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Abstract

In this paper, we propose a set of features called tempo-

ral accumulative features (TAF) for representing and rec-

ognizing isolated sign language gestures. By incorporat-

ing sign language specific constructs to better represent the

unique linguistic characteristic of sign language videos, we

have devised an efficient and fast SLR method for recogniz-

ing isolated sign language gestures. The proposed method

is an HSV based accumulative video representation where

keyframes based on the linguistic movement-hold model are

represented by different colors. We also incorporate hand

shape information and using a small scale convolutional

neural network, demonstrate that sequential modeling of

accumulative features for linguistic subunits improves upon

baseline classification results.

1. Introduction

Sign languages are a system of visual communication

used by deaf communities around the world. Sign language

users also called signers, make use of hand gestures, up-

per body movements, and facial expressions to form signs

and convey meaning visually to other signers. Similar to

spoken languages, sign languages have rules that determine

their grammar and phonology, allowing users to fluently ex-

press themselves with a corpus of thousands of words from

simple commands to complex and abstract sentences.

Due to its inherent complex nature and challenges

present in its capture, automatic sign language recognition

(SLR) has been an active topic of research in the computer

vision community for the last 30 years. It is essentially a

video classification problem where the task is to find the

correct class label by observing the sequence of frames that

belong to the video. Due to the complex nature of Sign

Language grammars, the problem is tackled in several dif-

ferent levels of complexity. In this study, we are interested

in the isolated SLR problem, in which the goal is to perform

recognition in a controlled dataset, where disjoint signs are

temporally annotated marking their beginning and end lo-

cations. In these types of problems, the challenge lies in

successfully distinguishing signs among each other, while

making sure variations in the performance of the same sign

by different users can be recognized as similar. While there

exist numerous studies on isolated sign language recogni-

tion, the current state of the art in the SLR field makes use

of deep learning techniques developed for the action recog-

nition domain.

Action recognition is an active research field in video

recognition, where the availability of huge datasets such

as HMDB [29], UCF-101 [45] and Kinetics [24] have ac-

tively driven researchers in academia and industry to push

the state of the art. Methods developed in action recogni-

tion such as multi-stream networks and 3D convolutional

models require large datasets to train models. In the prob-

lem of human action recognition, there are several impor-

tant sources of information such as context, human poses,

interactions, and movements. Methods such as I3D exhaus-

tively capture information from those sources to achieve

state of the art performance [9]. However, in a recent study

called PoTion [12], it was demonstrated that incorporating

accumulated human joint pose information to I3D improved

recognition performance with actions where human move-

ments were crucial for differentiation.

Along with its similarities to human action and activity

recognition, sign language recognition has important dif-

ferentiating characteristics: In sign language videos shot

for automatic Sign Language Recognition (SLR), users per-

form gestures in front of a camera gesticulating with their

hands, upper body and faces. Therefore, only fine differ-

ences in human pose, hand shape and facial expressions can

be used to differentiate among classes. In addition, differ-

ent performances by individual signers make this problem

tougher by increasing inter-class variability where intra-

class variability is already low to begin with. Compared to

action and activity recognition where context plays a large

role, this brings a requirement for SLR developers to rely

solely on the success of human pose capture and represen-

tation techniques for distinguishing among classes. In ad-

dition, sign language videos tend to follow certain gram-



Figure 1. The sign ”Crawling” represented using the Liddell-

Johnson [31] Movement-hold pattern. Most signs follow this

grammatical rule, as they may be composed of dynamic and static

subunits sequentially following one another.

matical rules such as the Liddell-Johnson [31] grammatical

model, which assumes that gestures follow a movement-

hold pattern sequentially.

Due to these differences in the nature of SL, in order to

better adapt techniques developed for action recognition to

SLR, we should focus on methods capturing human motion,

hand shapes and movement trajectories instead of context,

interactions and variations in appearance. In addition, uti-

lizing the temporal structure to account for sign linguistic

rules such as the movement-hold pattern would be benefi-

cial in achieving better temporal alignment in recognizing

complex gestures consisting of multiple subunits. In this

study, we propose an approach to adapt a number of tech-

niques proposed for human action recognition to the prob-

lem of SLR.

The proposed method uses heat maps obtained from sen-

sor supplied skeleton joints and creates temporally accu-

mulated images from them to construct video level fea-

tures. These features are represented with a HSV color

space based color scheme to represent temporal groupings,

temporal location inside the group and heatmap strength.

Through keyframe detection, we incorporate dynamic sub-

units which are represented with different colors based on

their order of occurrence. The proposed hand speed and

density clustering based approach achieves high quality

subunit segmentation. These subunits are coupled with

hand shapes representing the hold part of the gestures ex-

tracted via an unsupervised hand shape segmentation algo-

rithm. These static subunits are included in the feature set

as single frames or several consecutive frames to increase

descriptive value.

The contributions of this paper are as follows:

1. The adaptation of the baseline PoTion method to the

sign language recognition domain to perform SLR and

finding the optimal model architecture.

2. A hue based novel temporal colorization scheme that

allows distinct representation with arbitrary temporal

channels or subunits as well as allowing distinct rep-

resentations of temporal location and joint heatmap

strength.

3. A static subunit detection method that makes use of

local minima in hand speed with density clustering to

extract dynamic and static subunits.

4. Unsupervised hand segmentation to represent hand

shapes and utilize these hand shapes as static subunits

in the form of keyframes and keyshots with the tempo-

rally accumulated features.

2. Related Work

Following the success of deep learning approaches on

tasks such as image classification and segmentation [28, 20,

49, 44], recent studies on human action recognition have

focused on adapting successful deep image recognition ar-

chitectures into the video classification domain. While ear-

lier work mostly used 2D CNNs to extend the spatial do-

main temporally by using different input frames and layer

level fusion techniques [22], later approaches tried to learn

videos by exploiting the spatial domain into the tempo-

ral domain using 3D CNNs [52], two-stream architectures

[43, 9, 15, 16] and recurrent architectures [57, 21, 30, 13].

Based on the two-stream hypothesis, which supports

the idea that human visual cortex consists of two sepa-

rate pathways; dorsal (motion) and ventral (appearance)

streams, [43] used still frames for ventral and stacked opti-

cal flow images for dorsal streams, and successfully trained

both networks on UCF-101 and HMDB datasets. Although

the idea of two-stream networks were thought as networks

trained on two classification streams (appearance and mo-

tion) [43], researchers have expanded this idea by adding

multiple modalities (e.g. audio spectrograms) for multi-

modal action recognition [55]. Recently, I3D architec-

ture [9] was proposed as an improvement of two-stream

networks. In another work, Wang et al. [53] have pro-

posed Temporal Segment Networks (TSNs) with the pur-

pose of solving the long-range temporal limitations of two-

stream networks by using temporal sampling. More re-

cently, Choutas et al. [12] proposed PoTion representations

for human action recognition. In the method, pose informa-

tion of individuals in the frame was aggregated over time,

and represented as encoding of video clips after a coloriza-

tion process.

In the video recognition literature, accumulative features

similar to Potion have long been used as simple descriptors

to represent videos: Motion History Image (MHI) [3] and

Motion Energy Image (MEI) [2] capture energy and motion

over the temporal domain. [54] uses such a representation

to represent the signer’s body pose, hand shape and hand



movements. Later on, as these features were found to be

insufficient in representing gestures, researchers used more

complex features such as Space-Time Interest Points (STIP)

[35], Histogram of Oriented Gradients (HOG) [32, 7] and

Improved Dense Trajectories (IDT) [37, 36].

Similar to human action recognition, sign language

recognition was also influenced by the recent developments

of deep learning. Pigou et al. explore the idea of merging

and forming CNN and RNN based architectures for gesture

recognition [39], and proposed a CNN based architecture

for sign language recognition [38]. Koller et al. [26] pro-

posed a frame-based CNN-HMM architecture for sign lan-

guage classification problem which was trained on nearly 1
million hand images. Due to its success on problems such

as action recognition, 3D convolutional neural network ar-

chitectures have also been used for gesture and sign lan-

guage recognition [33, 4]. Recently, Camgoz et al. [5]

used Bi-directional LSTMs to train an end-to-end contin-

uous sign language recognition framework which is based

on subunit modelling. Aside from the recognition problems,

researchers have also pursued the idea of translating sign

language videos into spoken language by adapting neural

machine translation approaches into the sign language do-

main [6, 19, 48].

In the sign language literature, there are various ap-

proaches that study subunit based sign language recog-

nition. Similar to the representation of utterances by

phonemes in spoken languages, signs may be considered

to be composed of subunits concatenated over time. There

are studies on the sequential structure of sign languages

such as the Stokoe notation [47] and the works of Liddell

and Johnson [31]. In applying phonetic modeling to auto-

matic recognition, there are several studies. As there is a

lack of subunit corpus and lexicons available for most sign

languages, majority of the methods focus on unsupervised

learning from data. Some of the notable ones include [14],

where the authors use single states in an HMM to cluster

dynamic subunits and generate a subunit lexicon. In [27], a

rule based phoneme extraction method is used. One study,

that makes use of the movement-hold model to construct

an end to end sign language recognition model is [51]. In

this study, a phonetic modeling approach for unsupervised

dynamic-static subunit extraction is proposed as well as sign

subunit modeling with HMMs.

In sign languages like Turkish sign language, where a

lexicon of available subunits is not well defined, researchers

have often made use of data driven subunit representation

methods. Currently, there exists several hand datasets that

can be leveraged for either hand keypoints or segmented

hand masks. Deep learning methods have greatly improved

the state of the art in image segmentation. Initial deep learn-

ing methods such as Fully Convolutional Networks [42] and

UNet [41] have been greatly improved. Current state of the

art models in the field include popular approaches such as

Deeplab v3+ [10], PSPNet, neural architecture search gen-

erated Auto-Deeplab and Densely Connected Atrous Spa-

tial Pyramid Pooling (DenseASPP) [56]. In this study, we

made use of semantic segmentation techniques to represent

hand shapes.

3. Sign Language Recognition Using Temporal

Accumulative Features

Sign languages rely on a sequence of body part config-

urations to convey a message. To decipher this message,

body part detection methods are commonly used. Deep

learning methods that solely rely on skeletal information

or those that combine skeletal information with visual in-

formation have achieved top performances in recognizing

signs in large sign language datasets. In our case, the tar-

geted Bosphorus Sign Dataset (Section 4.1) [8] contains

high quality upper body joint coordinate annotations and

high definition RGB images making the use of accumula-

tive joint information in combination with hand shapes a

powerful representation candidate.

An overview of the proposed framework is presented in

Figure 2. The system employs accumulative features cou-

pled with subunit representations, the details of which are

discussed in the following subsections, to classify signs.

3.1. Temporal Accumulative Features

Temporal Accumulative Features (TAF) is a novel Sign

language representation method, that captures a signers

body movements and hand shape while taking into account

the movement and hold structure shared through sign lan-

guages. Accumulative features like PoTion [12] have shown

promising performance on action recognition. The pro-

posed method can be regarded as an adaptation of the Po-

Tion method with major modifications to its inputs and tem-

poral representation methods.

In constructing temporal accumulative features, we first

obtain frame level joint coordinate representations in the

form of heatmaps. These heatmaps are aggregated for each

video to obtain a temporal representation of the movement.

Two different colorization strategies are used to represent

sign language gestures in the temporal domain: Linear and

subunit-based. Finally, the constructed features are inputs

to a Convolutional Neural Network for sign level classifica-

tion, and a class label of the sign is obtained.

3.1.1 Obtaining joint heatmaps for TAF

In order to represent signers upper body configurations, we

have made use of the 3D human joint coordinates detected

by the Kinect-v2 camera. In the absence of 3D skeleton

information, 2D skeleton extraction methods may be em-

ployed to extract the skeleton, as in [12].



Figure 2. Overview of Proposed Framework.

We generated heatmap images using the skeleton joints

and assuming Gaussian uncertainties on the joint locations.

Of the 25 Kinect joints, experimentation showed that using

only heatmaps of 10 joints belonging to the left and right

upper arms, elbows, wrists, hand tips and thumbs and an

additional background joint heatmap containing represen-

tations of all joints was sufficient. We have scaled all the

heatmaps to 116 × 64 pixels to achieve better performance

comparison with the original PoTion method [12].

3.1.2 Accumulating joint heatmaps over time

Prior to obtaining frame level heatmaps, we construct sign

level features by creating images containing the aggrega-

tion of these heatmaps over time, similar to Motion History

Images (MHI) [3]. While colorizing these gestures, we use

several different temporal and colorization strategies.

In the isolated sign language dataset, each video consists

of T frames. Our baseline temporal strategy involves di-

viding these T frames into C consecutive groups of equal

length, and representing them in separate channels. We

also explore the use of more meaningful temporal divisions

along temporal subunit boundaries in Section 3.2.

As a method for differentiating gestures temporally, we

use two colorization schemes. The first one is the origi-

nal colorization scheme proposed in [12]. In this scheme,

heatmap images are normalized to the [0 − 1] range for

each joint. The heatmaps are then multiplied by a time

based function to be represented in C separate channels,

in a H × W × C sized image. The images are summed

over time and divided by the maximum value of each pixel

over all channels to normalize the temporal images with re-

spect to the time spent at a fixed location. In the end, seven

H×W×C images for each joint are concatenated and used

as a feature vector.

As an alternative to the proposed baseline method, a hue

based coloring scheme for representing temporal informa-

tion is defined. Instead of combining heatmap strength and

time passed in one channel by multiplying them, we repre-

sent them by a HSV color channel image. In this image, the

hue channel represents subunits (either C equidistant con-

secutive temporal segments between frames 0 − T or de-

tected distinct dynamic keyframes); the saturation channel

represents the time passed with respect to the current tem-

poral unit; and the value channel represents the heatmap

strength. In this manner, an interval of 8 frames can be

represented in 3 channels using 8 different linearly spaced

colors from the hue space.

In order to increase the representation power of subunits,

a sequence-based variation of the accumulative features was

implemented. In this version, each dynamic subunit is rep-

resented as an individual gesture. The TAF representation

is then calculated by concatenating the feature vectors of

all subunits; thus, increasing the total number of channels

while decreasing the number of frames in each channel.

3.2. Dynamic Subunit Detection and Representa-
tion with TAF

In the literature, keyframe, keyshot and video summa-

rization approaches are often used as a means for data ab-

straction. In this problem, we employ keyframe extraction

techniques for linguistic sign language subunit segmenta-

tion, which aims to improve the temporal representation of

data.

In keyframe detection our goal is to find a set of frames

where motion slows down and changes direction. Given a

sign video consisting of a sequence of frames {1 : T}, we

propose 3 different methods to designate sign linguistically

informative frames as keyframes.

In the first heuristic, we use handspeed as a feature for

detecting keyframes. Frame differences in Kinect world

coordinates for the left and right hands are calculated and

normalized. Minima locations are marked and a heuristic

threshold based on hand speed is used to select the most de-

sirable keyframes. The number of selected keyframes can



Figure 3. Hue based temporal accumulative feature representation for 11 joints. The representations in the top row are obtained by

normalizing the bottom row with the middle row.

Figure 4. Example selected keyframes using 3 keyframe detec-

tion methods. The keyframes detected by the heuristic hand-

speed method are represented inside blue borders, entropy based

keyframes are in yellow and the handspeed based density clustered

keyframes are in orange borders.

be limited by choosing the K slowest minima locations for

both hands or all keyframes greater than a threshold can be

accepted.

In the entropy based keyframe extraction method, we

employ a technique which is based on image entropy and

density-peak based clustering [50]. This approach first ex-

tracts image entropy from video frames and maps them to

2D. Local extrema (minima and maxima) points are consid-

ered as most descriptive points of image entropy. Finally,

keyframes are extracted by clustering these local extrema

using Density clustering [40].

A final method is proposed by mixing the best of the

first two methods. In the hand speed with density clustering

method we propose several improvements. First, we select

the dominant hand which is the hand with more motion, and

detect keyframes only for the speed changes on that hand.

We detect only local minima regions for hand speed and we

choose K + 2 keyframes allowing us to discard the initial

and the last keyframes as they often do not contain frames

belonging to any active part of the gesture. Finally, density

clustering is applied on the hand clusters to find the most

descriptive peaks in the movement of the dominant hand.

In TAF, the representation of the dynamic subunits de-

tected from all three keyframing methods is the same. Given

a sign language video, each video is divided into segments

separated by the selected keyframes. In the hue based tem-

poral colorization approach, each dynamic segment is rep-

resented with a unique hue. For example, for the n-th

keyframe the chosen color is n × 180/(K + 1) as we do

not want the first and the last keyframes to have the same

color.

3.3. Static Subunit Extraction

In Turkish Sign Language, there is no widely available

lexicon of static handshape based subunits. For that reason,

we opted to use data driven subunits that are extracted from

our dataset in an unsupervised manner. Since the proposed

features do not contain background information, we decided

to use segmented handshapes as additional features.

In order to train a hand shape segmentation network,

we first construct a versatile hand segmentation dataset. In

our experiments, we began training a model with the Frei-

bourg Rendered Handpose Dataset [58]. The dataset con-

tains 41.258 training images with their hand joints anno-

tated for segmentation. As the recognition performance of

the models trained on this dataset were not satisfactory by

themselves, we included the segmented hand images from

the HGR dataset [23, 34, 18]. In the ground truth images,

we decided on using three classes, namely the left hand, the

right hand and background which contained all other pix-

els. We used the Deeplab v3+ model proposed in [11] to

perform semantic segmentation. Choosing 1% of images

for validation, we achieved mean Intersection over Union

(mIoU) scores of ˜78% for the left hand and ˜83% for

the right hand. Example images of segmentations on the

Bosphorus Sign dataset can be seen in Figure 5

Utilizing these segmentations, we constructed and exper-

imented with several representations to incorporate static

hand shape information as static subunits into the temporal

accumulative feature representation. We propose two rep-

resentations named as keyframe and keyshot based static

subunits. After detecting keyframe locations using one of



Figure 5. Example hand segmentations from the Bosphorus Sign

Dataset. Green masks represent the signers right hands and the red

masks represent the signers left hands.

the methods described in Section 3.2, the segmented hand

masks belonging to the selected frames are resized, con-

verted to binary masks and added to the TAF representation.

In the keyframe approach, we input the segmented mask for

each detected keyframe. In the keyshot approach, we add

five consecutive frames centered at the keyframe.

3.4. CNN Based Classification

In this section, we give the details of the convolutional

neural network model, which is used to perform isolated

sign language classification using TAF representation.

CNN architecture. Due to the similarity between TAF

representation and the method proposed in [12], we used a

similar CNN architecture which does not need pre-training

because our features are based on sparse heatmaps without

texture information. In the architecture that we have used,

there are 6 convolutional layers which have kernels with the

size of 3, and a fully connected layer just before the softmax

classification layer. We also apply global average pooling

before the fully connected layer for reducing the number of

parameters of our model to prevent overfitting.

In our architecture, we have 2 blocks of layers, each with

2 convolutional layers of strides 2 and 1, respectively. After

each block, we doubled the number of filters of convolu-

tional layers to reduce the spatial dimensions. We have also

applied batch normalization and non-linearity after each

convolutional layer.

As for the inputs of our architecture, we stack Temporal

Accumulative Features over selected 10 joints (Section 3.1)

and use them as inputs to the network. Specifically, we feed

TAF representations with size of H ×W × C into the net-

work, where H×W is size of the heatmap and C is number

Method # joints # channels # static frames

PoTion 11 2c+1 -

Hue 11 7 -

Hue + KF 11 7 K

Hue + KF + Static keyframes 11 7 K

Hue + KF + Static keyshot 11 7 5K

Table 1. Variations of the Temporal Accumulative Feature meth-

ods as inputs in our architecture. (c is the number of color chan-

nels, K is the number of static frames and KF is Key Frames).

#joints x #channels + #static frames yields the final input dimen-

sionality.

of channels. All representation methods and their input di-

mensionalities for the proposed neural network are shown

in Table 1.

Network training. Since our features and architecture

are much simpler than recent action and sign language

recognition models, we train our network from scratch.

During the training stage, we first initialize all network layer

weights with Xavier initialization [17]. In addition, we use

Dropout [46] after convolutional layers, with probability

0.5. We train our network using Adam optimization [25],

with batch size of 32 on a NVIDIA Tesla V100 GPU.

As most of recent learning approaches, we randomly

flipped TAF representations horizontally before feeding

them into the network, which increased the performance of

our approach drastically. In addition, we have also experi-

mented on channel flipping approach which was proposed

in [12], but the approach had a negative effect on our train-

ing, as expected.

4. Experiments

In this section, we go over the implementation details,

experiment design and present the experimental results. The

proposed TAF method has been implemented using the

Keras library with a Tensorflow [1] backend. In our exper-

iments, we perform signer independent classification and

obtain two recognition metrics: accuracy and top-5 accu-

racy. We report top-5 accuracy as it demonstrates the poten-

tial improvement this method may provide when it is fused

with a different type of classifier.

4.1. Datasets

The dataset used to validate the results in the paper is the

Bosphorus Sign Dataset. The dataset is a publicly open Iso-

lated Sign Language Recognition dataset that is available on

request [8]. This dataset contains videos of isolated Turkish

Sign Language gestures where the gestures begin and end

with the rest pose where the signers relax and lower their

arms to the sides. Each sign is performed 4-10 times by

four to six signers. The signs are recorded from a frontal

pose where each signer’s sign-space is visible in front of

a green background. Two subsets of the Bosphorus Sign



Dataset

Aggregation Method # of C OSD General

Baseline

2 98.73 72.18

3 100 73.26

4 100 70.71

5 100 64.77

6 94.93 64.46

8 91.13 61.74

10 82.27 60.69

Hue Temporal Rep.

2 100 71.12

3 100 74.52

4 100 72.8

Table 2. Effects of the number of channels (# of C) parameter on

recognition accuracy.

Dataset [8] were used: Overlapping Sub-sequences Dataset

(OSD) (10 Signs) and the General Subset (174 Signs). In

both datasets, user independent tests are performed with

4.839 training videos and 949 test videos on the General

subset and 305 training and 94 test videos on the OSD. In

both datasets user, 4 has been chosen as the test user.

4.2. Choosing the best temporal accumulation / col-
oring strategy

In this experiment, we first attempt to find a baseline

Temporal Accumulative Feature (TAF) method by compar-

ing the two temporal accumulation strategies. The first one

is the baseline method where the multi-channel aggregation

strategy is identical to the one in the original PoTion paper

[12]. The second one is the Hue Temporal Representation

Strategy which is introduced in this paper.

We first experiment with the number of channels param-

eter determining the number of temporal clusters used to

group the T number of frames in a given video. In this

experiment, C equidistant consecutive temporal groupings

are made. In the original method, these groupings are rep-

resented in their respective channels. In the hue based

method, these groupings are represented with different hue

components in a 3 channel HSV image. The methods are

tested on the smaller OSD and the larger Bosphorus Sign

General Datasets.

As evident in Table 2, using three to four channels is the

ideal representation for the baseline PoTion approach. We

observe that increasing the number of channels increases

the variance in temporal representation. However, increas-

ing the number of channels past a certain point becomes

detrimental as similar parts of gestures performed at differ-

ing speeds get assigned to different channels. The experi-

ments also showed the better performance of the Hue based

temporal representation approach. For the following exper-

iments, we chose this method with three channels as our

Dropout Blocks Convs Filters Accuracy Top-5

0.25 1 2 128 70.42 94.94

0.25 2 2 128 78.21 96.84

0.25 3 2 128 74.52 96.21

0.25 2 1 128 68.21 93.78

0.25 2 2 128 78.21 96.84

0.5 2 3 128 78.50 96.84

0.25 2 4 128 76 96.21

0.25 2 2 64 75.89 96.31

0.5 2 2 64 76.74 97.05

0.75 2 2 64 67.89 93.05

0.25 3 2 256 72.01 93.8

0.5 3 2 128 73.15 96

0.75 3 2 128 70.84 93.89

0.25 3 2 64 74.21 95.68

0.75 3 2 128 70.84 93.89

0.25 3 2 256 72.01 93.89

Table 3. Neural network parameter optimization for Hue based

temporal colorization without temporal subunits

baseline. In addition, as we achieved 100% performance on

the OSD dataset, we opted not to use it in evaluating fur-

ther variations of the Hue based Temporal Representation

method.

4.3. CNN Parameter Optimization for SLR

After establishing the hue based colorization as our base-

line method for TAF representations, we ran several exper-

iments with different neural network parameters to find the

best architecture. We experimented with four different pa-

rameters: namely, dropout, number of blocks, number of

convolution layers in each block and the initial number of

filters in the first convolutional layer. We search the param-

eter space, constraining some parameters at each step to find

the best architecture for this problem.

Examining the results in Table 3, it can be deduced that

using approximately six layers (two blocks with three con-

volutional layers or three blocks with two convolutional lay-

ers) yields the best results. We rule out using more than 2

blocks and 3 convolutional layers as those models start to

become too complex for the amount of data that we have

and start to overfit. Likewise, increasing the dropout value

further degrades recognition performance. Of the two mod-

els with the top performances, the one with two blocks and

2 convolutional layers per block has fewer parameters and

is in practice approximately 1.4 times faster to train. For

that reason, we use that model when experimenting with

temporal subunits.



4.4. Detecting and incorporating dynamic subunits

The effect of the subunit detection method detailed in

Section 3.2 is explored in this section. Three tempo-

ral subunit detection strategies are employed. These are

the handspeed based heuristic keyframe detection method

(HS+HEU), entropy based density clustering method

(ENT+DC) and the handspeed based density clustering

methods (HS+DC).

Subunit Method # of C Accuracy Top-5

None 3 78.21 96.84

HS+HEU Fixed Length 5 75.44 93.57

HS+HEU Variable Length 5 74.07 92.2

ENT+DC Fixed Length 4 76.39 95.67

ENT+DC Fixed Length 5 78.4 96.41

ENT+DC Fixed Length 6 79.78 97.05

HS+DC Fixed Length 4 79.68 96.84

HS+DC Fixed Length 5 80.94 97.47

HS+DC Fixed Length 6 81.37 97.26

HS+DC Variable Length 4 79.78 96.94

HS+DC Variable Length 5 80.21 96.73

HS+DC Variable Length 6 79.68 96.94

Table 4. Comparison of temporal subunit detection strategies

In the first heuristic-handspeed approach, we obtain a

fixed set of keyframes with the most likely N candidates.

In the second, heuristic-handspeed approach, we select

frames that are more likely than a given threshold value as

keyframes. This yields variable length keyframes. Visualiz-

ing the selected frames, we observe inconsistencies between

different variations of the same sign, explaining the drop in

accuracy.

In the entropy based density clustering method, we ex-

plored three fixed keyframe sizes of 4,5 and 6. The re-

sults improved on the baseline results with no keyframes

by 1%. However, especially in local maxima, the entropy

based method found blurry and highly mobile frames that

were undesirable when trying to capture the movements and

holds in the sign. Finally, with the proposed handspeed

based density clustering approach, we achieved near opti-

mal handspeed minima detection. In terms of the number

of keyframes parameter, there are two approaches: fixed

length and variable length. We observed that the fixed

length approach showed significantly more accuracy then

the latter method.

4.5. Incorporating static subunits

Lastly, we turn our attention to static subunits. As de-

scribed in Section 3.3, we have keyframe and keyshot based

representations. We fix all other parameters to the best

method presented in Table 4, using hue based temporal col-

Static

Subunit

Keyframe

Method

Seq.Rep Accuracy Top-5

None FL-6 Single 81.37 97.26

Keyframe FL-6 Single 81.47 97.15

Keyshot FL-4 Single 81.58 96.94

Keyshot FL-6 Single 80.10 97.05

Table 5. Comparison of incorporating static subunits to hand speed

and clustering based dynamic keyframes. FL-# means # keyframes

were chosen with the fixed length strategy in each video

orization and handspeed based dynamic subunits with den-

sity based clustering. We change keyframe length to ob-

serve the effect of adding different number of keyframes

per gesture.

As can be seen in Table 5, the addition of static

keyframes brings a marginal increase to the detected

keyframes. Using keyshots with a smaller keyframe length

parameter further increases performance marginally, raising

the top prediction score to 81.58%.

5. Conclusions

In this work, we introduced Temporal Accumulative

Features, which is a pose-based visual representation based

on the idea of aggregating joint heatmaps over sign lan-

guage videos, and applied them to isolated sign classi-

fication. We proposed a hue based temporal coloriza-

tion scheme that allowed distinct representation with ar-

bitrary temporal channels or subunits as well as allow-

ing distinct representations of temporal location and joint

heatmap strengths. The hue based temporal colorization

scheme achieved 78.50% accuracy improving over the base-

line method by 5%.

We proposed a static subunit detection method that

makes use of local minima in hand speed with density

clustering to extract dynamic and static subunits. Utiliz-

ing that method with the hue based temporal classification,

we further increased our accuracy by 3% to 81.37% We

developed a handshape based segmentation method using

the Deeplab v3+ algorithm and incorporated the segmented

handshapes as static subunit features to the temporal ac-

cumulative features method. Incorporating static subunits

further improved our results to 81.58%. Overall, our ex-

periments on Bosphorus Sign dataset have shown that TAF

representations are an effective method for sign language

recognition.

Acknowledgements: This work was funded by the

Turkish ministry of development under the TAM Project

#2007K120610, TUBITAK Project #117E059 and Bogazici

Uni. BAP Project #14504. The numerical calculations

reported in this paper were also partially performed at

TUBITAK ULAKBIM, HPAGCC-TRUBA.



References

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,

M. Devin, S. Ghemawat, G. Irving, M. Isard, M. Kudlur,

J. Levenberg, R. Monga, S. Moore, D. G. Murray, B. Steiner,

P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and

X. Zheng. Tensorflow: A system for large-scale machine

learning. In 12th USENIX Symposium on Operating Sys-

tems Design and Implementation (OSDI 16), pages 265–283,

2016. 6

[2] A. Bobick and J. Davis. An appearance-based representation

of action. In ICPR, 1996, volume 1, pages 307–312, August

1996. 2

[3] A. Bobick and J. Davis. Real-time recognition of activity

using temporal templates. In Applications of Computer Vi-

sion, 1996. WACV ’96., Proceedings 3rd IEEE Workshop on,

pages 39–42. IEEE, December 1996. 2, 4

[4] N. C. Camgoz, S. Hadfield, O. Koller, and R. Bowden. Using

convolutional 3d neural networks for user-independent con-

tinuous gesture recognition. In ICPR, 2016, pages 49–54.

IEEE, December 2016. 3

[5] N. C. Camgoz, S. Hadfield, O. Koller, and R. Bowden. Sub-

unets: End-to-end hand shape and continuous sign language

recognition. In ICCV, 2017, 2017. 3

[6] N. C. Camgoz, S. Hadfield, O. Koller, H. Ney, and R. Bow-

den. Neural sign language translation. In CVPR, 2018, 2018.

3
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