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Abstract

In this paper, we propose a set of features called tempo-
ral accumulative features (TAF) for representing and rec-
ognizing isolated sign language gestures. By incorporat-
ing sign language specific constructs to better represent the
unique linguistic characteristic of sign language videos, we
have devised an efficient and fast SLR method for recogniz-
ing isolated sign language gestures. The proposed method
is an HSV based accumulative video representation where
keyframes based on the linguistic movement-hold model are
represented by different colors. We also incorporate hand
shape information and using a small scale convolutional
neural network, demonstrate that sequential modeling of
accumulative features for linguistic subunits improves upon
baseline classification results.

1. Introduction

Sign languages are a system of visual communication
used by deaf communities around the world. Sign language
users also called signers, make use of hand gestures, up-
per body movements, and facial expressions to form signs
and convey meaning visually to other signers. Similar to
spoken languages, sign languages have rules that determine
their grammar and phonology, allowing users to fluently ex-
press themselves with a corpus of thousands of words from
simple commands to complex and abstract sentences.

Due to its inherent complex nature and challenges
present in its capture, automatic sign language recognition
(SLR) has been an active topic of research in the computer
vision community for the last 30 years. It is essentially a
video classification problem where the task is to find the
correct class label by observing the sequence of frames that
belong to the video. Due to the complex nature of Sign
Language grammars, the problem is tackled in several dif-
ferent levels of complexity. In this study, we are interested
in the isolated SLR problem, in which the goal is to perform
recognition in a controlled dataset, where disjoint signs are
temporally annotated marking their beginning and end lo-

cations. In these types of problems, the challenge lies in
successfully distinguishing signs among each other, while
making sure variations in the performance of the same sign
by different users can be recognized as similar. While there
exist numerous studies on isolated sign language recogni-
tion, the current state of the art in the SLR field makes use
of deep learning techniques developed for the action recog-
nition domain.

Action recognition is an active research field in video
recognition, where the availability of huge datasets such
as HMDB [29], UCF-101 [45] and Kinetics [24] have ac-
tively driven researchers in academia and industry to push
the state of the art. Methods developed in action recogni-
tion such as multi-stream networks and 3D convolutional
models require large datasets to train models. In the prob-
lem of human action recognition, there are several impor-
tant sources of information such as context, human poses,
interactions, and movements. Methods such as I3D exhaus-
tively capture information from those sources to achieve
state of the art performance [9]. However, in a recent study
called PoTion [12], it was demonstrated that incorporating
accumulated human joint pose information to I3D improved
recognition performance with actions where human move-
ments were crucial for differentiation.

Along with its similarities to human action and activity
recognition, sign language recognition has important dif-
ferentiating characteristics: In sign language videos shot
for automatic Sign Language Recognition (SLR), users per-
form gestures in front of a camera gesticulating with their
hands, upper body and faces. Therefore, only fine differ-
ences in human pose, hand shape and facial expressions can
be used to differentiate among classes. In addition, differ-
ent performances by individual signers make this problem
tougher by increasing inter-class variability where intra-
class variability is already low to begin with. Compared to
action and activity recognition where context plays a large
role, this brings a requirement for SLR developers to rely
solely on the success of human pose capture and represen-
tation techniques for distinguishing among classes. In ad-
dition, sign language videos tend to follow certain gram-



Figure 1. The sign “Crawling” represented using the Liddell-

Johnson [31] Movement-hold pattern. Most signs follow this
grammatical rule, as they may be composed of dynamic and static
subunits sequentially following one another.

matical rules such as the Liddell-Johnson [31] grammatical
model, which assumes that gestures follow a movement-
hold pattern sequentially.

Due to these differences in the nature of SL, in order to
better adapt techniques developed for action recognition to
SLR, we should focus on methods capturing human motion,
hand shapes and movement trajectories instead of context,
interactions and variations in appearance. In addition, uti-
lizing the temporal structure to account for sign linguistic
rules such as the movement-hold pattern would be benefi-
cial in achieving better temporal alignment in recognizing
complex gestures consisting of multiple subunits. In this
study, we propose an approach to adapt a number of tech-
niques proposed for human action recognition to the prob-
lem of SLR.

The proposed method uses heat maps obtained from sen-
sor supplied skeleton joints and creates temporally accu-
mulated images from them to construct video level fea-
tures. These features are represented with a HSV color
space based color scheme to represent temporal groupings,
temporal location inside the group and heatmap strength.
Through keyframe detection, we incorporate dynamic sub-
units which are represented with different colors based on
their order of occurrence. The proposed hand speed and
density clustering based approach achieves high quality
subunit segmentation. These subunits are coupled with
hand shapes representing the hold part of the gestures ex-
tracted via an unsupervised hand shape segmentation algo-
rithm. These static subunits are included in the feature set
as single frames or several consecutive frames to increase
descriptive value.

The contributions of this paper are as follows:

1. The adaptation of the baseline PoTion method to the
sign language recognition domain to perform SLR and
finding the optimal model architecture.

2. A hue based novel temporal colorization scheme that
allows distinct representation with arbitrary temporal
channels or subunits as well as allowing distinct rep-
resentations of temporal location and joint heatmap
strength.

3. A static subunit detection method that makes use of
local minima in hand speed with density clustering to
extract dynamic and static subunits.

4. Unsupervised hand segmentation to represent hand
shapes and utilize these hand shapes as static subunits
in the form of keyframes and keyshots with the tempo-
rally accumulated features.

2. Related Work

Following the success of deep learning approaches on
tasks such as image classification and segmentation [28, 20,
49, 44], recent studies on human action recognition have
focused on adapting successful deep image recognition ar-
chitectures into the video classification domain. While ear-
lier work mostly used 2D CNNs to extend the spatial do-
main temporally by using different input frames and layer
level fusion techniques [22], later approaches tried to learn
videos by exploiting the spatial domain into the tempo-
ral domain using 3D CNNs [52], two-stream architectures
[43, 9, 15, 16] and recurrent architectures [57, 21, 30, 13].

Based on the two-stream hypothesis, which supports
the idea that human visual cortex consists of two sepa-
rate pathways; dorsal (motion) and ventral (appearance)
streams, [43] used still frames for ventral and stacked opti-
cal flow images for dorsal streams, and successfully trained
both networks on UCF-101 and HMDB datasets. Although
the idea of two-stream networks were thought as networks
trained on two classification streams (appearance and mo-
tion) [43], researchers have expanded this idea by adding
multiple modalities (e.g. audio spectrograms) for multi-
modal action recognition [55]. Recently, I3D architec-
ture [9] was proposed as an improvement of two-stream
networks. In another work, Wang et al. [53] have pro-
posed Temporal Segment Networks (TSNs) with the pur-
pose of solving the long-range temporal limitations of two-
stream networks by using temporal sampling. More re-
cently, Choutas et al. [12] proposed PoTion representations
for human action recognition. In the method, pose informa-
tion of individuals in the frame was aggregated over time,
and represented as encoding of video clips after a coloriza-
tion process.

In the video recognition literature, accumulative features
similar to Potion have long been used as simple descriptors
to represent videos: Motion History Image (MHI) [3] and
Motion Energy Image (MEI) [2] capture energy and motion
over the temporal domain. [54] uses such a representation
to represent the signer’s body pose, hand shape and hand



movements. Later on, as these features were found to be
insufficient in representing gestures, researchers used more
complex features such as Space-Time Interest Points (STIP)
[35], Histogram of Oriented Gradients (HOG) [32, 7] and
Improved Dense Trajectories (IDT) [37, 36].

Similar to human action recognition, sign language
recognition was also influenced by the recent developments
of deep learning. Pigou et al. explore the idea of merging
and forming CNN and RNN based architectures for gesture
recognition [39], and proposed a CNN based architecture
for sign language recognition [38]. Koller et al. [26] pro-
posed a frame-based CNN-HMM architecture for sign lan-
guage classification problem which was trained on nearly 1
million hand images. Due to its success on problems such
as action recognition, 3D convolutional neural network ar-
chitectures have also been used for gesture and sign lan-
guage recognition [33, 4]. Recently, Camgoz et al. [5]
used Bi-directional LSTMs to train an end-to-end contin-
uous sign language recognition framework which is based
on subunit modelling. Aside from the recognition problems,
researchers have also pursued the idea of translating sign
language videos into spoken language by adapting neural
machine translation approaches into the sign language do-
main [6, 19, 48].

In the sign language literature, there are various ap-
proaches that study subunit based sign language recog-
nition.  Similar to the representation of utterances by
phonemes in spoken languages, signs may be considered
to be composed of subunits concatenated over time. There
are studies on the sequential structure of sign languages
such as the Stokoe notation [47] and the works of Liddell
and Johnson [31]. In applying phonetic modeling to auto-
matic recognition, there are several studies. As there is a
lack of subunit corpus and lexicons available for most sign
languages, majority of the methods focus on unsupervised
learning from data. Some of the notable ones include [14],
where the authors use single states in an HMM to cluster
dynamic subunits and generate a subunit lexicon. In [27], a
rule based phoneme extraction method is used. One study,
that makes use of the movement-hold model to construct
an end to end sign language recognition model is [51]. In
this study, a phonetic modeling approach for unsupervised
dynamic-static subunit extraction is proposed as well as sign
subunit modeling with HMMs.

In sign languages like Turkish sign language, where a
lexicon of available subunits is not well defined, researchers
have often made use of data driven subunit representation
methods. Currently, there exists several hand datasets that
can be leveraged for either hand keypoints or segmented
hand masks. Deep learning methods have greatly improved
the state of the art in image segmentation. Initial deep learn-
ing methods such as Fully Convolutional Networks [42] and
UNet [41] have been greatly improved. Current state of the

art models in the field include popular approaches such as
Deeplab v3+ [10], PSPNet, neural architecture search gen-
erated Auto-Deeplab and Densely Connected Atrous Spa-
tial Pyramid Pooling (DenseASPP) [56]. In this study, we
made use of semantic segmentation techniques to represent
hand shapes.

3. Sign Language Recognition Using Temporal
Accumulative Features

Sign languages rely on a sequence of body part config-
urations to convey a message. To decipher this message,
body part detection methods are commonly used. Deep
learning methods that solely rely on skeletal information
or those that combine skeletal information with visual in-
formation have achieved top performances in recognizing
signs in large sign language datasets. In our case, the tar-
geted Bosphorus Sign Dataset (Section 4.1) [8] contains
high quality upper body joint coordinate annotations and
high definition RGB images making the use of accumula-
tive joint information in combination with hand shapes a
powerful representation candidate.

An overview of the proposed framework is presented in
Figure 2. The system employs accumulative features cou-
pled with subunit representations, the details of which are
discussed in the following subsections, to classify signs.

3.1. Temporal Accumulative Features

Temporal Accumulative Features (TAF) is a novel Sign
language representation method, that captures a signers
body movements and hand shape while taking into account
the movement and hold structure shared through sign lan-
guages. Accumulative features like PoTion [12] have shown
promising performance on action recognition. The pro-
posed method can be regarded as an adaptation of the Po-
Tion method with major modifications to its inputs and tem-
poral representation methods.

In constructing temporal accumulative features, we first
obtain frame level joint coordinate representations in the
form of heatmaps. These heatmaps are aggregated for each
video to obtain a temporal representation of the movement.
Two different colorization strategies are used to represent
sign language gestures in the temporal domain: Linear and
subunit-based. Finally, the constructed features are inputs
to a Convolutional Neural Network for sign level classifica-
tion, and a class label of the sign is obtained.

3.1.1 Obtaining joint heatmaps for TAF

In order to represent signers upper body configurations, we
have made use of the 3D human joint coordinates detected
by the Kinect-v2 camera. In the absence of 3D skeleton
information, 2D skeleton extraction methods may be em-
ployed to extract the skeleton, as in [12].
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Figure 2. Overview of Proposed Framework.

We generated heatmap images using the skeleton joints
and assuming Gaussian uncertainties on the joint locations.
Of the 25 Kinect joints, experimentation showed that using
only heatmaps of 10 joints belonging to the left and right
upper arms, elbows, wrists, hand tips and thumbs and an
additional background joint heatmap containing represen-
tations of all joints was sufficient. We have scaled all the
heatmaps to 116 x 64 pixels to achieve better performance
comparison with the original PoTion method [12].

3.1.2 Accumulating joint heatmaps over time

Prior to obtaining frame level heatmaps, we construct sign
level features by creating images containing the aggrega-
tion of these heatmaps over time, similar to Motion History
Images (MHI) [3]. While colorizing these gestures, we use
several different temporal and colorization strategies.

In the isolated sign language dataset, each video consists
of T' frames. Our baseline temporal strategy involves di-
viding these T" frames into C' consecutive groups of equal
length, and representing them in separate channels. We
also explore the use of more meaningful temporal divisions

along temporal subunit boundaries in Section 3.2.

As a method for differentiating gestures temporally, we
use two colorization schemes. The first one is the origi-
nal colorization scheme proposed in [12]. In this scheme,
heatmap images are normalized to the [0 — 1] range for
each joint. The heatmaps are then multiplied by a time
based function to be represented in C' separate channels,
ina H x W x C sized image. The images are summed
over time and divided by the maximum value of each pixel
over all channels to normalize the temporal images with re-
spect to the time spent at a fixed location. In the end, seven
H x W x C images for each joint are concatenated and used
as a feature vector.

As an alternative to the proposed baseline method, a hue
based coloring scheme for representing temporal informa-
tion is defined. Instead of combining heatmap strength and
time passed in one channel by multiplying them, we repre-
sent them by a HSV color channel image. In this image, the
hue channel represents subunits (either C' equidistant con-
secutive temporal segments between frames 0 — 1" or de-
tected distinct dynamic keyframes); the saturation channel
represents the time passed with respect to the current tem-
poral unit; and the value channel represents the heatmap
strength. In this manner, an interval of 8 frames can be
represented in 3 channels using 8 different linearly spaced
colors from the hue space.

In order to increase the representation power of subunits,
a sequence-based variation of the accumulative features was
implemented. In this version, each dynamic subunit is rep-
resented as an individual gesture. The TAF representation
is then calculated by concatenating the feature vectors of
all subunits; thus, increasing the total number of channels
while decreasing the number of frames in each channel.

3.2. Dynamic Subunit Detection and Representa-
tion with TAF

In the literature, keyframe, keyshot and video summa-
rization approaches are often used as a means for data ab-
straction. In this problem, we employ keyframe extraction
techniques for linguistic sign language subunit segmenta-
tion, which aims to improve the temporal representation of
data.

In keyframe detection our goal is to find a set of frames
where motion slows down and changes direction. Given a
sign video consisting of a sequence of frames {1 : T}, we
propose 3 different methods to designate sign linguistically
informative frames as keyframes.

In the first heuristic, we use handspeed as a feature for
detecting keyframes. Frame differences in Kinect world
coordinates for the left and right hands are calculated and
normalized. Minima locations are marked and a heuristic
threshold based on hand speed is used to select the most de-
sirable keyframes. The number of selected keyframes can



Figure 3. Hue based temporal accumulative feature representation for 11 joints. The representations in the top row are obtained by

normalizing the bottom row with the middle row.

Figure 4. Example selected keyframes using 3 keyframe detec-
tion methods. The keyframes detected by the heuristic hand-
speed method are represented inside blue borders, entropy based
keyframes are in yellow and the handspeed based density clustered
keyframes are in orange borders.

be limited by choosing the K slowest minima locations for
both hands or all keyframes greater than a threshold can be
accepted.

In the entropy based keyframe extraction method, we
employ a technique which is based on image entropy and
density-peak based clustering [50]. This approach first ex-
tracts image entropy from video frames and maps them to
2D. Local extrema (minima and maxima) points are consid-
ered as most descriptive points of image entropy. Finally,
keyframes are extracted by clustering these local extrema
using Density clustering [40].

A final method is proposed by mixing the best of the
first two methods. In the hand speed with density clustering
method we propose several improvements. First, we select
the dominant hand which is the hand with more motion, and
detect keyframes only for the speed changes on that hand.
We detect only local minima regions for hand speed and we
choose K + 2 keyframes allowing us to discard the initial
and the last keyframes as they often do not contain frames
belonging to any active part of the gesture. Finally, density
clustering is applied on the hand clusters to find the most
descriptive peaks in the movement of the dominant hand.

In TAF, the representation of the dynamic subunits de-

tected from all three keyframing methods is the same. Given
a sign language video, each video is divided into segments
separated by the selected keyframes. In the hue based tem-
poral colorization approach, each dynamic segment is rep-
resented with a unique hue. For example, for the n-th
keyframe the chosen color is n x 180/(K + 1) as we do
not want the first and the last keyframes to have the same
color.

3.3. Static Subunit Extraction

In Turkish Sign Language, there is no widely available
lexicon of static handshape based subunits. For that reason,
we opted to use data driven subunits that are extracted from
our dataset in an unsupervised manner. Since the proposed
features do not contain background information, we decided
to use segmented handshapes as additional features.

In order to train a hand shape segmentation network,
we first construct a versatile hand segmentation dataset. In
our experiments, we began training a model with the Frei-
bourg Rendered Handpose Dataset [58]. The dataset con-
tains 41.258 training images with their hand joints anno-
tated for segmentation. As the recognition performance of
the models trained on this dataset were not satisfactory by
themselves, we included the segmented hand images from
the HGR dataset [23, 34, 18]. In the ground truth images,
we decided on using three classes, namely the left hand, the
right hand and background which contained all other pix-
els. We used the Deeplab v3+ model proposed in [ 1] to
perform semantic segmentation. Choosing 1% of images
for validation, we achieved mean Intersection over Union
(mIoU) scores of ~78% for the left hand and ~83% for
the right hand. Example images of segmentations on the
Bosphorus Sign dataset can be seen in Figure 5

Utilizing these segmentations, we constructed and exper-
imented with several representations to incorporate static
hand shape information as static subunits into the temporal
accumulative feature representation. We propose two rep-
resentations named as keyframe and keyshot based static
subunits. After detecting keyframe locations using one of



Figure 5. Example hand segmentations from the Bosphorus Sign
Dataset. Green masks represent the signers right hands and the red
masks represent the signers left hands.

the methods described in Section 3.2, the segmented hand
masks belonging to the selected frames are resized, con-
verted to binary masks and added to the TAF representation.
In the keyframe approach, we input the segmented mask for
each detected keyframe. In the keyshot approach, we add
five consecutive frames centered at the keyframe.

3.4. CNN Based Classification

In this section, we give the details of the convolutional
neural network model, which is used to perform isolated
sign language classification using TAF representation.

CNN architecture. Due to the similarity between TAF
representation and the method proposed in [12], we used a
similar CNN architecture which does not need pre-training
because our features are based on sparse heatmaps without
texture information. In the architecture that we have used,
there are 6 convolutional layers which have kernels with the
size of 3, and a fully connected layer just before the softmax
classification layer. We also apply global average pooling

before the fully connected layer for reducing the number of

parameters of our model to prevent overfitting.

In our architecture, we have 2 blocks of layers, each with
2 convolutional layers of strides 2 and 1, respectively. After
each block, we doubled the number of filters of convolu-
tional layers to reduce the spatial dimensions. We have also
applied batch normalization and non-linearity after each
convolutional layer.

As for the inputs of our architecture, we stack Temporal
Accumulative Features over selected 10 joints (Section 3.1)
and use them as inputs to the network. Specifically, we feed
TAF representations with size of H x W x C into the net-
work, where H x W is size of the heatmap and C' is number

Method #joints  # channels # static frames
PoTion 11 2c+1 -
Hue 11 7 -
Hue + KF 11 7 K
Hue + KF + Static keyframes 11 7 K
Hue + KF + Static keyshot 11 7 5K

Table 1. Variations of the Temporal Accumulative Feature meth-
ods as inputs in our architecture. (c is the number of color chan-
nels, K is the number of static frames and KF is Key Frames).
#joints x #channels + #static frames yields the final input dimen-
sionality.

of channels. All representation methods and their input di-
mensionalities for the proposed neural network are shown
in Table 1.

Network training. Since our features and architecture
are much simpler than recent action and sign language
recognition models, we train our network from scratch.
During the training stage, we first initialize all network layer
weights with Xavier initialization [17]. In addition, we use
Dropout [46] after convolutional layers, with probability
0.5. We train our network using Adam optimization [25],
with batch size of 32 on a NVIDIA Tesla V100 GPU.

As most of recent learning approaches, we randomly
flipped TAF representations horizontally before feeding
them into the network, which increased the performance of
our approach drastically. In addition, we have also experi-
mented on channel flipping approach which was proposed
in [12], but the approach had a negative effect on our train-
ing, as expected.

4. Experiments

In this section, we go over the implementation details,
experiment design and present the experimental results. The
proposed TAF method has been implemented using the
Keras library with a Tensorflow [1] backend. In our exper-
iments, we perform signer independent classification and
obtain two recognition metrics: accuracy and top-5 accu-
racy. We report top-5 accuracy as it demonstrates the poten-
tial improvement this method may provide when it is fused
with a different type of classifier.

4.1. Datasets

The dataset used to validate the results in the paper is the
Bosphorus Sign Dataset. The dataset is a publicly open Iso-
lated Sign Language Recognition dataset that is available on
request [8]. This dataset contains videos of isolated Turkish
Sign Language gestures where the gestures begin and end
with the rest pose where the signers relax and lower their
arms to the sides. Each sign is performed 4-10 times by
four to six signers. The signs are recorded from a frontal
pose where each signer’s sign-space is visible in front of
a green background. Two subsets of the Bosphorus Sign



Dataset

Aggregation Method #of C  OSD  General
2 98.73 72.18

3 100 73.26

4 100 70.71

Baseline 5 100 64.77
6 9493 64.46

8 91.13 61.74

10 82.27 60.69

2 100 71.12

Hue Temporal Rep. 3 100 74.52

4 100 72.8

Table 2. Effects of the number of channels (# of C) parameter on
recognition accuracy.

Dataset [8] were used: Overlapping Sub-sequences Dataset
(OSD) (10 Signs) and the General Subset (174 Signs). In
both datasets, user independent tests are performed with
4.839 training videos and 949 test videos on the General
subset and 305 training and 94 test videos on the OSD. In
both datasets user, 4 has been chosen as the test user.

4.2. Choosing the best temporal accumulation / col-
oring strategy

In this experiment, we first attempt to find a baseline
Temporal Accumulative Feature (TAF) method by compar-
ing the two temporal accumulation strategies. The first one
is the baseline method where the multi-channel aggregation
strategy is identical to the one in the original PoTion paper
[12]. The second one is the Hue Temporal Representation
Strategy which is introduced in this paper.

We first experiment with the number of channels param-
eter determining the number of temporal clusters used to
group the 7" number of frames in a given video. In this
experiment, C' equidistant consecutive temporal groupings
are made. In the original method, these groupings are rep-
resented in their respective channels. In the hue based
method, these groupings are represented with different hue
components in a 3 channel HSV image. The methods are
tested on the smaller OSD and the larger Bosphorus Sign
General Datasets.

As evident in Table 2, using three to four channels is the
ideal representation for the baseline PoTion approach. We
observe that increasing the number of channels increases
the variance in temporal representation. However, increas-
ing the number of channels past a certain point becomes
detrimental as similar parts of gestures performed at differ-
ing speeds get assigned to different channels. The experi-
ments also showed the better performance of the Hue based
temporal representation approach. For the following exper-
iments, we chose this method with three channels as our

Dropout Blocks Convs Filters Accuracy Top-5
0.25 1 2 128 7042  94.94
0.25 2 2 128 78.21 96.84
0.25 3 2 128 74.52  96.21
0.25 2 1 128 68.21 93.78
0.25 2 2 128 7821 96.84

0.5 2 3 128 78.50 96.84
0.25 2 4 128 76 96.21
0.25 2 2 64 75.89  96.31

0.5 2 2 64 76.74  97.05
0.75 2 2 64 67.89  93.05
0.25 3 2 256 72.01 93.8

0.5 3 2 128 73.15 96
0.75 3 2 128 70.84  93.89
0.25 3 2 64 7421  95.68
0.75 3 2 128 70.84  93.89
0.25 3 2 256 72.01  93.89

Table 3. Neural network parameter optimization for Hue based
temporal colorization without temporal subunits

baseline. In addition, as we achieved 100% performance on
the OSD dataset, we opted not to use it in evaluating fur-
ther variations of the Hue based Temporal Representation
method.

4.3. CNN Parameter Optimization for SLR

After establishing the hue based colorization as our base-
line method for TAF representations, we ran several exper-
iments with different neural network parameters to find the
best architecture. We experimented with four different pa-
rameters: namely, dropout, number of blocks, number of
convolution layers in each block and the initial number of
filters in the first convolutional layer. We search the param-
eter space, constraining some parameters at each step to find
the best architecture for this problem.

Examining the results in Table 3, it can be deduced that
using approximately six layers (two blocks with three con-
volutional layers or three blocks with two convolutional lay-
ers) yields the best results. We rule out using more than 2
blocks and 3 convolutional layers as those models start to
become too complex for the amount of data that we have
and start to overfit. Likewise, increasing the dropout value
further degrades recognition performance. Of the two mod-
els with the top performances, the one with two blocks and
2 convolutional layers per block has fewer parameters and
is in practice approximately 1.4 times faster to train. For
that reason, we use that model when experimenting with
temporal subunits.



4.4. Detecting and incorporating dynamic subunits

The effect of the subunit detection method detailed in
Section 3.2 is explored in this section. Three tempo-
ral subunit detection strategies are employed. These are
the handspeed based heuristic keyframe detection method
(HS+HEU), entropy based density clustering method
(ENT+DC) and the handspeed based density clustering
methods (HS+DC).

Subunit Method #0of C  Accuracy Top-5
None 3 7821 96.84
HS+HEU  Fixed Length 5 75.44  93.57
HS+HEU Variable Length 5 74.07 92.2
ENT+DC Fixed Length 4 76.39  95.67
ENT+DC Fixed Length 5 784 96.41
ENT+DC  Fixed Length 6 79.78  97.05
HS+DC Fixed Length 4 79.68  96.84
HS+DC Fixed Length 5 80.94 97.47
HS+DC Fixed Length 6 81.37 97.26
HS+DC Variable Length 4 79.78  96.94
HS+DC Variable Length 5 80.21 96.73
HS+DC Variable Length 6 79.68 96.94

Table 4. Comparison of temporal subunit detection strategies

In the first heuristic-handspeed approach, we obtain a
fixed set of keyframes with the most likely N candidates.
In the second, heuristic-handspeed approach, we select
frames that are more likely than a given threshold value as
keyframes. This yields variable length keyframes. Visualiz-
ing the selected frames, we observe inconsistencies between
different variations of the same sign, explaining the drop in
accuracy.

In the entropy based density clustering method, we ex-
plored three fixed keyframe sizes of 4,5 and 6. The re-
sults improved on the baseline results with no keyframes
by 1%. However, especially in local maxima, the entropy
based method found blurry and highly mobile frames that
were undesirable when trying to capture the movements and
holds in the sign. Finally, with the proposed handspeed
based density clustering approach, we achieved near opti-
mal handspeed minima detection. In terms of the number
of keyframes parameter, there are two approaches: fixed
length and variable length. We observed that the fixed
length approach showed significantly more accuracy then
the latter method.

4.5. Incorporating static subunits

Lastly, we turn our attention to static subunits. As de-
scribed in Section 3.3, we have keyframe and keyshot based
representations. We fix all other parameters to the best
method presented in Table 4, using hue based temporal col-

Static Keyframe  Seq.Rep Accuracy Top-5
Subunit Method

None FL-6 Single 81.37 97.26
Keyframe  FL-6 Single 81.47 97.15
Keyshot FL-4 Single 81.58 96.94
Keyshot FL-6 Single 80.10  97.05

Table 5. Comparison of incorporating static subunits to hand speed
and clustering based dynamic keyframes. FL-# means # keyframes
were chosen with the fixed length strategy in each video

orization and handspeed based dynamic subunits with den-
sity based clustering. We change keyframe length to ob-
serve the effect of adding different number of keyframes
per gesture.

As can be seen in Table 5, the addition of static
keyframes brings a marginal increase to the detected
keyframes. Using keyshots with a smaller keyframe length
parameter further increases performance marginally, raising
the top prediction score to 81.58%.

5. Conclusions

In this work, we introduced Temporal Accumulative
Features, which is a pose-based visual representation based
on the idea of aggregating joint heatmaps over sign lan-
guage videos, and applied them to isolated sign classi-
fication. We proposed a hue based temporal coloriza-
tion scheme that allowed distinct representation with ar-
bitrary temporal channels or subunits as well as allow-
ing distinct representations of temporal location and joint
heatmap strengths. The hue based temporal colorization
scheme achieved 78.50% accuracy improving over the base-
line method by 5%.

We proposed a static subunit detection method that
makes use of local minima in hand speed with density
clustering to extract dynamic and static subunits. Utiliz-
ing that method with the hue based temporal classification,
we further increased our accuracy by 3% to 81.37% We
developed a handshape based segmentation method using
the Deeplab v3+ algorithm and incorporated the segmented
handshapes as static subunit features to the temporal ac-
cumulative features method. Incorporating static subunits
further improved our results to 81.58%. Overall, our ex-
periments on Bosphorus Sign dataset have shown that TAF
representations are an effective method for sign language
recognition.
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