a randomly sampled frame from a randomly sampled video.

The image shows a large variance of the appearance of peoples, background scenes and occlusion in the videos.

of 3 seconds length, which in total account for more than

5 million frames. The video clips depict a person perform-

ing a gesture in front of the camera. In the process of data

acquisition, 1, 376 actors have recorded a set of 27 actions.

As such, there is a significant variation in the background

and appearance among actors. The gestures are complex

motions that require temporal and spatial understanding,

such as ”Zooming In With Two Fingers” and ”Zooming

Out With Two Fingers” or ”Pushing Hand In” and ”Push-

ing Hand Out”. Figure 2 shows the complete list of all the

gesture classes with their distributions in the dataset. We

also present the models used in our on-going video clas-

sification challenge and a simple neural network baseline

model. The challenge provides an interesting survey in re-

cent approaches for video action recognition and presents

an insight into state-of-the-art architectures.

2. Related Work

Dynamic gesture recognition datasets

Existing gesture recognition datasets differ by factors

such as scale, number of classes, type of annotations, sen-

sors used and the domain of gestures. Less recent dataset,

Cambridge hand gesture dataset [13], provides 900 RGB

image sequences of 9 gesture classes. Sheffield Kinect

Gesture (SKIG) [17] proposes a dynamic gesture dataset

containing 1080 RGB-D videos collected from 6 sub-

jects, 10 categories of gestures like (wave triangle, cir-

cle). Commonly used gesture datasets provided by the

ChaLearn Gesture Challenge are ChaLearn LAP IsoGD and

ConGD datasets [24], and the Multi-modal Gesture Dataset

(MMGD) [5]. The gesture classes in ChaLearn LAP IsoGD

and ConGD datasets are derived from 9 different domain

types, from Italian sign language, activities to pantomime.

Multi-modal Gesture Dataset contains 20 gesture instances



Figure 2. Distribution of gesture classes in the dataset. To provide a greater variability in the contrast class ’Doing Other Things’ we asked

the crowd workers to record themselves performing activities different than gestures. The gesture categories specifics are described in

detail in section 3.1.

Dataset No. videos No. actors No. classes Avg. video duration [frames] Domain View

EgoGesture [31] 24 161 50 83 38 gestures ego

SKIG [17] 1 080 6 10 145 gestures 3rd

nvGestures [18] 1 532 20 25 80 gestures 3rd

ChAirGest 2013 [19] 1 200 10 10 63 various 3rd

ChaLearn Iso/ConGD 2016 [24] 47 933 21 249 41 gestures 3rd

RWTH-BOSTON-400 [4] 633 5 400 N/A sign language 3rd

NATOPS [21] 9 600 20 24 47 aircraft signaling 3rd

FHANDS [6] 1 175 N/A 45 25-175 human-object interactions ego

Ours 148 092 1376 27 36 gestures 3rd

Table 2. Existing datasets differ in scale, number of gesture types and their domain, number of actors, annotation provided and the scale of

a dataset. We propose a novel dataset with a competitive variety of actors and number of videos.

of an Italian sign language vocabulary.

An effort that is aimed at in-car gesture recognition is

described in [18], who provide driver hand gestures per-

formed by 8 different subjects against a plain background

and from a single viewpoint. There are also a variety of

sign language datasets. For example, [1] present a video

lexicon that should serve users to be able to lookup an entry

from ASL. RWTH-BOSTON-50 [30] has been created for

the experiments of isolated gesture recognition and RWTH-

BOSTON-400 [4] contains 633 sequences recorded of 4 dif-

ferent speakers. NATOPS dataset [21] is another gesture

dataset created for recognizing air signaling gestures.

Finally, the BIGHands dataset [29] is a large-scale image

dataset of hand poses, it is rich in joint annotation and hand

pose variation but does not directly represent gestures. Ta-

ble 2 shows a comparison between the most related gesture

video datasets.

Unlike previous action recognition datasets (Kinetics

[3], Something-Something [7]), our dataset focuses on a

small set of action categories that encompass the most com-

monly performed human gestures in the context of visual

human-computer interfaces. With this goal in mind, the

large scale of our collected dataset enables the creation

of gesture recognition systems that are deployable in real-

world scenarios.

Video classification We proceed to describe the models

that participated in Jester Challange in Section 4.2.

3. Large-scale gesture video dataset

In this section, we provide the dataset overview and mo-

tivation behind the chosen classes. Furthermore, we explain

the acquisition procedure and crowdsourcing statistics.

3.1. Content overview

We propose a first large-scale, real-world dataset for dy-

namic gesture recognition. The dataset includes 148, 092

video gesture clips, which is to the best of our knowledge

by far the largest video-based gesture dataset to date. We

propose a split into train, validation, and test set in the ratio

8:1:1. The splits are created to ensure that the videos from

the same worker do not occur in both training and testing

splits. Clip duration is 3 seconds. Each clip contains a ges-

ture annotation from a set of 25 gestures used commonly



in human-computer interfaces, including a No gesture class

and a contrast class Doing other things we will describe in

more detail in Section 3.2.

The videos can be downloaded at the jester-dataset website
1 as videos burst into frames at 12 frames per second with a

height 100px and variable width. The gestures are dynamic

hand-motion patterns and in many cases cannot be distin-

guished from a single frame. The dataset was collected with

the help of 1, 376 crowd-workers. This is a much larger

number of individuals than for existing datasets. The aim

of the dataset was benchmarking existing gesture recogni-

tion methods as well as enabling the community to build

real-time gesture recognition systems end-to-end.

Contrast classes Because the idea behind the dataset

was to build a clip-based recognition system. There are 25

gesture classes and two classes, that should not be recog-

nized as any particular movement. They show other actions

that a user of a human-computer interface might perform

without intending to communicate with the system. The

No gesture category presents a video of a person sitting or

standing still. The Doing other things category is a collec-

tion of various activities, such as stretching, turning head,

jawning, playing with hair, etc. The crowdworkers were

advised to act naturally and to perform actions other than

those represented in the given gesture classes. This “catch-

all” bucket for spurious and irrelevant motions makes it

much easier to trade of specificity for sensitivity and thereby

makes it possible to perform threshold-based recognition in

a system trained solely on the clips.

Gesture categories Among the 25 gesture classes, there

are 5 that can be described as static gestures. These could

be categorized from a single frame, i.e (”Drumming Fin-

gers”, ”Thumb Up”, ”Thumb Down”, ”Stop Sign”, ”Shak-

ing Hand”). The remaining categories require distinguish-

ing between fine-grained visual details such as ”Zooming

In With Two Fingers” and ”Zooming In With Full Hand” or

depth information, ”Rolling Hand Forward” and ”Rolling

Hand Backward”.

3.2. Dataset Collection

For the collection of the dataset, similar to [7], we cre-

ated a data collection platform that interacts with crowd-

sourcing services such as Amazon Mechanical Turk (AMT)

to recruit crowdworkers to accept tasks and redirect them

onto our platform. The task is completed and reviewed on

our platform and the outcome is communicated back to the

user. The outcome is either successful and results in a pay-

ment or unsuccessful, in which case a worker is allowed to

re-do a task, rather than being immediately rejected.

The task for the gesture dataset is to record oneself perform-

ing all the curated gestures in front of the computer front

camera. Instruction advising of visibility of hand motion,

1https://20bn.com/datasets/jester/v1download

good quality of the recording, correct gestures, etc. are

shown. A set of example videos is furthermore shown to

clarify how the gesture is supposed to look. We found that

text descriptions introduce too much ambiguity and confu-

sion among crowdworkers and are not sufficient to convey

the specifics of motions we want to capture. After receiv-

ing the textual and visual guidance on the task, a person

starts recording the gesture videos. A countdown allows for

getting ready until the recording of 3 seconds starts. It is

possible to view the recording and perform it again if nec-

essary. A successful submission contains approved record-

ings of all 27 categories. To create sufficient variance in

the contrast classes, the ”Doing Other Things”-category is

recorded four times, each with a different activity. The num-

ber of submissions for a single crowdworker is limited to 2.

The submissions are reviewed by a human operator to en-

sure the correctness of the recording. Crowd workers can

re-do a submission if most of the video clips were correct

and only some needed correction.

3.3. Dataset statistics

Many existing gesture datasets, where few actors per-

form each gesture, often lack variability in the background.

Our dataset offers a close to a real-world scenario, with a

wide variety of individuals performing the gesture in the

convenience of their homes. Since only the overall appear-

ance of the gesture is given, each worker performs the ges-

ture in the way he/she naturally would. We made sure that

the hand motion is well visible, but the exact distance from

the camera or the angle, left or right hand is not imposed.

The total number of crowdworkers that contributed to the

collection of our dataset is 1, 376, the average number of

videos each person recorded is 43. The task on the data

platform consisted of recording all gesture classes. Only in-

dividual videos were removed if they did not meet quality

standards. In Figure 3 we demonstrate examples of videos

from the dataset.

4. Jester Challenge

To facilitate benchmarking gesture recognition models

on the dataset, we published a platform where researchers

can submit their test data-set predictions. On the dataset

website users can anonymously submit their results to com-

pare recognition accuracy. The ongoing challenge has gath-

ered 59 submissions so far, 3 of which were from our team.

4.1. Baseline model

For our baseline network, that currently places 34 in the

challenge we propose a 3D convolutional neural network

(3D-CNN). This type of network, previously described,

for example, in [22, 12] uses spatio-temporal filters as the

main building block. These operations provide a natural

representation of spatio-temporal data. In the following, we



Figure 3. Examples from the Jester Dataset. Classes presented from the top; ’Zooming Out With Two Fingers’, ’Rolling Hand Backward’,

’Rolling Hand Forward’. Videos are different with respect to the person, background and lighting conditions.

refer to a convolutional block as a 3d convolutional layer,

followed by ReLU non-linearity and batch normalization

layer. Our model consists of three 3D convolutional blocks

followed by a max-pooling layer with strides operating on

the spatial dimensions. We apply three more convolutional

blocks and a global spatial max-pooling layer in the end.

Consequently, the output of the last layer is a temporal step

x feature map channels dimension vector, that we feed into

a recurrent layer with LSTM cell and pass through a fully

connected layer. We trained our model using SGD with a

learning rate 0.001 for 100 epochs and did not implement

additional data augmentation. Our model achieves 93.87%

of the top 1 accuracy. The description of the networks

architecture can be found in Table 3.

4.2. Methods in the challenge

Used methods in our challenge provide an interesting

overview of methods used for modeling spatio-temporal

activity recognition. In this section, we summarize the

selected methods reported in the challenge.

Common methods

The most common approach reported in our challenge are

3D Convolutional Networks (3DCNNs) [23] [10] [27].

Ten submissions report using some variation of 3D CNN,

four of them report using a 3D ResNet [9] which is a

modified version of 3D CNN that uses ResNet architecture



Figure 4. Plot showing the number of videos recorded per worker.

Each person was allowed to perform a maximum 2 submissions,

however, we manually verified each set of videos and accepted a

submission with few incorrect videos and deleted those from the

dataset.

layer layer type hyperparameters

1 conv3D 32

2 max pool (1, 2, 2)

3 conv3D 64

4 max pool (1, 2, 2)

5 conv3D 128

6 max pool (1, 2, 2)

7 conv3D 256

8 conv3D 256

9 conv3D 256

10 global max pool (1, 8, 8)

11 lstm 256

12 lstm 256

13 fully connected 256

Table 3. The network architecture of our baseline model. Convo-

lution is a block of 3D convolutional layer followed by ReLU and

Batch Normalization, all layers use stride 1 and filter size (3, 3, 3).

with spatio-temporal filters. The accuracy of reported 3D

models ranges from 59.01% to 96.24% and the latter one is

less than 1% smaller than the best performance.

Other methods

Two-stream networks (I3D) [3] combine the benefits of

3D CNN and two-stream networks [20]. The spatial net-

work, used for image recognition task, is inflated to tempo-

ral dimension and now can capture motion features while

second stream network, that operates on optical flow, cap-

tures recurrent information within. The submission using

this approach is superior to the 3D CNN but only marginally

(0.04%).

Three submissions use [32] TRN network architecture that

explores temporal relations between frames. The net-

work learns temporal relations between different number

Number of videos per class Accuracy [top1 %]

100 62.4

200 71.6

500 77.7

1000 85.5

2000 88.3

3000 89.5

4391 (on average) 93.87

Table 4. Results of the experiment testing the effect of the size of

the dataset on the testing accuracy. In all experiments, we used our

baseline model described in section 4.1.

of frames and combines them at a temporal multi-scale to

embed reasoning and capture both short and long term de-

pendencies.

Building on this idea, temporal pyramid relation network

[28] first extract the features with a 2D convolutional net-

work, apply a global average pooling and use a temporal

pyramid pooling before using TRN on the extracted fea-

tures. We observe that it provides less than 1% improve-

ment.

In a different way of modeling dependencies in a tempo-

ral dimension, SSNET [16] proposes a model that operates

on frames and consists of a stack of dilated convolutional

layers with two-dimensional filters with 14 different scales

as well as a scale selection scheme that selects a subset of

frames that best predict the action.

An alternative way of modeling spatio-temporal features,

introduced in [15] proposes hierarchical modeling of ap-

pearance and time-window motion features. The network

encodes motion and appearance from the next consecutive

frame in a motion filter, merging the information from the

neighboring frame and repeats this process iteratively until

the information is aggregated from all hierarchical parts.

Lee et al. [15] proposes using motion features computed

by optical flow. In the proposed work, the network is split

into many random segments of the video. Computed in an

offline manner, optical flow is then appended on a chan-

nel dimension for frames in each segment into a motion

fused frames. Then from each such segment, features are

extracted using ResNet. The features of each segment ob-

tained in this manner are then concatenated and passed

through another fully connected layer.

Temporal segment networks [25] also divides video in

segments. Here the segments are equally long and non-

overlapping. From each segment, a snipped is selected (a

single frame in the paper) and an additional RGB difference

and optical flow to represent motion. That spatial and tem-

poral information is passed through separate networks in a

two-stream manner and produces two outputs. The spatial

and temporal scores from each segment are aggregated sep-

arately and concatenated to produce a classification score.



Ranking Accuracy [%] Network Time

1 97.063013 RFEEN, 20 Crops 750

2 96.771349 Ford’s Gesture Recognition System 524

4 96.601777 DRX3D 242

6 96.371159 TSN two-stream aggregated with conv [25] 530

8 96.282982 Spatiotemporal Two Streams network 387

9 96.242284 3D CNN Architecture 384

10 96.215153 Motion Feature Network (MFNet) [15] 277

11 95.964186 RNP 522

14 95.787832 SSNet RGB resnet [16] 522

15 95.71322 TVB 522

16 95.340161 Temporal Pyramid Relation Network for Video-Based Gesture Recognition [28] 217

17 95.306247 DIN 241

20 94.953537 TRN - 8 segments 729

22 94.845011 3D CNN - Multi time scale evaluation 672

23 94.811097 8frames rgb 638

24 94.783965 TRN (CVPR’18 submission) [32] 158

26 94.499084 TRN + BNInception [32] 497

29 94.458387 slowfast res50 598

30 94.261684 3D CNN for transfer learning 669

31 94.227769 Besnet 141

32 93.990368 3D GesNet 671

33 93.990368 3D-GesNet(only rgb) 678

34 93.868276 OURS 124

35 93.820796 ECO 554

36 93.576613 TRN-E [32] 650

37 93.407041 One Stream Modified-I3D 465

42 89.255918 Modified C3D 361

44 86.305365 CNN+LSTM 521

45 85.98657 3D ResNet 101 518

46 85.864478 VideoLSTM 157

47 85.49142 3D convolutional neural network 503

48 82.764702 ConvLSTM 179

50 81.550566 3d+resnet18 707

51 68.127247 3D ResNet 372

Table 5. Selected entries from our leaderboard table. Time column gives a number of days between opening the leaderboard and submission.

4.3. Discussion

Analyzing the current results of our proposed challenge

provides an overview of many recently proposed video clas-

sification approaches. Interestingly, 41 submissions out of

59 achieve above 90% accuracy on our dataset. One of the

goals of this dataset was to provide a large enough amount

of training data that gesture recognition systems could be

trained that would work robustly in real-world scenarios.

The strong performance of many of these methods on our

test set indicates that we have accomplished this goal. How-

ever, to test the validity of this claim, we trained our base-

line model using a variety of reduced training set sizes. In

our experiments, we limit the number of videos per class

to be: 100, 200, 500, 1000, 2000, and 3000. We observe a

drastic change in network accuracy. The baseline network

trained on the entire dataset achieves 93.87% of accuracy,

the original split provided contains on average 4,391 videos

per class, by reducing the average number by 64% to 3, 000

videos per class, we observe a decrease in performance of

4.37%. Given only 100 examples per class, i.e a training

set containing 2,700 videos, our baseline model achieves

62.4%, 31.47% less than when using the original data split.

Table 4 provides the results of the experiments that show the



influence of data on accuracy. Given these results, we con-

firm that the high scores on our challenge are facilitated by

a large amount of training data in our dataset. The huge va-

riety present in our training dataset (1, 376 persons, many

different backgrounds) allows a variety of different meth-

ods to all adequately generalize to novel people and scenes.

This is why many different methods that report results on

our challenge achieve very similar performance.

5. Conclusion

We present a new large scale gesture recognition dataset.

Our dataset is the largest video dataset for gesture recogni-

tion, with the most variability across actors performing the

gestures. The dataset can be used to build human-computer

interfaces. We also present an ongoing challenge for the

classification task on our dataset. The submission platform

allows users to test and compare their models across the lat-

est state-of-the-art video recognition systems. We suggest a

3D CNN baseline model and show that the vast amount of

data offered to the computer vision community significantly

impacts the performance of the network, which may explain

the high accuracy scores on the leaderboard.
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