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Abstract

Facial pose estimation has gained a lot of attentions in

many practical applications, such as human-robot interac-

tion, gaze estimation and driver monitoring. Meanwhile,

end-to-end deep learning-based facial pose estimation is

becoming more and more popular. However, facial pose es-

timation suffers from a key challenge: the lack of sufficient

training data for many poses, especially for large poses.

Inspired by the observation that the faces under close pos-

es look similar, we reformulate the facial pose estimation

as a label distribution learning problem, considering each

face image as an example associated with a Gaussian label

distribution rather than a single label, and construct a con-

volutional neural network which is trained with a multi-loss

function on AFLW dataset and 300W-LP dataset to predict

the facial poses directly from color image. Extensive ex-

periments are conducted on several popular benchmarks,

including AFLW2000, BIWI, AFLW and AFW, where our

approach shows a significant advantage over other state-

of-the-art methods.

1. Introduction

Facial pose estimation has received more and more at-

tentions in the past few years [17, 28, 55, 41, 48, 47,

27, 8, 51, 56, 2, 53, 34, 4, 22], it plays an importan-

t role in many practical applications such as driver monitor-

ing [17, 28], human-robot or human-computer interaction

[55, 41, 48, 47, 50, 25, 7], gaze estimation [27, 8, 51, 56],

human behavior analysis [2], face alignment [53, 6] and

face recognition [5]. All of these unconstrained scenarios

require a facial pose estimator which is resistant to envi-

ronmental variations (e.g. occlusion, pose, illumination and

resolution variations).

Though some good results have been made by using

commercial depth cameras [12], one limitation that could

not be neglected lies in that depth camera does not work

well under uncontrolled environment where sunlight or am-

bient light is strong, and it often needs more space and more

power compared to monocular RGB camera. These impede

its feasibility in real-world applications [40, 34].

Traditionally, facial pose can be computed by estimat-

ing some facial key-points from target face and solving

2D to 3D correspondence with a mean 3D head model.

Though facial key-point estimation has been recently im-

proved greatly by deep learning [4], facial pose estimation

is inherently a two-step process which is error-prone. The

accuracy of the pose estimate depends upon the quality of

key-points as well as the 3D head model. If the localized

key-points are inaccurate or inadequate,the estimate of pose

becomes poor or the pose estimation may even become in-

feasible. Additionally, generic 3D head models can also

bring in errors for any given individual, and deforming the

head model to adapt to each individual demands significant

amounts of data and computation.

Recently, it has become more popular to estimate fa-

cial pose end to end using deep learning due to its ro-

bustness to environmental variations. The deep learning-

based methods have large advantages compared to tradition-

al landmark-to-pose methods, for they always output a pose

prediction which does not rely on landmark detection and

3D head model. However, the deep learning-based facial

pose estimation has not been thoroughly investigated over-

all. In some of these cases, facial pose estimation is just one

branch of multi-tasks for face analysis, which is used to im-

prove the performances of these other tasks (e.g. face detec-

tion, key-points localization and gender recognition). The

facial pose branch was not designed dedicatedly in terms

of accuracy. Some other deep learning-based methods have

dedicatedly addressed the facial pose estimation as a pose

regression from image [34, 22, 37, 36] using convolution

neural networks(CNN), while the work in [40] has conclud-

ed that the combination of binned classification and regres-



Figure 1. The sample distributions of two popular datasets. 300W-LP [59] (first row), AFLW [21] (second row). We can see that most

faces lie in the area of small poses.

sion works better than regression solely. However, all these

deep learning-based methods ignore an important fact that

the distribution of training samples is quite imbalanced and

there are not sufficient training samples for the large poses.

To varying degrees, the most popular datasets for facial pose

estimation, such as AFLW [21] and 300W-LP [59], exist

this problem (as shown in Fig.1) which can degrade the ac-

curacy of pose estimate, especially for large pose. We argue

that it is unreasonable to use soft-max cross-entropy loss for

facial pose estimation when training samples are consider-

ably imbalanced, and the accuracy of facial pose estimate

still has potential to be improved furtherly. For these losses

ignore the similarity between adjacent poses, not taking the

relationship between adjacent poses into consideration, oth-

er appropriate constraint should be introduced into the loss

function.

To this end, we reformulate the facial pose estimation

as label distribution learning problem and introduce a more

intuitive similarity constraint: Gaussian label distribution

loss into the training for facial pose estimation to improve

the accuracy. The main contributions of our work can be

summarized as follows:

• We reveal the fact that the lack of sufficient straining

samples exists in the popular facial pose datasets. And

we explain why it is not optimal to use soft-max cross-

entropy loss for facial pose estimation under this situ-

ation.

• We introduce a novel Gaussian label distribution loss

into the training for facial pose estimation, the Gaus-

sian label distribution loss which constrains the simi-

larities between neighbouring poses and can effective-

ly mitigate the insufficiency of training samples, and

dramatically boost the accuracy of facial pose esti-

mate.

• We demonstrate the effectiveness of our method in fa-

cial pose estimation by various comparative experi-

ments. Trained on publicly available datasets, such

as AFLW [21]dataset and 300W-LP [59] dataset, our

method achieves the-state-of-art results on AFLW2000

[59], BIWI [10], AFLW [21] and AFW [35] bench-

marks.

2. Related Works

So far a variety of efforts on facial pose estimation have

been dedicated. All these methods can be easily divided

depending on whether they use 2D camera or depth cam-

era. Since our work is concerned with deep learning-based

method using RGB image from a monocular camera, any

other methods using the depth camera will not be consid-

ered here. A more detailed description of depth camera-

based methods can be found in a recent survey [30] and

other previous works [27, 12, 3, 11, 54].

Some early classic studies [32, 43, 31] can be catego-

rized as appearance template methods which match a view

of a person’s face to a set of exemplars with correspond-

ing pose labels in order to find the most similar view. For

example, the method in [31] adopts support vector machine

(SVM) to model the appearance of human faces across mul-

tiple views and performs pose estimation by using nearest-

neighbor matching. However, the appearance template



methods suffer from some limitations. They can only es-

timate discrete pose without the use of some interpolation

method, and they also suffer from the accuracy concerns

when the facial region is not localized accurately and effi-

ciency concerns when the exemplar set is very large.

The face detector arrays [19, 57] whose idea is to

train multiple face detectors for different facial poses once

became popular as the success of frontal face detection

[49, 33, 39]. The method in [57] uses a sequence of five

multi-view face detectors to estimate facial pose. It is ev-

ident that many face detectors are required for each corre-

sponding discrete facial pose, and it is difficult to implement

a real time facial pose estimator with a large detector array.

Facial pose estimation can also be formulated as a mani-

fold embedding problem that the high dimensional face im-

age can be embedded into a low dimensional manifold in

which facial pose is estimated. Any dimensionality reduc-

tion technique can be considered as a part of manifold em-

bedding category. The methods in [42, 52] project a face

image into a PCA or KPCA subspace and in which com-

pare the result to a set of embedded templates. The method

in [38] uses Isometric Feature Mapping (Isomap) to embed

a face image into a nonlinear manifold which represents the

pose-varying faces. These approaches ignore the pose label-

s that are available during training and operate in an unsu-

pervised fashion. This results in that the built manifolds not

only describe the pose variations but also identity variation-

s [1]. The method [46] utilizes the feature correspondence

of identity-invariant geometric features to learn a similari-

ty kernel that only reflects the pose variation ignoring other

sources of variation. This method shows a good reliabili-

ty on benchmark dataset. However, further research is still

needed to achieve state-of-the-art performance.

Facial pose estimation can be naturally formulated as a

nonlinear regression problem which learns a nonlinear map-

ping from images to poses. The methods in [23, 26, 29]

adopt support vector regressor(SVR) to estimate the fa-

cial pose after a series of preprocessing, including face re-

gion cropping, Sobel filtering, PCA [23], priori knowledge-

based linear projection [26], or localized gradient orienta-

tion histogram [29]. The methods in [45, 44] utilize mul-

tilayer perception(MLP) to regress the facial pose. These

methods have one disadvantage that they are prone to er-

ror from poor face localization. Recently thank to the great

success of deep learning techniques, it has become popu-

lar to estimate facial pose using CNN which is robust to

shift, scale and distortion. The method in [34] presents an

in-depth study of CNN trained on AFLW dataset using L2

regression loss and tested on the Prima, AFLW and AFLW

datasets. The method in [22] proposes a GoogLeNet-based

architecture trained on AFLW dataset which can predict the

key-points and facial pose jointly and reports the pose re-

sults on AFLW dataset and AFW [35]dataset. L2 Euclidean

loss function is adopted to train the pose predictor which

is used to improve key-point localization. The method in

[53] also trains a pose estimator using 300W dataset to as-

sist face alignment. Both the method in [37] and the method

in [36] build a multitask learning framework for face anal-

ysis, including face detection, face alignment, face recog-

nition, pose estimation, age prediction, gender recognition

and smile detection. Both methods utilize AFLW dataset

to train pose regressors and pose results are also reported

on AFLW dataset and AFW dataset. The method in [40]

makes an extensive study of combination of classification

loss and regression loss on benchmark datasets, including

300w-LP dataset, AFLW dataset, BIWI [10] dataset and

AFW dataset, and concludes that the combination of binned

classification and regression works better than regression

solely. However, all these deep learning-based methods pay

no attention to the lack of sufficient training data for many

poses. Consequently, the performance of facial pose esti-

mator is limited. This reason motivates us to seek a better

solution in this paper.

The label distribution learning (LDL) is a novel machine

learning paradigm recently proposed for facial age estima-

tion [16, 24]. The LDL is based on the observation that

age is ambiguous and faces with adjacent ages are strong-

ly correlated. The main idea of LDL is to utilize adjacent

ages when learning a particular age. And a label distribu-

tion covers a number of class labels, representing the degree

that each label describes the instance. Hence, the LDL is

able to deal with insufficient and incomplete training data.

Some other problems which share the same characteristic as

facial age estimation, such as facial attractiveness computa-

tion [9], crowd counting [58] and pre-release movie rating

prediction [14] have achieved outstanding performances by

using LDL.

Facial pose appears similar to facial age, i.e. the faces un-

der close poses look similar (as shown in Fig.2), the chang-

ing of facial pose can be regarded as a relative slow and

smooth process and faces under adjacent poses are highly

correlated. Thus, the LDL paradigm is an ideal match for

the task of facial pose estimation. We notice that similar

learning paradigms[15, 13] have been proposed to mitigate

label ambiguity in head pose estimation. However, they on-

ly focused on 2D head pose estimation and were not exten-

sively investigated on such precisely annotated benchmarks

as AFLW2000 and BIWI.

3. Method

3.1. Gaussian Label Distribution Learning

We argue that the lack of sufficient training samples can

degrade the accuracy of pose estimator. The reason is that

the soft-max cross-entropy loss function used in training en-

codes the distance between all poses equally and does not



(a) yaw = 24.8◦ (b) yaw = 29.8◦ (c) yaw = 34.8◦ (d) yaw = 39.8◦

Figure 2. The faces of one subject under different poses.

take the relationship between adjacent poses into considera-

tion. So it cannot effectively handle the insufficiency prob-

lem of training samples. Inspired by the previous work on

age estimation [16, 24] and facial attractiveness ranking [9],

we reformulate the facial pose estimation as a label distri-

bution learning problem.

It is apparent that the faces under close poses look

quite similar (as shown in Fig.2). Consequently, additional

knowledge about the faces with different poses can be in-

troduced to reinforce the learning problem. It is straightfor-

ward to utilize faces under neighboring poses while learning

a particular pose. To achieve this, we assign a label distri-

bution to each face image rather than a single label of real

pose. This can make a face image contribute to not only the

learning of its real pose, but also the learning of its neigh-

bouring poses. We employ three Gaussian label distribu-

tions to describe a face example in the yaw, pitch and roll

domain respectively to reinforce the whole learning process.

Here we take the yaw as an example to illustrate the

Gaussian label distribution. Given a face image xi and a

complete set of yaw labels y = {y1, y2, . . . , yM}, if its yaw

label is yα, α = 1, 2, . . . ,M , then the corresponding yaw

label distribution is represented as a multi-dimension vec-

tor D
y
i = {dy1

xi
, dy2

xi
, . . . , dyM

xi
}, with the l-th dimension as

follows:

dyl
xi

=
exp

(

d
yl
xi

)

∑

M
u=1

exp(dyu
xi )

,

dyl
xi = exp(−(l−α)2

2σ2
y

)/σy, l = 1, 2, . . . ,M
(1)

where l denotes the l-th binned yaw, α is the binned ground-

truth yaw, σy is the label standard deviation, and M is the

dimension of the yaw label vector which also implicitly rep-

resents the maximum yaw. Consequently, dyl
xi

represents the

degree that the label yl describes the example xi under the

constraint
∑M

l=1 d
yl
xi

= 1, meaning that the label set y fully

describes the example. Fig.3 demonstrates an example of

Gaussian label distribution for yaw.

Following the same definition, another two label dis-

tributions: D
p
i = {dp1

xi
, dp2

xi
, . . . , dpN

xi
} and Dr

i =
{dr1xi

, dr2xi
, . . . , drKxi

} can be obtained for xi with a set of

pitch labels p = {p1, p2, . . . , pN} and a set of roll labels

Figure 3. Gaussian label distribution with σy = 4 for the ground-

truth yaw = −30
◦.

r = {r1, r2, . . . , rk} respectively as follows:

d
pj
xi =

exp

(

d
pj
xi

)

∑

N
v=1

exp(dpv
xi )

,

d
pj
xi = exp(−(j−β)2

2σ2
p

)/σp, j = 1, 2, . . . , N

(2)

drkxi
=

exp
(

d
rk
xi

)

∑

K
w=1

exp(drw
xi )

,

drkxi = exp(−(k−γ)2

2σ2
r

)/σr, k = 1, 2, . . . ,K

(3)

where β and γ denote binned ground-truth pitch and roll

of the face respectively. Consequently, the training set can

be represented as {(xi, (D
y
i ,D

p
i ,D

r
i )) , 1 ≤ i ≤ n} and

the goal of the learning becomes to train a set of network

parameters θ to generate a triplet of probability distribution

(F y (xi;θ) ,F
p (xi;θ) ,F

r (xi;θ)) for the three label sets,

which is similar to (Dy
i ,D

p
i ,D

r
i ). Wherein,

F y (xi;θ) = {f(y1|xi;θ), f(y2|xi;θ), . . . , f(yM |xi;θ)},∑M
l=1 f(yl|xi;θ) = 1;

F p (xi;θ) = {f(p1|xi;θ), f(p2|xi;θ), . . . , f(pN |xi;θ)},∑N
j=1 f(pj |xi;θ) = 1;

F r (xi;θ) = {f(r1|xi;θ), f(r2|xi;θ), . . . , f(rK |xi;θ)},∑K
k=1 f(rk|xi;θ) = 1.

(4)

The Euclidean distance and Kullback-Leibler (KL)

divergence are adopted to construct the loss function

measuring the similarity between the ground-truth

distribution (Dy
i ,D

p
i ,D

r
i ) and predicted distribution

(F y (xi;θ) ,F
p (xi;θ) ,F

r (xi;θ)). The objective of



the label distribution learning is to minimize either of the

following overall loss functions:

LEu =
n∑

i=1

‖Dy
i − F y (xi;θ)‖2 +

n∑

i=1

‖Dp
i − F p (xi;θ)‖2

+
n∑

i=1

‖Dr
i − F r (xi;θ)‖2 ,

LKL =
n∑

i=1

M∑

l=1

dpl
xi
ln

d
pl
xi

f(yl|xi;θ)
+

n∑

i=1

N∑

j=1

dpl
xi
ln

d
pj
xi

f(pj |xi;θ)
+

n∑

i=1

K∑

k=1

dpl
xi
ln

d
rk
xi

f(rk|xi;θ)

(5)

And we define LGLD = LEu +LKL as our Gaussian label

distribution loss.

3.2. Network Architecture

We modify the framework presented in Hopenet [40] to

construct our network architecture for facial pose estima-

tion. The framework presented in Hopenet [40] original-

ly consists of three separate losses for yaw, pitch and roll

respectively and got state-of-the-art result. Each loss is a

linear combination of a soft-max cross-entropy loss and a

mean squared error(MSE) loss. To achieve better accuracy,

we replace the soft-max cross-entropy loss with our Gaus-

sian label distribution loss. Consequently, our learning ar-

chitecture can be constructed as shown in Fig.4.

Our framework consists of a ResNet50 [18]-based back-

bone network and three branches for yaw, pitch and roll re-

spectively. Each branch is comprised of a fully-connected

layer with the number of neurons equal to the total num-

ber of corresponding labels and a soft-max layer followed

by the combined loss layer. The soft-max operation ensures

to satisfy the aforementioned constraints:
∑M

l=1 d
yl
xi

= 1,
∑N

j=1 d
pj
xi = 1 and

∑K
k=1 d

rk
xi

= 1.

Then the total loss is defined as Ltotal = LGLD + α ∗
LMSE . Wherein, LMSE is the mean squared error loss, and

α is a weight used to adjust the two loss components.

4. Experiments

4.1. Training Details

We choose the 300W-LP [59] and the AFLW [21] to

train our network respectively. These two datasets have

enough examples with enough different identities and d-

ifferent lighting conditions. The 300W-LP [59]dataset is

a collection of popular in-the-wild 2D landmark dataset-

s which have been grouped and re-annotated. The AFLW

[21]dataset, which is commonly used to train and test land-

mark detection methods, also includes pose annotations.

We divide the facial pose into 66 bins within ±99◦ for

yaw, pitch and roll respectively, i.e., M = N = K = 66.

And we set σy = σp = σr = 4. All the data is nor-

malized before training by using the ImageNet mean and

standard deviation for each color channel. And a pretrained

ResNet50[18] on ImageNet is adopted to initialize our net-

work. The proposed multi-loss network is trained with

α = 0, α = 0.01, α = 0.1, α = 1 and α = 2 on both the

300W-LP dataset and AFLW dataset. All the ten networks

are trained using Adam optimization [51] with a learning

rate of 10−6 and β1 = 0.9, β2 = 0.999 and ε = 10−8.

4.2. Results on AFLW2000 and BIWI Benchmark

The AFLW2000 [59] dataset contains the first 2000 i-

dentities of the in-the-wild AFLW [21]dataset with accu-

rate pose annotations. It is an ideal candidate to test our

method. The BIWI [59] dataset is collected indoor by

recording RGB-D video of different subjects across differ-

ent facial poses using Kinect v2 device. It is commonly

used as benchmark for depth-based pose estimation. Here

we will only use the color frames instead of the depth infor-

mation.

Firstly, we compare our results to the state-of-the-art

method Hopenet [40] which is trained using a combination

of L2 Euclidean loss and soft-max cross-entropy loss. Then,

we compare to the pose estimated from 3DDFA [60] whose

primary task is to align facial landmarks, and pose estimat-

ed from landmarks using two different landmark detectors:

FAN [4] and Dlib[20], and ground-truth landmarks on both

datasets. Additionally, we also list the results of KEPLER

[22] on BIWI dataset reported in [40]. Table 1 shows the

performance evaluations on AFLW2000 and BIWI Bench-

mark.

We can see that our best model(α = 0.01) outperforms

all other baseline methods by a large margin on AFLW2000

benchmark, reducing the yaw error of the best-performing

baselines 3DDFA[60] by 43.9%, reducing the yaw error of

Hopenet[40] by 53.2%, reducing the pitch error, the rol-

l error, and the mean average error (MAE) of the best-

performing baseline Hopenet[40] by 22.8%, 32.2%, 36.2%

respectively.

On BIWI benchmark, our method also performs bet-

ter than all other baseline methods. Our best model(α =
0)trained on 300W-LP dataset reduces the error of the cor-

responding best-performing baseline Hopenet[40] trained

on 300W-LP datatset by 14.3%, 15%, 3.7% and 12.3% for

yaw, pitch, roll and MAE respectively. Our best model(α =
0.1)trained on AFLW dataset also outperforms Hopenet[40]

trained on AFLW datatset, reducing the error by 20.8%,

19.4%, 0.9% and 13.8% for yaw, pitch, roll and MAE re-

spectively.

4.3. Results on AFLW and AFW Benchmark

In this section, we present the evaluation results on

AFLW [21] and AFW [35] benchmark, using the model

trained on AFLW dataset. The AFW [35]benchmark which

is commonly used to test landmark detection methods con-
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Figure 4. Proposed network architecture for facial pose estimation.

Benchmark Method Yaw Pitch Roll MAE

AFLW2000

Hopenet[40]* 6.470 6.559 5.436 6.155

FAN[4] 6.358 12.277 8.714 9.116

3DDFA[60] 5.400 8.530 8.250 7.393

Dlib[20] 23.153 13.633 10.545 15.777

Ground-truth landmarks 5.924 11.756 8.271 8.651

Ours(α = 0)* 3.1791 5.3372 3.7983 4.1049

Ours(α = 0.01)* 3.0288 5.0634 3.6842 3.9255

Ours(α = 0.1)* 3.1446 5.2047 3.6901 4.0131

Ours(α = 1)* 3.1064 5.3446 3.6957 4.0489

Ours(α = 2)* 3.3236 5.3570 3.8392 4.1733

BIWI

Hopenet[40]* 4.810 6.606 3.269 4.895

Hopenet[40]+ 5.785 11.726 8.194 8.568

FAN[4] 8.532 7.483 7.631 7.882

3DDFA[60] 36.175 12.252 8.776 19.068

Dlib[20] 16.756 13.802 6.190 12.249

KEPLER[22]+ 8.084 17.277 16.196 13.852

Ours(α = 0)* 4.1233 5.6142 3.1469 4.2948

Ours(α = 0.01)* 4.2367 5.8446 3.4675 4.5163

Ours(α = 0.1)* 4.0967 6.0498 3.2933 4.4799

Ours(α = 1)* 3.9236 5.8832 3.4014 4.4027

Ours(α = 2)* 4.6890 6.1271 3.3669 4.7276

Ours(α = 0)+ 4.5674 10.0874 8.0633 7.5737

Ours(α = 0.01)+ 4.5652 8.9595 8.7420 7.4223

Ours(α = 0.1)+ 4.5839 9.4471 8.1225 7.3845

Ours(α = 1)+ 4.3564 9.2310 8.8810 7.4895

Ours(α = 2)+ 4.3587 9.9015 8.6058 7.6220

*: trained on 300W-LP dataset.

+: trained on AFLW dataset.

Table 1. Evaluations on AFLW2000 and BIWI benchmarks.

tains rough pose annotations. Here, we compare our results

to some deep learning-based methods, including Hopenet

[40], KEPLER [22], the method proposed by Patacchio-

la and Cangelosi[34], Hyperface [36] and All-In-One [37].

Table 2 and Fig.5 respectively show the results on AFLW

and AFW benchmark.

We can see that our method outperforms all other base-

line methods on AFLW benchmark. Our best model(α =
0.01) reduces the error of the best-performing baseline

Hopenet[40] by 4.2%, 9.85%, 0.53% and 5.71% for yaw,

pitch, roll and MAE respectively. On AFW benchmark, our

Method Yaw Pitch Roll MAE

Hopenet[40] 6.26 5.89 3.82 5.324

KEPLER[22] 6.45 5.85 8.75 7.017

Patacchiola,Cangelosi[34] 11.04 7.15 4.4 7.530

Ours(α = 0) 6.83 5.26 3.92 5.34

Ours(α = 0.01) 6.00 5.31 3.75 5.02

Ours(α = 0.1) 5.93 5.30 4.03 5.085

Ours(α = 1) 5.90 5.51 3.87 5.094

Ours(α = 2) 5.90 5.62 3.77 5.097
Table 2. Evaluation on AFLW benchmark.

Figure 5. Evaluation on AFW benchmark.

method also performs better than all other baseline method-

s. Our best model(α = 0.01) achieves a saturated accuracy

of over 99%.

It is noteworthy that, on BIWI and AFLW benchmarks,

the improvement of accuracy for roll is much less than for

yaw and pitch. We argue that two reasons result in this sit-

uation. One reason is that, the distribution of training sets

in roll domain is extremely imbalanced compared to that in

yaw and pitch domains(as shown in Fig.1), and the most of



training examples lie in the area of small roll, which limits

the learning ability of our method in roll domain, especially

in the area of large roll. The other reason is that the test sets

also have the similar characteristic as the first reason men-

tioned. In test sets, 67.65% examples of BIWI and 65.57%

examples of AFLW lie in ±10◦ for roll, while 33.54% of

BIWI and 26.23% of AFLW for yaw, and 22.97% of BI-

WI and 47.13% of AFLW for pitch. That is, the BIWI and

AFLW benchmarks have relatively few examples with large

roll. Both reasons restrict the improvement our method can

make for roll.

5. Conclusion

This paper presents a novel computational model for fa-

cial pose estimation, which is reformulated as label distri-

bution learning problem rather than the conventional single-

label supervised learning. This makes a face image con-

tribute to not only the learning of its real pose, but also the

learning of its adjacent poses, mitigating the degradation of

pose predictor caused by the lack of sufficient training da-

ta. Experiments on several popular benchmarks show our

method is state-of-the-art.
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