
Weakly-Supervised Completion Moment Detection using Temporal Attention

Farnoosh Heidarivincheh, Majid Mirmehdi and Dima Damen

Department of Computer Science

University of Bristol, Bristol, UK

{farnoosh.heidarivincheh, M.Mirmehdi, Dima.Damen}@bristol.ac.uk

Abstract

Monitoring the progression of an action towards comple-

tion offers fine grained insight into the actor’s behaviour.

In this work, we target detecting the completion moment

of actions, that is the moment when the action’s goal has

been successfully accomplished. This has potential applica-

tions from surveillance to assistive living and human-robot

interactions. Previous effort [14] required human annota-

tions of the completion moment for training (i.e. full su-

pervision). In this work, we present an approach for mo-

ment detection from weak video-level labels. Given both

complete and incomplete sequences, of the same action, we

learn temporal attention, along with accumulated comple-

tion prediction from all frames in the sequence. We also

demonstrate how the approach can be used when comple-

tion moment supervision is available. We evaluate and com-

pare our approach on actions from three datasets, namely

HMDB, UCF101 and RGBD-AC, and show that temporal

attention improves detection in both weakly-supervised and

fully-supervised settings.

1. Introduction

In the past few decades, with an increasing ubiquity and

accessibility of video records, a significant part of research

has been devoted to analysing human behaviour in video,

including analysing human actions. This active area of re-

search has vast applications, such as health-care, surveil-

lance, video retrieval, entertainment, robotics and human-

computer interaction. At its heart, action recognition has

evolved from traditional hand-crafted features [18, 34, 35]

to deep learning based approaches [16, 31, 4, 11] and

achieved remarkable results. However, recent works have

focused on proposing network architectures to deal with the

spatio-temporal input, and neglected to explore fake or in-

complete action instances.

In this paper, we focus on incomplete actions, whether

intentional or accidental, which could be crucial in contexts

such as surveillance and health-care applications. These

are actions which are attempted but their goals remain in-

complete. Such incomplete sequences could be incorrectly

recognised, or localised, by current state-of-the-art meth-

ods. As an example, consider an incomplete pick, where

the subject only pretends to pick an object up. Standard

action recognition classifiers would identify this as a pick

action, because of its similar motion to successfully com-

pleted picks. Likewise, a patient picking up a medicine

tablet, but not ingesting it, would also be incorrectly recog-

nised as “take medicine” action, posing risks to automatic

monitoring of their health.

Action completion was first introduced in [13] to as-

sess whether the action’s goal is achieved. The approach

outputs sequence-level predictions of completion to dis-

tinguish complete sequences from incomplete ones. Sub-

sequent works [14, 2] proposed finer-grained analysis of

an action’s progression towards completion. For example,

[14] looks for visual clues which confirm the goal’s comple-

tion and detects the completion moment from frame-level

pre- and post-completion labels.

In this work, we also investigate completion moment de-

tection. However, we differ from [14] in the supervision

by which our method learns to detect completion. Frame-

level annotations are not only expensive to collect, but im-

portantly, highly subjective and often noisy [24, 30, 23].

We offer the first attempt to completion moment detection

with weak supervision, i.e. using only sequence-level com-

plete and incomplete labels. Fig 1 illustrates frame-level

and sequence-level labels for a complete pick action. Given

weak labels, we show that completion moment detection

could be achieved, by learning temporal attention.

We propose to use convolutional and recurrent cells with

learnt temporal attention, and accumulate evidence for com-

pletion from all frames along the sequence, where evidence

is weighted according to the frame’s importance to the com-

pletion moment prediction. A similar approach was at-

tempted in [14], however with full supervision and without

temporal attention, where all frames contributed equally to

the completion moment detection. We show that our pro-

posed approach outperforms [14] when fully supervised,



Frame-level pre- and post-completion labels Sequence-level complete label
Figure 1. While frame-level labels (left) are used in a fully-supervised approach like [13], we detect the completion moment only using

weak labels, i.e. sequence level complete and incomplete (right).

but importantly is also able to detect completion using weak

video-level supervision.

We evaluate our approach on selected actions from

HMDB [17], UCF101 [33] and RGBD-AC [13]. We show

that learning temporal attention decreases the completion

detection error, i.e. the relative distance between the pre-

dicted and ground truth completion moment, by 15% of the

sequence length with weak supervision and by 3% when

fully supervised.

The remainder of this paper is organised as follows: re-

lated work in Sec. 2, proposed method in Sec. 3, experi-

ments and results in Sec. 4 and conclusion and future work

in Sec. 5.

2. Related Work

In this section, we differentiate our work from ap-

proaches that attempted moment detection in actions, in-

cluding for action completion. We also review works that

utilised temporal attention learning, including for action lo-

calisation.

Moment Detection: Temporal action detection from

untrimmed videos [38, 29, 5] involves localising start and

end points of actions. These works assume all actions are

successfully completed, and do not consider incomplete at-

tempts. A few methods [2, 15, 9, 43, 22], on the other hand,

have adopted approaches that model action progression or

detect particular key moments within actions. Ma et al. [22]

detect an action by learning its progression through time.

They devise a loss which maximises the margin between

the correct action class and other classes as the action pro-

gresses further. Hoai and De la Torre [15] also detect ac-

tions in untrimmed sequences, where the action progres-

sion is modelled by a score function, learned using a Sup-

port Vector Machine classifier that peaks when the action

ends. Similarly, Becattini et al. [2] attempt to recognise

actions by modelling their evolution through time, where

the progress is assumed to be linear, reaching the highest at

the end of the sequence. Dwibedi et al. [9] propose a self-

supervised approach to learn temporal alignment between

sequences based on the similarity between their frames and

then observe an action’s progression between key frames

given the learnt alignment. Yeung et al. [43] detect ac-

tions by looking at individual frames through the sequence,

where the location of the next input frame is predicted rel-

ative to the current frame. Although these works present a

fine-grained analysis from the action progression, they also

consider complete attempts and do not detect or localise the

completion moment.

Action completion [13] differs from these works, as it fo-

cuses on the action’s goal. In [14], completion moment de-

tection was addressed using a classification-regression net-

work which outputs frame-level predictions. These predic-

tions are accumulated, using voting, to detect the comple-

tion moment. However, the method is fully supervised, re-

quiring the completion moment annotations for training. In

contrast, we solve the same problem using only sequence-

level complete and incomplete labels (i.e. weak labels),

through utilising temporal attention learning.

Attention Learning has proven beneficial for research

problems, such as image captioning [40, 41, 6], ob-

ject detection and tracking [3, 7, 1] and person re-

identification [12, 20, 39]. Recently action recognition

and localisation have also used attention networks to learn

which spatial and/or temporal regions contain the most dis-

criminative information. While some works [28, 10, 21, 37]

have only focused on frame-level attention (spatial and mo-

tion), many others [8, 32, 19, 27, 42, 36, 26, 25] have also

incorporated temporal attention in their models. They learn

attention scores on the temporal dimension which are then

used to weight the frames according to their importance to

the final prediction. Of these, Pei et al. [27] introduce a

recurrent unit for sequence classification in which a high

attention score at each time step pushes the network to fo-

cus on the current observations rather than the past ones.

Song et al [32] use LSTM for learning temporal attention

from skeleton data in action recognition. Du et al. [8] also

propose an approach for action recognition using an LSTM

with temporal softmax normalisation. Weighted observa-

tions, through learnt attention, from all frames in the se-

quence are combined to recognise the current frame’s on-

going action.

For action localisation with weak supervision, several



approaches have also attempted learning temporal attention,

such as [36, 26, 25, 19, 42]. For example, Yeung et al. [42]

learn temporal attention for dense labelling in action local-

isation. Since they use trimmed sequences for training, but

apply the learnt attention to localise actions in untrimmed

sequences, their detection is considered weakly supervised.

Other works, however, use untrimmed sequences in train-

ing. Li et al. [19] apply attention for action recognition

and action detection in untrimmed sequences, using fea-

tures from multiple modalities as the input to the temporal

attention LSTM before softmax normalisation. Nguyen et

al. [25] learn attention for action classification. They nor-

malise the attention scores by a sigmoid function, and then

use these to estimate the discriminative class-specific tem-

poral regions for localising actions. Wang et al. [36] predict

the action’s temporal extents by combining hard and soft

selection methods, where the soft selection relies on the

attention weights for the clip proposals sampled from the

untrimmed sequences. In [26], the attention scores are first

predicted as a temporal softmax on the class-wise activa-

tions and used during training. They then apply a threshold

on class-wise activations for localising actions.

In our method, we also use an LSTM for learning atten-

tion and a temporal softmax for its normalisation. However,

our method differs not only in the problem of completion

moment detection, but in how we accumulate evidence from

all frames in the sequence based on learnt attention. We lo-

calise the completion moment within trimmed sequences for

both training and evaluation.

3. Temporal Attention for Completion Moment

Detection

We now present our approach to weakly-supervised

completion moment detection, when video-level annota-

tions only are present. Assume Xi = {x1
i , · · ·x

T
i } are the

frames in a sequence of length T where an action has been

attempted, and yi ∈ {0, 1} is the binary video-level label,

indicating whether the attempt has been successfully com-

pleted or not. Our method takes as input both complete and

incomplete sequences of the same action.

To predict the completion moment with weak supervi-

sion, we propose a network architecture that contains a con-

volutional frame-level feature extracting network, followed

by two recurrent cells for completion prediction and tempo-

ral attention prediction, trained jointly with a cross-entropy

loss function. Fig 2 depicts our architecture, showing the

per-frame feature extraction and recurrent nodes (left) along

with the training loss (top left). The frame-level predic-

tions are then accumulated (right) to infer the completion

moment.

For feature extraction, we train a convolutional network,

by propagating the video-level label yi to all frames in a

video, and optimise it using the cross-entropy loss,

L =

M
∑

i=1

Ti
∑

t=1

−
(

yilogf
c(f(xt

i))+(1−yi)log(1−f c(f(xt
i)))

)

,

(1)

where M is the number of sequences. The loss is optimised

over all frames in all sequences, comparing the video-level

labels yi against classification outputs f c(), while frame-

level features f(xt
i) are accordingly trained. These learnt

features form a good base for completion moment detec-

tion, to be refined by the recurrent cells. This is based on

the realistic assumption that, up to the completion moment,

both complete and incomplete sequences are indistinguish-

able. However, after completion, there are appearance dis-

tinctions between the frames, to signify completion.

We train two recurrent models, namely LSTMs, jointly,

one for temporal attention, i.e. to learn the relevance of each

frame t to completion moment detection, at, and one to pre-

dict temporally-evidenced completion scores, st. The tem-

poral attention network is a standard LSTM, taking the fea-

tures f(xt) as input - note that we simplified the notation

xt
i to xt as the LSTM is trained and evaluated on one se-

quence. We compute the attention scores by applying a soft-

max function to the output nodes of this LSTM, oat , across

the temporal dimension, such that

at =
eo

a
t

T
∑

j=1

eo
a
j

. (2)

The second LSTM, also takes the same input f(xt), and its

output ost is then combined with the attention at to produce

completion scores per frame

st =
1

1 + e−ato
s
t

. (3)

The scores st are the confidence of observing completion at

frame t. In other words, a frame with a high st has observed

distinctive signatures for completion, making it more con-

fident that the sequence has been completed, with 1 − st
reflecting the confidence for incompletion. We use these

frame-level predictions to compute the completion moment,

such that

ŷ = argmax
j

(

j
∑

t=1

(1− st) +

T
∑

t=j+1

st
)

. (4)

The predicted completion moment ŷ is one where the score

for completion beyond frame j as well as the score for in-

completion before frame j are the maximum.

During training, only video-level labels are available,

and the ground-truth completion moment is unknown. We



Figure 2. Weakly supervised, the learnt attention scores (red distribution) and completion confidence scores are combined to infer the

completion moment ŷ (Eq 4). The frames depict a complete sequence of action blowing candles and colors green and blue represent the

observed evidence for completion and incompletion, respectively.

thus train for sequence level prediction, such that

ŷtri =
1

1 + e−
∑

t
(ato

s
t )

, (5)

L =
∑

i

−(yiŷ
tr
i + (1− yi)(1− ŷtri )) , (6)

where ytri indicates whether the sequence has been com-

pleted, somewhere along its frames. These predictions are

optimised against the video-level completion labels, for all

sequences. Note that, using at in the training loss makes the

model learn to weight highly the temporal regions which

contain discriminative evidence for completion.

While focusing on weakly-supervised completion mo-

ment detection, we also evaluate our proposed architecture

in a supervised approach. We similarly combine comple-

tion detection with temporal attention, when supervision

for the completion moment is available. We thus train the

output of the confidence scores ost in the same way as the

regression-based supervision in [14], using the relative dis-

tance rt = t−τi
τi

between the frame t and the ground-truth

completion moment τi, allowing the approaches to be di-

rectly comparable. The sequence-level loss Li would then

be:

L
supervised
i =

Ti
∑

t=1

at(o
s
t − rt)

2. (7)

Using these scores,

s
supervised
t = at

t

ost + 1
, (8)

estimates the completion moment from each frame,

weighted by the learnt attention scores. The sequence-level

completion moment is finally predicted as

ŷsupervised =

T
∑

t=1

st. (9)

Fig. 3 illustrates the supervised completion detection where

the frame-level evidences are accumulated across the se-

quence during inference.

4. Experimental Results

Dataset and Implementation Details – We evaluate

our approach on the 16 actions used in [14] as the only prior

work to attempt completion moment detection, and using

the publicly available annotations provided by [14]. These

actions have been collected from three public datasets:

HMDB [17], UCF101 [33] and RGBD-AC [13]. As stated

in [14], these actions cover sport-based and daily actions,

for which completion can be defined, and include both com-

plete and incomplete sequences for training. We report re-

sults on all 16 actions when supervised. However, in the

weakly supervised setting, we require sufficient incomplete

sequences per action to be able to train with only video-

level weak labels. Of these 16 actions, we only evaluate

on 10 actions which have both complete and incomplete se-

quences, while the remaining 6 have less than 5% incom-

plete sequences.

For feature extraction, we used the spatial stream of

VGG-16 architecture, pre-trained on UCF101. We then

fine-tuned it for 20 epochs to acquire frame-level features.

The learning rate was started at 10−3, divided by 10 at

epochs 3 and 5. The features were extracted from the

output of the fc7 layer. Both LSTM cells (attention and



Figure 3. In the Supervised model, the sequence level completion moment is the weighted average of the frame-level predictions, using the

attention scores.

completion moment prediction) had a single layer with 128

hidden units. When fully supervised, we first trained the

completion prediction LSTM st for 10 epochs for stability,

then jointly trained both LSTMs for 5 more epochs. When

weakly-supervised, we initialised both LSTMs from ran-

dom and trained them jointly for 10 epochs. The learning

rates for the LSTM training in both approaches was 10−2

for the first 5 epochs and then was divided by 10 for the rest.

For temporal prediction, we normalised the sequences to a

fixed length, equal to the minimum length of any sequence

in that action. Note that our method is not dependent on the

sequence length and thus is robust to any other pre-specified

length. Additionally, the attention scores were normalised

between zero and one and those less than 0.5 were truncated

to 0 during inference .

Evaluation Metrics – As in [14], we report the accuracy as

the average percentage of frames that are correctly labeled

into pre- and post-completion, given the ground-truth τi and

the predicted completion moment ŷi, such that

Accuracy =
1

M

M
∑

i=1

1

Ti

Ti
∑

t=1

[

(t < ŷi ∧ t < τi)

∨ (t ≥ ŷi ∧ t ≥ τi)
]

.

(10)

We also report RD as the relative distance between the pre-

dicted and ground truth completion moment, averaged on all

sequences.

RD =
1

M

M
∑

i=1

||ŷi − τi||

Ti

. (11)

Weakly Supervised Completion Detection – Table 1

shows the results of our proposed method for weakly su-

pervised completion moment detection using uniform at-

tention (WS-U) as well as with learnt temporal attention

Incomplete Accuracy RD

% WS-U WS-Att WS-U WS-Att

HMDB pick 22.4 34.8 48.6 0.65 0.51

UCF101

basketball 23.9 38.2 58.0 0.62 0.42

soccer penalty 30.7 34.4 55.6 0.66 0.44

blowing candles 45.9 43.8 70.9 0.56 0.29

RGBD-AC

switch 47.8 86.9 89.9 0.13 0.1

plug 49.3 62.0 78.6 0.38 0.21

open 47.1 74.6 77.1 0.25 0.23

pull 52.1 79.1 83.8 0.21 0.16

pick 52.2 58.4 83.0 0.42 0.17

drink 48.5 57.2 69.6 0.43 0.30

total 39.3 53.8 69.4 0.46 0.31

Table 1. Results comparing weakly supervised completion mo-

ment detection with and without temporal attention learning.

Accuracy RD

[14] S-U S-Att [14] S-U S-Att

H
M

D
B

catch 80.5 82.3 83.5 0.20 0.18 0.17

drink 78.0 80.3 81.1 0.22 0.20 0.19

pick 79.9 81.8 83.2 0.20 0.18 0.17

pour 80.0 77.8 78.3 0.20 0.22 0.22

throw 74.6 76.9 78.3 0.25 0.23 0.22

U
C

F
1

0
1

basketball 79.5 82.8 83.6 0.20 0.17 0.16

blowing candles 84.2 89.9 90.1 0.16 0.10 0.10

frisbee catch 78.3 86.6 86.9 0.22 0.13 0.13

pole vault 88.4 88.4 89.7 0.12 0.12 0.10

soccer penalty 87.1 87.0 87.9 0.13 0.13 0.12

R
G

B
D

-A
C

switch 98.1 94.6 98.2 0.02 0.05 0.02

plug 96.1 95.1 96.8 0.04 0.05 0.03

open 86.7 88.2 91.3 0.13 0.12 0.09

pull 94.1 92.4 95.1 0.06 0.08 0.05

pick 93.2 90.5 92.0 0.07 0.09 0.08

drink 90.9 89.0 91.2 0.09 0.11 0.09

total 84.9 86.1 87.4 0.15 0.14 0.12

Table 2. Results comparing fully supervised completion moment

detection with and without temporal attention learning.

(WS-Att). In WS-U, we do not learn attention, and use

uniform weighting in inference. Learning temporal atten-

tion improves results for all actions and both metrics. For

actions with a smaller percentage of incomplete sequences,



Examples of success

Example of failure
Figure 4. Qualitative results for weakly supervised completion moment detection. Top to bottom: UCF101-soccer penalty, RGBD-AC-pull,

UCF101-blowing candles and HMDB-pick, respectively.

i.e. HMDB-pick, UCF101-basketball and UCF101-soccer

penalty, the performance is lower for both metrics, though

temporal attention consistently improves the results. In to-

tal, i.e. on all sequences from the three datasets, RD drops

to 0.31 with WS-Att.

We also present some qualitative results for the weakly

supervised approach in Fig. 4 where the first bar depicts the

completion scores st - with green and blue representing the

observed evidence for completion and incompletion respec-

tively. The attention is shown in red, and results in orange

and purple represent pre and post-completion labels, respec-

tively. In the first two sequences, the temporal attention sig-

nificantly improves the results by correctly weighting the

frames after completion where discriminative featuers are

observed. In the third example from action blowing can-

dles, while WS-U has been misled by the completion scores

at the end of the sequence, WS-Att correctly detected no

completion. The last sequence shows a failure case for ac-

tion pick. We believe this would be improved with more

incomplete sequences during training.

Supervised Temporal Attention Learning – Table 2

shows the results of the supervised approach, compared to

the R-R method in [14], which is comparable to ours as it

does not use frame-level pre/post-completion classification,

but directly predicts the completion moment. We also com-

pare uniform weighting (S-U) to the learnt attention (S-Att).

Learning temporal attention outperforms uniform weight-

ing on all 16 actions, and outperforms the baseline on 14

out of the 16 actions. In total, RD drops to 0.12 with S-Att.

We present qualitative results for our method, when su-

pervised, in Fig 5. The first bar represents the frame-level

regression error, i.e. ||ost − rt|| (darker is lower error). The



Examples of success

Examples of failalure
Figure 5. Qualitative results, using supervised learning. Top left to bottom right: UCF101-pole vault, RGBD-AC-open, HMDB-throw and

UCF101-basketball, respectively.
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Figure 6. Frame-level regression errors (in blue) are depicted against the attention scores in both fully (red) and weakly (orange) supervised

approaches. Note that ‘0’ on the x-axis indicates the completion moment for all complete sequences, and the end of the sequence for all

incomplete sequences.



examples of success (left) show two sequences from actions

UCF101-pole vault and RGBD-AC-open. Temporal atten-

tion improves the completion moment detection for both

complete (top left) and incomplete (bottom left) sequences,

as high attention correctly aligns to regions with small pre-

diction error. The examples of failure (right) represent

two sequences from actions HMDB-throw and UCF101-

basketball, where attention has not been able to pick the

regions with small error. In the basketball example, the se-

quence is detected as complete with and without attention,

despite being incomplete.

Frame-level Analysis – We plot the frame-level errors, as

well as the attention scores, averaged for all actions, on

the three datasets in Fig. 6. The figure shows lower pre-

diction errors (blue), both before and after the completion

moment, in two clear minimas. Increased confusion around

the completion moment comes from the very similar fea-

tures before completion moment. We also show the learnt

temporal attention for both supervised (red) and weakly su-

pervised (orange) approaches. Generally, higher attention

corresponds to lower prediction error - signifying that these

frames will have a higher impact in the overall completion

moment prediction. When weakly-supervised, the atten-

tion scores are comparable to full-supervision though un-

derstandably softer attention is learnt.

5. Conclusion and Future Work

In this paper, we proposed a method to detect the com-

pletion moment in a variety of actions, suitable for both

weakly-supervised and fully supervised sequences. In

weak-supervision, video-level labels of completion or in-

completion are only required, for the same action. When a

sufficient number of incomplete sequences is available dur-

ing training, our approach, (1) learns discriminative features

for frames pre- and post- completion, by propagating video-

level labels to individual frames, (2) learns temporal atten-

tion, to weight discriminative frame-level features, and then

(3) accumulates evidence for completion, weighted by the

learnt attention, from all frames to predict the completion

moment, or identify the attempt as incomplete. We eval-

uated our approach on 16 actions (with full supervision)

and 10 actions (with weak supervision), from 3 datasets.

When weakly-supervised, learning attention significantly

improved the results on all tested actions. Under full su-

pervision, we outperform prior work [14] on 14 out of the

16 actions.

For future work, we aim to augment the temporal atten-

tion with within-frame spatial attention to learn image re-

gions that are most discriminative for completion. We will

also combine our soft attention with hard attention mecha-

nisms, similar to [36]. Further, we will investigate comple-

tion moment detection from untrimmed sequences, which

contain multiple action instances.
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