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Abstract

This paper proposes a method for 3D hand pose estima-
tion given a large dataset of depth images with joint annota-
tions, and a smaller dataset of depth and RGB image pairs
with joint annotations. We explore different ways of using
the depth data at the training stage to improve the pose es-
timation accuracy of a network that only takes RGB images
as input. By using paired RGB and depth images, we are
able to supervise the RGB-based network to learn middle
layer features that mimic that of a network trained on large-
scale, accurately annotated depth data. Further, depth data
provides accurate foreground masks, which are employed to
learn better feature activations in the RGB network. During
testing, when only RGB images are available, our method
produces accurate 3D hand pose predictions. The method is
also shown to perform well on the 2D hand pose estimation
task. We validate the approach on three public datasets, and
compare it to other published methods.

1. Introduction

3D hand pose estimation accuracy has been greatly im-
proving over the past few years, with new methods being
introduced [8, 18, 37, 41, 9] and datasets being made pub-
licly available [7, 30, 32, 34, 43]. There remains an ac-
curacy gap between pose estimation from RGB and depth
image input, which several recent works have aimed to
narrow [17, 20, 27, 47]. One of the difficulties has been
the lack of large-scale realistic RGB datasets with accu-
rate annotations. This has been addressed by creating syn-
thetic datasets [47], or employing GANs to generate train-
ing data [ 16]. In this paper we propose a different approach,
using depth data as privileged information during training.
Fully annotated depth datasets [7, 30, 32, 34, 43] are abun-
dant in the literature, but so far no attempt has been made
to use this data to support the task of 3D hand pose estima-
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tion from RGB images. Some RGB-D datasets have been
proposed recently to tackle the problem of 3D hand pose es-
timation from RGB images, however most of existing meth-
ods [16, 44, 47] use only RGB images for training.

Training with privileged information [36], also called
training with hidden information [39], has been shown to
improve performance in other domains, such as image clas-
sification [4], object detection [13], and action recogni-
tion [25]. In this paper we explore how to use depth
data as privileged information to aid 3D hand pose esti-
mation from RGB images. Existing methods for 3D hand
pose estimation from RGB images pursue two main direc-
tions: (1) using only RGB images for 3D hand pose es-
timation [16, 44, 47], with different CNN models. Given
the limited size of real RGB datasets, a large number of
synthetic images [16, 47] are created to help the training,
whether they are purely synthetic [47], or using CycleGAN
to enforce a certain realism [16]. (2) Using RGB-D images
for 3D hand pose tracking [ 1 7], where the input is the depth
channel in addition to the RGB channels. This works well
when the paired RGB and depth images are available at test
time. Recently, a depth regularizer module was introduced
in [2] to make use of only the paired depth images for weak
supervision. The lack of large-scale annotated training data
limits the success of this approach. Our study proposes a
new framework for 3D hand pose estimation from RGB im-
ages, by using the existing large-scale annotated depth data
during training. This helps improve 3D hand pose estima-
tion using a single RGB image input at test time.

Our method transfers supervision from depth images to
RGB images. We use two networks, an RGB-based net-
work and a depth-based network, see Figure 1. We explore
different ways to use depth data: (1) initially, we treat a
large amount of independent external depth training data
as privileged information to train the depth-based network.
(2) After the initial training is completed, paired RGB and
depth images are used to tune the RGB-based network and
the depth-based network. The idea is to let activations in
the middle layer of the RGB network mimic that of the
depth network. (3) We use foreground masks from depth
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Figure 1. Proposed framework for 3D hand pose estimation from an RGB image using privileged depth data. Training proceeds in
two stages, a pre-training stage and privileged information (PI)-training stage. In the first stage, a depth-based network (top) and an RGB-
based (bottom) network are trained independently to minimize 3D pose loss Lp and L¢. In the second stage, we freeze the parameters of
the depth-based network and continue training with paired RGB and depth images, by minimizing a joint loss, which includes L¢ and a

mid-level feature regression 10sS Linter.

data to reduce spurious background activations in the RGB
network.

Our training strategy can be easily embedded into exist-
ing pose estimation methods. We demonstrate this in ex-
periments of 2D hand pose estimation with an RGB image
input by a different CNN model. Results on 2D hand pose
estimation, using our training strategy show improvement
over state-of-the-art methods for 2D hand pose estimation
with RGB input.

Comprehensive experiments are conducted on three
datasets: the Sterco datasct [44], the RHD datasct [47], and
the Dexter-Object dataset [29]. The Stereo dataset and RHD
dataset are used for evaluating 3D pose estimation from an
RGB input. All three datasets are used for evaluating 2D
hand pose estimation from a single RGB image.

2. Related Work

3D hand pose estimation. Hand pose estimation from
depth data has made rapid progress in the past years [5,
, 18, 24, 37], where comprehensive studies [6, 31, 42]
have been instrumental in advancing the field. Random
forests [32, 38] and CNNs [8, 34, 37, 41] trained on large-
scale public depth image datasets [7, 30, 32, 34, 43] have
shown good performance. A recent benchmark evalua-
tion [42] showed that modern methods achieve mean 3D
joint position errors of less than 10mm. Hand pose esti-
mation from RGB images is significantly more challeng-
ing [20, 27, 47]. Due to the difficulty in capturing real
RGB datasets with accurate 3D annotations, recent meth-
ods employ synthetic data [47], or more realistic GANer-
ated images [ 16]. Mueller et al. [16] use an image-to-image

translation network to create a large amount of RGB train-
ing images and combine a CNN with a kinematic 3D hand
model for pose estimation. The method requires a prede-
fined hand model, adapted for each user. Simon et al.’s
OpenPose [27] system generates an annotated RGB dataset
using a panoptic studio setup, using multiple views to boot-
strap 2D hand pose estimation. Zimmermann and Brox [47]
proposed combining hand segmentation and 2D hand pose
estimation (using CPM [40]), followed by estimating 3D
hand pose relative to a canonical pose. Panteleris and Argy-
ros [20] estimate absolute 3D hand posc by first cstimating
2D hand pose and then optimizing a 3D hand model with
inverse kinematics. Note that there also exists a large body
of work on the related task of recovering full 3D human
body pose from images. One line of work aims to directly
estimate the 3D pose from images [35, 45]. A second ap-
proach is to first estimate 2D pose, often in terms of joint
locations, and then lift this to 3D pose. 2D key points can
be reliably estimated using CNNs and 3D pose is estimated
using structured learning or a kinematic model [26, 33, 46].

Learning with privileged information and transfer
learning. Privileged information denotes training data that
is available only during training but not at test time. The
concept to provide teacher-like supervision at training time
was introduced by Vapnik and Vashist [36]. The idea has
proven useful in other domains [4, 13, 25]. Shi et al. [25]
treated skeleton data as privileged information in CNN-
RNNS for action recognition from depth sequences. Chen et
al. [4] manually annotated object masks in 10% of the train-
ing data and treated these as privileged information for im-
age classification. The idea is related to network compres-
sion and mimic learning proposed by Ba and Caruana [1] as



well as network distillation by Hinton et al. [12], where in-
termediate layer outputs of one network are approximated
by another, possibly smaller, network. These techniques
can be used to significantly reduce the number of model
parameters without a significant drop in accuracy. In our
case, the application target is similar to transfer learning
for domain adaptation. Information from one task, predic-
tion from depth images, is shared with another, prediction
from RGB images. In transfer learning and domain adap-
tation information is shared across different data modali-
ties [3, 13, 23]. Chen et al. [ 3] proposed recognition in RGB
images by learning from labeled RGB-D data. A common
feature representation is learned across two feature modali-
ties. Hoffman er al. [13] learned an additional hallucina-
tion representation, which is informed by the depth data
in training. At testing, it used the softmax to select the
final prediction between the predictions from the halluci-
nation representation and the predictions from RGB repre-
sentation. Luo et al. [15] recently proposed graph distilla-
tion for action detection with privileged modalities (RGB,
depth, skeleton, and flow), where a novel graph distillation
layer was used to dynamically learn to distill knowledge
from the most effective modality, depending on the type of
action. Cai et al. [2] proposed a weakly-supervised method
for 3D hand pose estimation from RGB image by introduc-
ing an additional depth regularizer module, which rendered
a depth image from the estimated 3D hand pose. Train-
ing was conducted by minimizing an additional loss term,
which is the L1 distance between the rendered depth im-
age and the ground truth depth image. In our case, we use
paired depth and RGB images during training. Depth and
RGB networks are first trained separately. Subsequently the
RGB network are progressively updated, while the depth
network parameters remain fixed.

Learning a latent space representation. Latent space
representations shows promise for 3D hand pose estimation
from RGB images [ 14, 28]. Spurr et al. [28] learned a cross-
modal statistical hand model via a latent space representa-
tion that embeds sample points from multiple data sources
such as 2D keypoints, images, and 3D hand poses. Multiple
encoders were used to project different data modalities into
a unified low-dimensional latent space, where a set of de-
coders reconstruct the hand configuration in either modal-
ity. Igbal et al. [14] used latent 2.5D heatmaps, containing
the latent 2D heatmaps and latent depth maps, to ensure the
scale and translation invariance. Absolute 3D hand poses
are reconstructed from the latent 2.5D heatmaps.

3. Methods

We propose a framework to train a hand pose estimation
model from RGB images by using depth images as privi-
leged information. The model learns a new RGB represen-
tation which is influenced by the paired depth representa-

tion through mimicking the mid-level features of a depth
network. As shown in Figure 1, we mainly use depth im-
ages in two ways: (1) to train an initial depth-based network
with the aim of regressing 3D hand poses. Depth data that
is annotated with 3D full hand pose information is abun-
dant in the literature, and we choose the largest real dataset
BigHand2.2M [43] to train our depth-based model, see the
top row of Figure 1. (2) Paired RGB and depth images are
fed into the RGB-based and depth-based network with the
parameters of the depth-based network being frozen. The
training of the RGB-based network continues with the aim
of minimizing a joint loss function. The joint loss function
has two terms, the first term being the 3D hand pose regres-
sion loss, L¢, and the second term the mid-level regression
loss, Linter-

3.1. Architecture

Figure 1 shows the training architecture. There are two
base models, one is a depth-based network and the other
one is an RGB-based network. We use deep convolutional
neural networks (CNNs), which have been widely used in
hand pose estimation and have proven useful in transfer-
ring information from one network to another [12]. Prior
work [17] has been shown useful in combining RGB and
depth images as a four-dimensional RGB-D input to a sin-
gle CNN model to estimate 3D hand pose. In our architec-
ture, we share information in the middle layers of our two
CNN models. Each CNN model produces a 3D hand pose
estimation result given its input.

For clarity, we denote the depth-based network
Depth_Net, the RGB-based network RGB_Net when this is
trained before privileged information is used. When priv-
ileged information is introduced in the training, we de-
note the RGB-based network RGB_PI_Net. RGB_Net and
RGB_PI_Net are the same CNN model trained before and
after the paired RGB and images are used to train the
RGB channel. To let the Depth_Net channel share in-
formation with RGB_PI_Net, we introduce an intermedi-
ate regression loss between the paired layers in the two
models. This intermediate regression loss is inspired by
prior work [12, 13], where similar techniques are used for
model distillation [12], supervision transfer from well la-
beled RGB images to depth images with limited annota-
tion [11], and hallucination of different modalities [13].
We therefore introduce an intermediate loss, which helps
RGB_PI_Net to extract middle level features that mimic the
responses of the corresponding layer of the Depth_Net using
the paired depth image. The intermediate 10ss L;,;e (S€€
Figure 1) is defined as:

Linter(k) = ”Al?epth - AkRGBng ) (])

where A,?epth and AFYB are the kth layer activations for
the Depth Network and RGB Network, respectively. In our



experiments we select the final layer before the fully con-
nected layers. During testing, when only an RGB image
is available, we feed the RGB image into RGB_PI_Net to
estimate the 3D hand pose.

3.2. Training with privileged information

This section explains the details of training the pro-
posed architecture. We choose a base CNN for Depth_Net
and RGB_PI_Net for 3D hand posc cstimation. For the
base model, we build on Convolutional Pose Machine
(CPM)’s [40] feature extraction layers with two fully con-
nected layers to regress a 63 dimensional 3D hand pose with
21 joints. The Depth_Net is initially trained on the Big-
Hand2.2M [43] dataset, which has 2.2 million depth images
with annotated 3D pose. After training, the model is fur-
ther trained on the depth images of a smaller dataset (e.g.,
Stereo [44] and RHD [47] datasets) that has fully annotated
paired RGB and depth images. The RGB_Net is initially
trained on the RGB images from the respective dataset.

When the initial training is completed for both CNN
models, we freeze the parameters of the Depth_Net and start
training RGB_PI_Net with the paired depth images. Dur-
ing the privileged training stage, we want the RGB_PI_Net’s
middle layer activations to match the activations of the cor-
responding layers of the Depth_Net. We have two losses to
optimize: (1) Ljn¢er (Eqn. 1) to match the middle layer ac-
tivations of the two CNN models. (2) L (see Figure 1) is
the L2 loss between the ground truth and the estimated 3D
hand pose. We use a joint loss:

Ljoint(k) = Linter(k) + )\Lc, (2)

where A is used to balance the two losses, a larger value of A
means less supervision is required from the privileged infor-
mation, a smaller value means that the model depends more
on the supervision. We set A to 100 for all experiments.

3.3. Foreground mask as privileged information

In addition to the supervision from depth images, we also
explore the idea of extracting hand masks from depth im-
ages and embedding the hand masks into CNN layers of
RGB_PI_Net to suppress the background features. We treat
the hand mask M}, as privileged information. At test time,
when the hand mask is not available, the CNN model is
viewed as a standard CNN with convolutional layers, pool-
ing layers and full-connected layers, where the L,k is not
uscd. In the training stage, the foreground hand mask is in-
troduced in the last convolutional layer. Pixels of the mask
Mj, are zero on the hand region, and one otherwise. We
suppress background features by minimizing the regression
1oss Loask:

Lmask = ”AEGB © ]\/[hH% 3 (3)

Dataset No. Training No. Test No. Joints Annotation Type

Stereo [44] 15,000 3,000 21 2D, 3D real
RHD [47] 41,258 2,728 21 2D, 3D synthetic
Dexter-Object [29] - 3,111 5 (tips) 2D, 3D real

Table 1. Public datasets used in our experiments.

where © denotes element-wise multiplication. By minimiz-
ing the regression loss, where the response on the hand is
multiplied by zero and the response outside the hand is mul-
tiplied by one, the response from outside the hand area is
suppressed, focusing the response on the hand region.

4. Experiments

We carry out experiments on both 3D and 2D hand
pose estimation from RGB images. Our experiments are
conducted on three public RGB-D datasets: the RHD
dataset [47], the Stereo dataset [44], and the Dexter-Object
dataset [29], as shown in Table 1. The RHD dataset [47] is
created synthetically and contains 41,258 training and 2,728
test images, with a resolution of 320 x 320. The Stereo [44]
dataset is a real RGB-D dataset, which has 18,000 pairs of
RGB and depth images with a resolution of 640 x 480 pix-
els. The Dexter-Object (DO) [29] dataset contains 3,111
images of two subjects performing manipulations with a
cuboid. The dataset provides RGB and depth images, but
only fingertips are annotated. The RGB images have a res-
olution of 640 x 320 pixels. Due to the incomplete hand
annotation, we use this dataset for cross-dataset generaliza-
tion. During testing on a GTX 1080 Ti, the network forward
steps take 6ms for 3D pose estimation and 8ms for the 2D
case. The image cropping and normalization is the same as
in [47]. To crop the hand region, we use ground truth anno-
tations to obtain an axis-aligned crop, resized to 256 x256
pixels by bilinear interpolation. Examples are shown in the
first row of Figure 3. For 3D hand pose estimation, we use
the root joint’s world coordinates and the hand scale to nor-
malize the results.

4.1. 3D hand pose estimation from RGB

In this section, we investigate the usefulness of depth im-
ages to improve the performance of 3D hand pose estima-
tion from an RGB image. Our base CNN model is built
upon the feature extraction layers of Convolutional Pose
Machine (CPM) [40] with two fully connected layers. The
final output is a 63-d vector denoting the 21 joint 3D loca-
tions. Specifically, our base CNN model contains 14 con-
volutional layers, 4 pooling layers, and 2 fully-connected
layers. At training stage, we have access to paired RGB
and depth images. Initially the Depth_Net is trained on Big-
Hand?2.2M [43]. We continue to train the Depth_Net using
the depth images from the small dataset, e.g., Stereo dataset
or RHD dataset. We train the RGB_Net with the RGB im-
ages from the small dataset. When the initial training is
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Figure 2. Results on Stereo and RHD dataset for 3D hand pose and 2D pose accuracy. Top row shows the comparisons of 3D hand
pose accuracy, bottom row shows the comparisons of 2D hand pose accuracy. Top-left is self-comparison on RHD dataset, top-middle is
self-comparison on Stereo dataset, top-right is comparison with state-of-the-art on Stereo dataset. Bottom-left is self comparison on RHD
dataset, bottom-middle is self comparison on Stereo dataset, bottom-right is comparison with state-of-the-art on the Dexter-Object dataset.

completed, we start Pl-training with the paired RGB and
depth images. We freeze the weights of the Depth_Net and
add the intermediate regression loss L, among the mid-
level features of Depth_Net and RGB_PI_Net, then we con-
tinue the training of RGB_PI_Net by minimizing the joint
108S Ljoint. We apply the intermediate loss to the last con-
volutional layers of both branches, where the parameter % is
set to 18 in Equation 1 and Equation 2.

Effect of PI-Learning: We conduct experiments with
the two baseline CNNs and the CNN after PI training, see
the accuracy curves in Figure 2 (top-left plot), and some ex-
amples in Figure 5. Our networks only estimate relative 3D
pose from a cropped RGB image patch containing the hand,
to yield 3D hand pose in world coordinates, we follow a
similar procedure of [47], i.e., by adding the absolute posi-
tion of the root joint to our estimated results. For compar-
ison we choose the percentage of correct keypoints (PCK)
for varying threshold values. Training with depth data sig-
nificantly improves the performance of the RGB-based net-
work, narrowing the gap to the depth-based network.

Comparison with the state of the art: We com-
pare our results with state-of-the-art methods, including
PSO[19], ICPPSO [22], Zhang et al. [44], Z&B [47], GAN-
erated [16], Cai et al. [2], Spurr et al. [28], Igbal et al. [ 14],
Panteleris et al. [21], see Figure 2 (top-right plot). We out-
perform (Z&B) [47] and [16]. While both [47] and [16]
used extra training data, [47] used both Stereo (real) and
RHD (synthetic) data to train their network. [16] used syn-

thetic (GANerated) data to train their network. The pro-
posed method uses less RGB training data and achieved the
best performance.

Feature activation maps: To give more intuition into
training using additional privileged information, we visu-
alize the activations of the mid-level feature maps for the
three networks. Feeding an RGB image into each network,
we aggregate all the mid-level feature maps into feature map
by taking the maximum across all feature maps (similar to
the maxout operation [10]). As shown in Figure 3, training
with privileged information helps to select more represen-
tative features, where the visualized activations are close to
the foreground.

Loss function evolution: We plot the loss during our
training on the Stereo dataset, see Figure 4. The loss for 3D
hand pose (left) of the RGB network on the test data con-
verges at iteration 15,000, we continue training for another
5,000 iterations. From iteration 20,000, we fix the depth
network parameters and connect mid-level features between
the RGB and depth networks, and continue training by min-
imizing the joint loss (right) using RGB-D image pairs. The
intermediate loss (middle) is used to suppress the difference
between the mid-level feature between the RGB and depth
networks. Loss for 3D hand pose of the RGB network, and
the joint loss stop decreasing at around iteration 30,000.



Figure 3. Feature activation maps. (top row) input images, (row
2) activations of the RGB network trained on RGB only, (row 3)
activations of the RGB network trained with additional depth data,
(row 4) activations of the depth network.

4.2. 2D hand pose estimation from RGB

In this section, we choose the base CNN model as
CPM [40], which has shown great performance for 2D
human pose estimation [40], and 2D hand pose estima-
tion [47]. Results are reported in Table 2, where ‘EPE’ is
the average end point crror in pixels, where an end point is
a hand joint. Qualitative examples are shown in Figure 6.
In this part of experiments, we treat the hand mask as priv-
ileged data, the CNN base model is CPM [27]. The base-
line is obtained by the normal training procedure, i.e., feed-
ing the pre-processed hand image into CPM and obtaining
the 2D hand pose by finding out the maximum location in
each of the 21 heatmaps. For training with privileged in-
formation, we randomly select a certain proportion of RGB
training data and use the hand masks, which are obtained
by thresholding the depth images, in Ly, sk to suppress the
background responses. As shown in Table 2, where 0.2 and
0.8 denotes the percentage of images when the L5k 1S
used during the training for 2D hand pose estimation.

Performance on hand-object interaction dataset: In
Figure 2 (bottom-right plot), we show a comparison in
terms of 2D PCK (in pixels) on the Dexter-Object(DO) [29]
dataset. Z&B_Joint denotes the method of Z&B [47] trained
on both RHD and Stereo datasets, which is better than
Z&B_Stereo (trained on Stereo) and Z&B_RHD (trained on
RHD). Our approach outperformed Z&B_Joint even though
we used less RGB training data.

Method Testing Training EPE median  EPE mean
Z&B [47] RHD RHD/Stereo  5.001 9.135
Baseline RGB RHD RHD 3.708 7.841
Baseline Depth RHD RHD 2.087 3.902
RGB + PI training RHD RHD 2.642 5.223
Z&B [47] Stereo RHD/Stereo  5.522 5.013
Baseline RGB Stereo Stereo 5.250 6.533
Baseline Depth Stereo Stereo 4.775 5.883
RGB + PI training (0.2)  Stereo Stereo 5.068 6.280
RGB + PI training (0.8)  Stereo Stereo 4.515 5.801
Z&B [47] DO RHD/Stereo  13.684 25.160
Baseline RGB DO RHD 13.360 18.278
RGB + PI training DO RHD 11.809 14.593

Table 2. 2D Hand Pose Accuracy. Results when training on the
RHD and Stereo datasets. The median and mean errors of RGB+PI
training are consistently lower than the Baseline RGB error.

5. Conclusions

In this paper, we proposed a framework for 3D hand
pose estimation from RGB images, with privileged infor-
mation at the training stage in the form of depth data. We
proposed three ways to use the privileged information: as
training data for a depth-based network, as paired depth
data to transfer supervision from the depth-based network
to the RGB-based network, and to suppress background ac-
tivations in the RGB-based network. This training strategy
can be easily embedded into existing pose estimation meth-
ods. As an illustration, we showed how to trained a different
CNN model to predict 2D hand pose from an RGB image.
During testing, when only RGB images are available, our
model significantly outperformed models trained on RGB
images only.
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